
COMPACT FPGA IMPLEMENTATION OF CAMELLIA

Panasayya Yalla and Jens-Peter Kaps

Volgenau School of IT&E, George Mason University
Fairfax, VA, USA

email: {pyalla, jkaps}@gmu.edu

ABSTRACT

We present the smallest FPGA implementation of Camellia
for 128-bit key length to date. This architecture was de-
signed for low area and low power applications. Through
specific optimizations such as shift registers for storing and
scheduling key, distributed RAM for storing data, we achieved
compact implementation using only 318 slices at a through-
put of 18.41Mbps on the smallest Xilinx Spartan-3 XC3S50-
5 device.

1. INTRODUCTION

The Camellia algorithm [1] was jointly developed by Nip-
pon Telegraph and Telephone Corporation (NTT) and Mit-
subishi in 2000. It was designed for a wide range of design
platforms from low power and limited resources to high per-
formance on multiple platforms. However, the main design
goal was security. The New European Schemes for Signa-
tures, Integrity, and Encryption (NESSIE) project has nom-
inated Camellia as a strong block cipher in 2003 [2]. The
structure of Camellia provides features for a compact de-
sign. Several different attacks were performed successfully
only on reduced round versions of Camellia. An impossible
differential cryptanalysis on reduced round Camellia is de-
scribed in [3], collision attacks in [4, 5]. The best know
attack can break 9-rounds of Camellia with 128-bit key [4].

2. CAMELLIA

Camellia [1] is a 128-bit block cipher which supports key
lengths of 128, 192 or 256 bits. In this paper, we describe
an implementation with 128-bit key length. The Camellia
algorithm uses a Feistel network with pre-whitening before
first and post-whitening after last rounds. The functions, FL
and FL−1 are inserted after 6th and 12th round introduce
non-regularity. The block diagram of 128-bit encryption

c©2010, IEEE. Panasayya Yalla and Jens-Peter Kaps Compact FPGA
Implementation of Camellia. In Field Programmable Logic and Applica-
tions, FPL 2009, pages 658–661. IEEE, Aug 2009. http://dx.doi.
org/10.1109/FPL.2009.5272349

F

F

F

F

F

F

0(64)L 0(64)R

3(64)L 3(64)R

1(64)L 1(64)R

2(64)R

5(64)R

4(64)R

l(64)k

2(64)k

3(64)k

4(64)k

2(64)L

5(64)k 4(64)L

6(64)k 5(64)L

−1FL

−1FL

18(64)k17(64)k16(64)k
15(64)k14(64)k13(64)k

c (128)

M(128)

kw4(64)kw3(64)

kwl(64)

6−Round

FL

12(64)k11(64)k10(64)k
9(64)k8(64)k7(64)k

6−Round

FL

6−Round
5(64)k4(64)k
2(64)kl(64)k

6(64)k
3(64)k

kl

kl 2(64)

kl 3(64)

kl 4(64)

0(64)RL 0(64)

2(64)kw

1(64)

Fig. 1. Block diagram of 128-bit key encryption

can be seen in Fig1. The F-function contains a Substitution-
Permutation Network (SPN) which is composed of non-linear
S-function and linear P-function. The S-function consists of
8 S-Boxes which are selected from four different types. The
P-function is comprised of byte permutations. The block di-
agram of the F-function is shown in Fig 2. The key schedule
generates round keys of 64-bit size by shifting the original
key KL and the modified key KA. Computation of KA is
described in the Section 2.3.

2.1. Notations

XL left-half data of X.
XR right-half data of X.
⊕ bitwise exclusive-OR operation.
‖ concatenation of two operands.

≪n circular rotation to left by n bits
≫n circular rotation to right by n bits

∪ bitwise AND operation
∩ bitwise OR operation



k i(64)

x8(8)

x7(8)

x6(8)

x5(8)

x4(8)

x3(8)

x2(8)

x1(8)

4S

2S

3S

2S

3S

4S

1S

1S
Z8(8)

Z7(8)

Z6(8)

Z5(8)

Z3(8)

Z4(8)

Z2(8)

Z1(8)

P−FunctionS−Function

Fig. 2. F-function

S−box

>>>1

<<<1
<<<1

Data_in

FLM2

FLM1

8−bits
Data

8−bits

8−bits

8−bitsDual−port

RAM

(DRAM)

8−bits

L−data

R−data

Round keyX

Y

Z

K

Fig. 3. Top level Block Digram

2.2. Encryption for 128-bit key

The 128-bit plain text M128 is XORed with pre-whitening
key kw1‖kw2 and separated into two halves L0 and R0 each
of 64-bit size. L0 is then passes through the F-function
where it is XORed with round key k0 The result is applied
to the S-Boxes and output of S-box to P-function which
is XORed with right half of the data R0. At the end of
each routine the left half and the right half of the data are
swapped. The same process is repeated for all the 18 rounds.
The 6th and 12th rounds, the left half of the data L

′

r is given
to FL and right half R

′

r to FL−1.

