COMPACT FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

NIGEL HITCHIN

1. Introduction

There are few known examples of compact four-dimensional Einstein manifolds, namely,

- (a) flat riemannian manifolds,
- (b) compact symmetric spaces S^4 , $S^2 \times S^2$, $\mathbb{C}P^2$,
- (c) manifolds whose universal coverings are the corresponding noncompact symmetric spaces (see Borel [5]).

On the other hand, there are few examples of four-manifolds which do *not* admit an Einstein metric. Berger [3] proved that a four-dimensional Einstein manifold X must have Euler characteristic $\chi \geq 0$ with equality iff X is flat, and so for example $T^4 \sharp T^4$ and $S^1 \times S^3$ do not admit Einstein metrics. However, if X is simply connected, then χ is necessarily positive, and this led Eells and Sampson to pose the following question [8]: Are there simply connected compact manifolds which do not carry an Einstein metric?

Theorem 1 gives an inequality between the signature τ and Euler characteristic χ of a four-dimensional Einstein manifold which allows us to answer this question.

Theorem 1. Let X be a compact four-dimensional Einstein manifold with signature τ and Euler characteristic χ . Then

$$|\tau| \leq \frac{2}{3} \chi .$$

Furthermore, if equality occurs then $\pm X$ is either flat or its universal covering is a K3 surface. If the universal covering of X is a K3 surface, then X is a K3 surface ($\pi_1 = 1$), an Enriques surface ($\pi_1 = \mathbb{Z}_2$) or the quotient of an Enriques surface by a free antiholomorphic involution with $\pi_1 = \mathbb{Z}_2 \times \mathbb{Z}_2$.

(A K3 surface is a complex surface with first Betti number $b_1 = 0$ and first Chern class $c_1 = 0$, and an Enriques surface is a complex surface with $b_1 = 0$ and $2c_1 = 0$. Note that all K3 surfaces are diffeomorphic to a quartic surface in $\mathbb{C}P^3$; see Kodaira [9].)

The examples (a), (b) and (c) above all have a further property: their sectional curvatures are nonnegative or nonpositive. With this as an additional

Received January 26, 1973.

hypothesis we have the stronger inequality of Theorem 2.

Theorem 2. Let X be a compact four-dimensional Einstein manifold with nonnegative (or nonpositive) sectional curvature. Then

$$|\tau| \le (\frac{2}{3})^{3/2} \chi \ .$$

Since $(\frac{2}{3})^{3/2}$ is irrational, clearly equality can only occur if X is flat.

2. Remarks

- 1. Let $X = nCP^2$ (the connected sum of n copies of CP^2). Then X is simply connected, and $\tau = n$, $\chi = n + 2$; so applying Theorem 1 we obtain that if X is Einsteinian, then $n < \frac{2}{3}(n + 2)$, i.e., n < 4. Hence nCP^2 ($n \ge 4$) is a simply connected compact manifold which does not carry an Einstein metric.
- 2. It is not known (to the author) whether there exist Enriques surfaces with free antiholomorphic involutions but, more importantly, it is not known whether a K3 surface actually admits an Einstein metric. This seems an interesting question, especially in view of the following equivalent formulations for a K3 surface:
 - (i) X admits a quaternionic Kähler structure,
 - (ii) X admits a Ricci-flat Kähler structure,
 - (iii) X admits an Einstein metric,
 - (iv) X admits a riemannian metric of zero scalar curvature.

A quaternionic Kähler structure is a reduction of the holonomy group from SO(4) to Sp(1). Since Sp(1) = SU(2), (i) \Rightarrow (ii). If the Ricci tensor is zero, then X is Einsteinian, so (ii) \Rightarrow (iii). We shall see in the proof of Theorem 1 that any Einstein metric on a K3 surface must have zero scalar curvature, hence (iii) \Rightarrow (iv). To show (iv) \Rightarrow (i) we use the vanishing theorem of Lichnerowicz for harmonic spinors [10]. A K3 surface is a spin manifold with nonzero \hat{A} -genus, and hence if X admits a metric of zero scalar curvature, then from [10] there exists a parallel spinor. This implies a reduction of the holonomy group to the isotropy subgroup of the spin representation Δ^+ or Δ^- . The isotropy subgroup of Δ^+ is SU(2) = Sp(1), and so (modulo a change of orientation) (iv) \Rightarrow (i). Note that Calabi's conjecture implies (ii).