2.3. Key schedule

In the first phase of the key schedule, the modified key KA

is computed from the original key KL. In the second phase,
round keys are generated through rotation of KL or KA

by 15 or 17-bits.KA is computed by passing KL through
4 rounds of the same Feistel network which is used for en-
cryption with XOR of KL after the 2nd round. The round
keys used are four constant

3. COMPACT ARCHITECTURE OF CAMELLIA

Our goal is to design a very compact architecture for small
area with an acceptable throughput. We choose to imple-
ment our architecture on Xilinx spartan-3 family FPGA de-
vices. Our architecture uses a 8-bit datapath and does both
encryption and key scheduling. Figure 3 shows the top level
block diagram of our architecture. We tried different im-
plementation strategies for several component used in the
architecture to get the best results.

3.1. S-Boxes and F-Function

The S-Boxes S2, S3, S4 can be derived from S-Box S1 as
S2(x)=S1(x)≪1, S3(x)=S1(x) ≫1, S4(x)=S1(x ≪1).
This can be realized in hardware through one S-Box and two
multiplexers. Hence instead of 8 S-Boxes, only one S-box
is required which reduces the area by 85% .

Each Xilinx Spartan 3 Configurable Logic Block (CLB)
contains two SLICEMs which in turn contain two Look-Up
Tables (LUTs). The LUTs can be configured as a Distributed
RAM (DRAM) or a 16-Bit shift register (SRL16) apart from
implementing logic. The DRAMs are used for fast and ef-
ficient implementation of memory. In this architecture, a
dual port 16x8 Distributed RAM (DRAM) is used for stor-
ing the data which reduces the area by approximately 75%
compared to using a 128-bit register.

In this implementation, the 64-bit F-function is broken
down into several of 8-bit operations. The XOR of 8-bits
of the left data X and 8-bits round key K passes through
S-Box. The result is XORed with of corresponding 8-bits
of right data Y. This is repeated depending on the number
of XORs required to complete the P-function. XORing the
output from S-box with right data saves storage required for
the intermediate values. For this reason a dual port DRAM
is used. The swapping of data is accomplished by address-
ing. It takes 44 clock cycles to complete one round. The
multiplexers before the 1st XOR and after the 2nd XOR op-
eration enable the computation of the modified key from the
original key and the pre-and post whitening operation.

3.2. FL and FL−1

The FL function breaks its 64-bit input into two 32-bit halves
namely XL and XRand similarly 64-bit key kl as klL and
klR. The FL ‘is broken into two parts FL1 and FL2 and
FL−1 function into FL−1

1 and FL−1
2 .

FL1(XL, XR, klL) = ((XL ∩ klL) ≫1)⊕XR (1)
FL2(XL, XR, klR) = (XR ∪ klR)⊕XL (2)

FL−1
1 (XL, XR, klR) = (XR ∪ klR)⊕XL (3)

FL−1
2 (XL, XR, klL) = ((XL ∩ klL) ≪1)⊕XR (4)

As can be seen from equations 1 and 4, FL1 and FL−1
2

are the same operation and Similarly FL2 and FL−1
1 from

equations 2 and 3. Hence, we combine FL1 and FL−1
2 as

one function called FLM1 and FL2 and FL−1
1 as FLM2.

FLM1(XL, XR, klL) = ((XL ∩ klL) ≪1)⊕XR (5)
FLM2(XL, XR, klR) = (XR ∪ klR)⊕XL (6)

This saves two XORs needed for FL and FL−1 operations.
The 32-bit cyclic rotation in FLM1 is implemented as a 1-
bit left shift on 8-bit data with one flipflop to store the shifted
bit. After completing FLM1, the last bit is computed again
to get the correct bit.



15−bits0 14

Round key 
8−bits

8−bits

8−bits 8−bits

key for FLM2 

46−bits

8−bits

shiftshift

key for FLM1 

8−bits

0 7
0 7

0 46−bits45 0 46−bits45

8−bits

0 7
0 8−bits7

data_in L−data

0 15−bits14

7
38

32−bits

8−bits 78
71

8−bits
77

70

constants

KL KA

8

32−bits
39

Fig. 4. Key scheduling using shift registers.