- 3. Let us apply Theorem 2 to $X = nCP^2$. If X admits an Einstein metric of nonpositive or nonnegative sectional curvature, then $n \le (\frac{2}{3})^{3/2}(n+2) < \frac{5}{9}(n+2)$ and so $n \le 2$. We know CP^2 admits an Einstein metric of nonnegative sectional curvature; Cheeger [6] has constructed a (non-Einstein) metric of nonnegative sectional curvature on $2CP^2$.
- 4. Berger [3] has shown that for a four-dimensional Einstein manifold of strictly positive sectional curvature, $\chi \leq 10$ (in fact closer examination shows that strict inequality must hold, so $\chi \leq 9$). Applying Theorem 2 we see that $|\tau| \leq 4$. This reduces slightly the number of possible homotopy types of such manifolds.

5. It is shown in [12] that if a compact four-dimensional manifold has abelian fundamental group, then the inequality $|\tau| \le \chi$ holds. It would be interesting, in view of Theorem 1, to know if admitting an Einstein metric implies anything about the fundamental group.

3. Proof of Theorem 1

We use the normal form for the curvature tensor at each point of a four-dimensional Einstein manifold given in Berger [2] and Singer-Thorpe [11].

We regard the curvature tensor R as a symmetric linear transformation of the bundle Λ^2 of 2-forms defined by

$$R(e_i \wedge e_i) = \Omega_i^i = \frac{1}{2} \sum R_{ijkl} e_k \wedge e_l$$

relative to a local orthonormal basis $\{e_i\}$ of the 1-forms. The theorem on the normal form of R then states that there exists such an orthonormal basis such that relative to the corresponding basis $\{e_1 \land e_2, e_1 \land e_3, e_1 \land e_4, e_3 \land e_4, e_4 \land e_2, e_2 \land e_3\}$ of Λ^2 , R takes the form

$$\begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

where

$$A = egin{bmatrix} \lambda_1 & 0 \ \lambda_2 \ 0 & \lambda_2 \end{bmatrix}, \qquad B = egin{bmatrix} \mu_1 & 0 \ \mu_2 \ 0 & \mu_3 \end{bmatrix}.$$

The Bianchi identity implies that $\Sigma \mu_i = 0$. Moreover, $\Sigma \lambda_i = \frac{1}{2}$ trace $R = \frac{1}{4}X$ scalar curvature. It will be convenient to regard $(\lambda_1, \lambda_2, \lambda_3)$ and (μ_1, μ_2, μ_3) as vectors λ , $\mu \in \mathbb{R}^3$ in what follows.

Now by the Gauss-Bonnet theorem, the Euler characteristic χ of X is given by integrating the following form over X:

$$egin{aligned} rac{1}{2^4\pi^22\,!} arSigma arepsilon_{ijkl} arOmega_j^i \wedge arOmega_l^k &= rac{1}{2^5\pi^2} \Sigma arepsilon_{ijkl} R(e_i \wedge e_j) \wedge R(e_k \wedge e_l) \ &= rac{1}{4\pi^2} (arSigma \lambda_i^2 + \mu_i^2) * 1 = rac{1}{4\pi^2} (|\lambda|^2 + |\mu|^2) * 1 \;. \end{aligned}$$

(Since $|\lambda|^2 + |\mu|^2 \ge 0$ with equality iff $\lambda = \mu = 0$, we have here Berger's result.) The first Pontrjagin class p_1 of X is given by integrating the following form over X:

$$-rac{1}{4\pi^22!}$$
 trace $\Omega^2=rac{1}{8\pi^2}\Sigma R(e_i\wedge e_j)\wedge R(e_i\wedge e_j)$

$$=\frac{1}{\pi^2}(\lambda_1\mu_1+\lambda_2\mu_2+\lambda_3\mu_3)*1=\frac{1}{\pi^2}(\lambda,\mu)*1.$$