3.3. Key Storage and Scheduling

The Camellia algorithm needs two keys of size 128 bit, the
original key KL and the modified key KA, which are rotated
to generate the round keys. An efficient way of storing the
keys is to either using SLICEM LUTs as a DRAM or us-
ing as shift register. Addressing for DRAM is complicated
as key scheduling involves shifting. The best choice is to
store the keys in a LUT based shift register. However, such
a shift register has only a single bit output and each out-
put or tab requires a flip-flop. Hence, the area consumed by
such a shift register depends mainly on the number of taps
required to access the data. All the shift registers in this im-
plementation shift by 8-bit in order to match the width of the
datapath. However, the rotations needed for round key gen-
eration are 15, 30, 45, 60, 77, 94 and 111-bits. as shown in
Table 1. We can accomplish this by 8-bit shifts and an 8-bit
5:1 multiplexer as n mod 8 has only 5 different results. In
order to make the control logic simple and uniform, shifting
of the key is done at the last clock cycle of the round. For
normal round key generation, tapping 15-bits is sufficient.
However, due to FLM1 which has a 32-rotation, 41-bits ad-
ditional tabs are required. This increased the size of the shift
register approximately by 2 folds. The key scheduling can
be seen in Figure 4. The original key KL is initially loaded
into both DRAM and KL shift register. The constants for
generating modified key KA are stored in a seperate shift
register. KA is computed using the datapath from Fig 3. It
is loaded into the KA shift register, while data is loaded into
DRAM. Using shift registers for both KL and KA reduces
the area by about 75% compared to using two 128-bit regis-
ters.

3.4. Controller

The control unit consists of a main controller and sub con-
trollers for the F- and FLM functions. The main controller
stores its control words in as Distributed ROM (DROM) for
the reasons stated in Section 3.1. The address for the con-

Table 1. Number of Shifts of Shift register

Round keys R
ot

at
io

n
of ke

y
(n

)

N
um

be
r

of
8-

bi
t

sh
if

ts

R
el

at
iv

e
sh

if
ts

n
m
o
d
8

kw1,kw2,k1,k2 0 0 0 0
k3,k4,k5,k6 15 1 1 7

kl1,kl2 30 3 2 6
k7,k8,k9 45 5 2 5

k10,k11,k12 60 7 2 4
kl3,kl4 77 9 2 5

k13,k14,k15,k16 94 11 2 6
kw3,kw4,k17,k18 111 13 2 7

Table 2. Components for Camellia Implementation
Component Implementation slices

F-controller-(1) FSM 40
F-controller-(2) Shift Register 2
Key storage-(1) Register 128
Key Storage-(2) Shift Register 32

Controller-(1) FSM 214
Controller-(2) DROM 40

Data storage-(1) Register 64
Data storage-(2) DRAM 16

trol word is generated by a 6-bit counter. Using a DROM
and a counter for the main controller, its size is reduced by
97% as compared to a FSM. The sub controllers stores their
control words in a shift registers as they repeat a sequence
of operations.

4. RESULTS

We implemented our design on the smallest device of the
Xilinx Spartan-3 FPGA family using Xilinx ISE 9.2i for
synthesis and Active HDL 7.2 for simulation. The results
are verified with the test vector provided in [2]. Table 3
shows the results of different implementations strategies of
the major components of camellia. Using the components
denoted by (1), the total area of the design is 800 slices due
to huge multiplexers used for key which are not shown in
Table 3. Using components denoted by (2), the total area is
reduced to 318 slices which is the smallest Camellia imple-
mentation to date. We implemented two versions of Camel-
lia namely Camellia-2a and Camellia-2b using implementa-
tion strategy (2). Camellia-2a uses LUT based S-Box and
Camellia-2b uses Block RAM. The results of these imple-
mentations are shown in Table 3 and compared with other
block and stream ciphers. Camellia-2a is the optimum im-
plementation achieving a throughput of 18.41Mbps. Even
though, our design was not optimized for Xilinx Spartan 2
FPGA family, we implemented it in order to compare it with



Table 3. Results for Compact camellia compared to other implementations of camellia, smallest implementation of other
block ciphers and the eSTREAM Portfolio ciphers on FPGA

Design M
ax

im
um

D
el

ay
(n

s)

C
lo

ck
C

yc
le

s

B
lo

ck
Si

ze
(b

its
)

K
ey

Si
ze

(b
its

)

A
re

a
(s

lic
es

)

B
lo

ck
R

A
M

s

T
hr

ou
gh

pu
t

(M
bp

s)

T
hr

ou
gh

pu
t/

A
re

a
(M

bp
s/

sl
ic

e)