We have the inequality $|\lambda|^2 + |\mu|^2 \ge 2(\lambda, \mu)$ with equality iff $\lambda = \mu$, and so from the above two expressions we get $\chi \ge \frac{1}{2}p_1$ by integration. X with opposite orientation is still an Einstein manifold, so we also have $\chi \ge -\frac{1}{2}p_1$. By the Hirzebruch signature formula we obtain the signature $\tau = \frac{1}{3}p_1$ and hence the inequality (1.1) of Theorem 1.

Now let us consider the case where equality occurs, say $-\tau = \frac{2}{3}\chi$. In this case $\lambda = -\mu$ and so $\Sigma \lambda_i = -\Sigma \mu_i = 0$ by the Bianchi identity; hence X has zero scalar curvature. Since X is Einsteinian, the Ricci tensor $(=kg_{ij})$ vanishes.

Suppose X is not flat. Then by Berger's result we have $\chi > 0$. We claim that the fundamental group $\pi_1(X)$ is finite. First we show that $b_1 = 0$. Suppose not, then by Hodge theory there exists a harmonic 1-form on X. Since the Ricci tensor is zero, every harmonic 1-form must be parallel by the vanishing theorem of Bochner and Myers [4]. In particular we have a nonvanishing vector field on X. Since $\chi \neq 0$, this is impossible and so $b_1 = 0$.

Note that this is also true for any finite covering \overline{X} of degree k; for we can pull back the Einstein metric on X to \overline{X} , and then \overline{X} again satisfies the hypotheses of our theorem since $\overline{\tau} = k\tau$, $\overline{\chi} = k\chi$. We now apply the Cheeger-Gromoll splitting theorem [7, Theorem 3]: X has nonnegative Ricci curvature, and so either π_1 is finite or there is a finite covering of X with $b_1 \neq 0$. Since $b_1 = 0$ for all finite coverings, we see that π_1 is finite.

We now consider the bundle of 2-forms Λ^2 . Λ^2 splits as a direct sum $\Lambda^+ \oplus \Lambda^-$ where Λ^\pm are the eigenspaces of the Hodge star operator. In our case we shall show that Λ^+ is a flat bundle relative to the connection induced by the riemannian connection. The decomposition above corresponds to the decomposition of the second exterior power representation λ^2 of SO(4) into irreducible subspaces $\lambda^2 = \lambda^+ \oplus \lambda^-$. The representation λ^+ defines a homomorphism $l^+: SO(4) \to SO(3)$ with kernel SU(2) under the standard inclusion. We can identify the Lie algebra of SO(4) with λ^2 , and then the kernel of dl^+ is just λ^- .

Now the curvature tensor R of X is a section of $\Lambda^- \otimes \Lambda^2$, and so to show that Λ^+ is flat we must show that R is a section of $\Lambda^- \otimes \Lambda^2$. From the normal form of the curvature tensor we have $\lambda = -\mu$. In terms of the given local orthonormal basis we then get

$$R = \lambda_1(e_1 \wedge e_2 - e_3 \wedge e_4) \otimes (e_1 \wedge e_2 - e_3 \wedge e_4) + \text{similar terms.}$$

In particular, R is a section of $\Lambda^- \otimes \Lambda^2$, and so the bundle Λ^+ has zero curvature and is therefore flat. Take the universal covering \overline{X} of X. Since $\pi_1(X)$ is finite, \overline{X} is compact and simply connected, and the bundle Λ^+ on \overline{X} has three linearly independent parallel sections. These reduce the holonomy group from SO(4) to the kernel of l^+ , that is, SU(2). Hence \overline{X} is a compact Ricci-flat,

two-dimensional Kähler manifold. The first Chern class c_1 is represented in the de Rham cohomology by the Ricci form, and so $c_1 = 0$ since \bar{X} is simply connected. We thus have a complex surface with $b_1 = 0$ and $c_1 = 0$, so that it is a K3 surface.

Now to get the nonsimply connected manifolds we have to consider the possible free actions of a finite group G of isometries of \overline{X} . First, the order of such a group must divide the signature and Euler characteristic of \overline{X} . For a K3 surface, $\tau = -16$, $\gamma = 24$ so the order of G must divide 8.

Suppose the order of G=8. Then for $X=\overline{X}/G$ we have $\tau=-2, \chi=3$. Since $b_1=0$ this means $b_2=1$, but then $|\tau|>b_2$ which is impossible, so G must be of order 2 or 4, that is, $G=\mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2$ or \mathbb{Z}_4 .

As mentioned in Remark 2, our K3 surface \overline{X} is a quaternionic Kähler manifold, i.e., it has three almost complex structures I, J, K, parallel with respect to the riemannian connection and such that IJ = -JI, etc. In fact, by duality we can regard these as the three linearly independent 2-forms which parallelize Λ^+ . Note that aI + bJ + cK is also a complex structure where a, b,c are constants and $a^2 + b^2 + c^2 = 1$, so that any parallel Λ^+ form on \overline{X} defines (after normalization) a complex structure.

The dimension b_2^+ of the space of harmonic 2-forms in Λ^+ on a four-manifold with $b_1=0$ is given from Hodge theory by

$$b_2^+ = \frac{1}{2}(\tau + \chi - 2)$$
.

For \overline{X} , $b_2^+ = \frac{1}{2}(-16 + 24 - 2) = 3$, so every harmonic Λ^+ form is parallel. For $X = \overline{X}/Z_2, b_2^+ = \frac{1}{2}(-8 + 12 - 2) = 1$, so that the Z_2 action on \overline{X} leaves fixed one harmonic (and therefore parallel) Λ^+ form L. $L/\|L\|$ is then a complex structure left fixed by Z_2 , so X is a complex surface with $b_1 = 0$ and $2c_1 = 0$, i.e., an Enriques surface.

For $X = \overline{X}/G$ where G is of order 4, $b_2^+ = \frac{1}{2}(-4+6-2) = 0$. We can regard X as the quotient of an Enriques surface by a free \mathbb{Z}_2 action. Since $b_2^+ = 0$, the involution cannot leave fixed the complex structure on the Enriques surface and must therefore take it into its conjugate. In other words, X is the quotient of an Enriques surface by a free antiholomorphic involution.

It remains to rule out the case $G = \mathbb{Z}_4$. Let P be the principal SO(4) bundle of orthonormal frames of \overline{X} . Since a K3 surface is a spin manifold, P has a double covering \hat{P} which is a principal Spin (4) bundle. Let f be a generator of G. Then f acts on P, and is covered by an action \hat{f} on \hat{P} (see Atiyah and Bott [1]).

Suppose $\hat{f}^4 = 1$. Then G acts on \hat{P} , and $X = \overline{X}/G$ is a spin manifold with principal spin bundle \hat{P}/G . If $\hat{f}^4 = -1$, then we can define an action of G on the principal Spin^e (4) bundle $\hat{P} \times_{Z_2} S^1$ as follows:

$$f(p,e^{i\theta})=(\hat{f}p,e^{i(\theta+\pi/4)}).$$

Thus X is a Spin^c manifold with principal Spin^c bundle $\hat{P} \times_{Z_2} S^1/G$. In either case we can define a Dirac operator on X which has index equal to $\hat{A}(X)$. But $\hat{A}(X) = -\frac{1}{8}\tau(X) = \frac{1}{2}$ which is not an integer. Hence Z_4 cannot act freely on a K3 surface. Note that we cannot use the same argument for $G = Z_2 \times Z_2$ since it may act on \hat{P} as the non-abelian group of quaternions $\{\pm 1, \pm i, \pm j, \pm k\}$.

Finally, if $\tau = \frac{2}{3}\chi$, then X with opposite orientation has $-\tau = \frac{2}{3}\chi$ and we can apply the above arguments.