Device
Camellia -2a 7.95 875 128 128 318 0 18.41 0.06 xc3s50-5
Camellia -2b 9.37 875 128 128 214 2 15.61 0.07 xc3s50-5
Camellia -2a 11.01 875 128 128 399 0 13.28 0.03 xc2s30-6
Camellia -2b 18.72 875 128 128 282 3 7.82 0.03 xc2s30-6
Camellia [1] 22.62 44 128 128 908 0 128.58 0.14 Xilinx VirtexE
Camellia [9] 18.28 18 128 128 1023 8 388.9 0.25 xc3s1000
Camellia [9] 17.34 18 128 128 1031 8 410.5 0.27 xc3s1000
AES 8-bit[6] 14.93 3900 128 128 124 2 2.2 0.01 xc2s15-6

AES [7] 16.67 46 128 128 222 3 166 0.32 xc2s30-6
TinyXTEA-1 [8] 13.87 240 64 128 266 0 19.22 0.07 xc3s50-5
TinyXTEA-3 [8] 15.97 112 64 128 254 0 35.78 0.14 xc3s50-5

Grain v1 [10] 5.10 1 1 80 44 0 196 4.45 xc3s50-5
Grain 128 [10] 5.10 1 1 128 50 0 196 3.92 xc3s50-5

MICKEY v2 [10] 4.29 1 1 80 115 0 233 2.03 xc3s50-5
MICKEY 128 [10] 4.48 1 1 128 176 0 223 1.27 xc3s50-5

Trivium [10] 4.17 1 1 80 50 0 240 4.80 xc3s50-5
Trivium (x64) [10] 4.74 1 64 80 344 0 13,504 39.26 xc3s400-5

the smallest AES implementations. Our implementation has
a higher throughput and efficiency then AES [6] but it is out-
performed by AES [7] which is designed for higher through-
put. Camellia has a comparable throughput to TinyXTEA-
1 [8] and it is only marginally larger.

5. CONCLUSION

Our Camellia implementation is mainly based on usage of
shift registers and DRAMs for efficient memory implemen-
tation. Furthermore, using shift registers also removes the
need of addressing. This type of architecture is applicable
for ciphers which have key scheduling based on shifting. In
low power applications, where higher throughput with min-
imum area is required, its a good alternative for AES.

6. REFERENCES

[1] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai,
J. Nakajima, and T. Tokita, “Camellia: A 128-bit block ci-
pher suitable for multiple platforms – design and analysis,”
in SAC 2000, ser. LNCS, vol. 2012. Springer, 2001, pp.
39–56.

[2] Final report of NESSIE, NESSIE, April 2004,
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf.

[3] J. Lu, J. Kim, N. Keller, and O. Dunkelman, “Improving
the efficiency of impossible differential cryptanalysis of re-
duced Camellia and MISTY1,” in CT-RSA 2008, ser. LNCS,

T. Malkin, Ed., vol. 4964. Berlin: Springer-Verlag, April
2008, pp. 370–386.

[4] D. Lei, L. Chao, and K. Feng, “New observation on Camel-
lia,” in ACM Symposium on Applied Computing 2006, ser.
LNCS, B.Preneel and S. Tavares, Eds., vol. 3897. Berlin:
Springer-Verlag, February 2006, pp. 51–64.

[5] G. Jie and Z. Zhongya, “Improved collision attack on reduced
round Camellia,” in CANS 2006, ser. LNCS, D.Pointcheval,
Y. Mu, and K.Chen, Eds., vol. 4301. Berlin: Springer-
Verlag, November 2006, pp. 189–190.

[6] T. Good and M. Benaissa, “AES on FPGA from the fastest
to the smallest.” in CHES 2005, ser. LNCS, J. R. Rao and
B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 427–440.

[7] P. Chodowiec and K. Gaj, “Very compact FPGA implemen-
tation of the AES algorithm,” in CHES 2003, ser. LNCS, vol.
2779. Springer, Sep. 2003, pp. 319–333.

[8] J.-P. Kaps, “Chai-tea, cryptographic hardware implemen-
tations of xTEA,” in INDOCRYPT 2008, ser. LNCS,
D. Chowdhury, V. Rijmen, and A. Das, Eds., vol. 5365. Hei-
delberg: Springer, Dec 2008, pp. 363–375.

[9] D. Denning, I. James, and D. Malachy, “Compact iterative
FPGA camellia algorithm implementation,” in FPT 2004,
December 2004, pp. 311–314.

[10] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj,
“Comparison of FPGA-targeted hardware implementations
of eSTREAM stream cipher candidates,” in SASC 2008, Feb
2008, pp. 151–162.