4. Proof of Theorem 2

In the normal form of the curvature tensor, the numbers λ_1 , λ_2 , λ_3 are critical values of the sectional curvature function, so suppose X has nonnegative sectional curvature. Then the vector $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ lies in the region $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_i \geq 0, 1 \leq i \leq 3\}$. On the other hand, μ is constrained by the Bianchi identity to lie in the plane $\Sigma x_i = 0$, so that if λ , μ are nonzero, then the angle θ between them must satisfy $\cos \theta \leq \sqrt{2/3}$. Therefore

$$(\lambda,\mu) \leq \sqrt{2/3} |\lambda| \cdot |\mu|$$
,

and this holds even if λ or μ vanishes. From the inequality $|\lambda|^2 + |\mu|^2 \ge 2|\lambda| \cdot |\mu|$, we get

$$|\lambda|^2 + |\mu|^2 \geq 2\sqrt{3/2}(\lambda,\mu)$$
.

Integrating and using the expressions for Euler characteristic and signature in the proof of Theorem 1, we obtain the inequality (1.2). The case of non-positive sectional curvature is similar.

Added in proof. Concerning Remark 2, we can in fact find Enriques surfaces with free antiholomorphic involutions; the author is grateful to M. F. Atiyah for the following idea. Let A and B be real 3×3 matrices, x and $y \in \mathbb{C}^3$, and consider the algebraic variety X in \mathbb{P}^5 given by the equations $\sum_j A_{ij} x_j^2 + B_{ij} y_j^2 = 0$ $1 \le i \le 3$. For generic A and B this is a complete intersection of three nonsingular hyperquadrics. By the Lefschets theorem $b_1 = 0$ and by an easy calculation $c_1 = 0$, so X is a K3 surface. We define the commuting involutions τ and σ on \mathbb{P}^5 by $\tau(x,y) = (x,-y)$, $\sigma(x,y) = (\bar{x},\bar{y})$ and since A and B are real, both τ and σ act on X.

At a fixed point of τ on X, $\sum A_{ij}x_j^2 = 0$ and $\sum B_{ij}y_j^2 = 0$, so if A and B are invertible, then τ is free and holomorphic. At a fixed point of σ on X, $\sum A_{ij}x_j\bar{x}_j + B_{ij}y_j\bar{y}_j = 0$, so if $A_{1j}, B_{1j} > 0$ for all j, then σ is free. At a fixed point of $\sigma\tau$ on X, $\sum A_{ij}x_j\bar{x}_j - B_{ij}y_j\bar{y}_j = 0$, so if $A_{2j}, -B_{2j} > 0$ for all j, then $\sigma\tau$ is free. Thus choosing A and B appropriately, σ and τ generate the required free $Z_2 \times Z_2$ action on X.

Finally we should point out that the inequality (1.1) has also been found by A. Gray.

References

- [1] M. F. Atiyah & R. Bott, A Lefschetz fixed point formula for elliptic complexes. II, Ann. of Math. 88 (1968) 451-491.
- [2] M. Berger, Sur quelques variétés d'Einstein compactes, Ann. Mat. Pura Appl. 53 (1961) 89-95.
- [3] —, Sur les variétés d'Einstein compactes, C.R. III° Réunion Math. Expression Latine, Namur (1965) 35-55.
- [4] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946) 776-797.
- [5] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963) 111-122.
- [6] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973) 623-628.
- [7] J. Cheeger & D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971) 119-128.
- [8] S. Kobayashi & J. Eells, Problems in differential geometry, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoransha, Tokyo, 1966, 167-177.
- [9] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964) 751-798.
- [10] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7-9.
- [11] I. M. Singer & J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global Analysis, Papers in Honor of K. Kodaira, Princeton University Press, Princeton, 1969, 355-365.
- [12] H. E. Winkelnkemper, Un teorema sobre variedades de dimensión 4, Acta Mexicana Ci. Tecn. 2 (1968) 88-89.

INSTITUTE FOR ADVANCED STUDY