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Abstract

The non-local module [27] is designed for capturing long-range spatio-temporal
dependencies in images and videos. Although having shown excellent performance,
it lacks the mechanism to model the interactions between positions across channels,
which are of vital importance in recognizing fine-grained objects and actions. To
address this limitation, we generalize the non-local module and take the correlations
between the positions of any two channels into account. This extension utilizes the
compact representation for multiple kernel functions with Taylor expansion that
makes the generalized non-local module in a fast and low-complexity computation
flow. Moreover, we implement our generalized non-local method within chan-
nel groups to ease the optimization. Experimental results illustrate the clear-cut
improvements and practical applicability of the generalized non-local module on
both fine-grained object recognition and video classification. Code is available at:
https://github.com/KaiyuYue/cgnl-network.pytorch.

1 Introduction

Figure 1: Comparison between non-local (NL) and compact generalized non-local (CGNL) networks on
recognizing an action video of kicking the ball. Given the reference patch (green rectangle) in the first frame, we
visualize for each method the highly related responses in the other frames by thresholding the feature space.
CGNL network out-performs the original NL network in capturing the ball that is not only in long-range distance
from the reference patch but also corresponds to different channels in the feature map.

Capturing spatio-temporal dependencies between spatial pixels or temporal frames plays a key role in
the tasks of fine-grained object and action classification. Modeling such interactions among images
and videos is the major topic of various feature extraction techniques, including SIFT, LBP, Dense
Trajectory [26], etc. In the past few years, deep neural network automates the feature designing
pipeline by stacking multiple end-to-end convolutional or recurrent modules, where each of them
processes correlation within spatial or temporal local regions. In general, capturing the long-range
dependencies among images or videos still requires multiple stacking of these modules, which greatly
hinders the learning and inference efficiency. A recent work [16] also suggests that stacking more
layers cannot always increase the effective receptive fields to capture enough local relations.
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Inspired by the classical non-local means for image filtering, the recently proposed non-local neural
network [27] addresses this challenge by directly modeling the correlation between any two positions
in the feature maps in a single module. Without bells and whistles, the non-local method can greatly
improve the performances of existing networks on many video classification benchmarks. Despite
its great performances, the original non-local network only considers the global spatio-temporal
correlation by merging channels, and it might miss the subtle but important cross-channel clues for
discriminating fine-grained objects or actions. For instance, the body, the ball and their interaction
are all necessary for describing the action of kicking the ball in Fig. 1, while the original non-local
operation learns to focus on the body part relations but neglect the body-ball interactions that usually
correspond to different channels of the input features.

To improve the effectiveness in fine-grained object and action recognition tasks, this work extends
the non-local module by learning explicit correlations among all of the elements across the channels.
First, this extension scale-ups the representation power of the non-local operation to attend the
interaction between subtle object parts (e.g., the body and ball in Fig. 1). Second, we propose its
compact representation for various kernel functions to address the high computation burden issue. We
show that as a self-contained module, the compact generalized non-local (CGNL) module provides
steady improvements in classification tasks. Third, we also investigate the grouped CGNL blocks,
which model the correlations across channels within each group.

We evaluate the proposed CGNL method on the task of fine-grained classification and action recog-
nition. Extensive experimental results show that: 1) The CGNL network are easy to optimize as
the original non-local network; 2) Compared with the non-local module, CGNL module enjoys
capturing richer features and dense clues for prediction, as shown in Figure 1, which leads to results
substantially better than those of the original non-local module. Moreover, in the appendix of exten-
sional experiments, the CGNL network can also promise a higher accuracy than the baseline on the
large-scale ImageNet dataset [20].

2 Related Works

Channel Correlations: The mechanism of sharing the same conv kernel among channels of a
layer in a ConvNet [12] can be seen as a basic way to capture correlations among channels, which
aggregates the channels of feature maps by the operation of sum pooling. The SENet [10] may be the
first work that explicitly models the interdependencies between the channels of its spatial features.
It aims to select the useful feature maps and suppress the others, and only considers the global
information of each channel. Inspired by [27], we present the generalized non-local (GNL) module,
which generalizes the non-local (NL) module to learn the correlations between any two positions
across the channels. Compared to the SENet, we model the interdependencies among channels in an
explicit and dense manner.

Compact Representation: After further investigation, we find that the non-local module contains a
second-order feature space (Sect.3.1), which is used widely in previous computer vision tasks, e.g.,
SIFT [15], Fisher encoding [17], Bilinear model [14] [5] and segmentation task [2]. However, such
second-order feature space involves high dimensions and heavy computational burdens. In the area of
kernel learning [21], there are many prior works such as compact bilinear pooling (CBP) [5] that uses
the Tensor Sketching [18] to address this problem. But this type of method is not perfect yet. Because
the it cannot produce a light computation to the various size of sketching vectors. Fortunately, in
mathematics, the whole non-local operation can be viewed as a trilinear formation. It can be fast
computed with the associative law of matrix production. To the other types of pairwise function, such
as Embedded Gaussian or RBF [19], we propose a tight approximation for them by using the Taylor
expansion.

3 Approach

In this section, we introduce a general formulation of the proposed general non-local operation. We
then show that the original non-local and the bilinear pooling are special cases of this formulation.
After that, we illustrate that the general non-local operation can be seen as a modality in the trilinear
matrix production and show how to implement our generalized non-local (GNL) module in a compact
representations.
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3.1 Review of Non-local Operation

We begin by briefly reviewing the original non-local operation [27] in matrix form. Suppose that an
image or video is given to the network and let X ∈ R

N×C denote (see notation1) the input feature
map of the non-local module, where C is the number of channels. For the sake of notation clarity,
we collapse all the spatial (width W and height H) and temporal (video length T ) positions in one
dimension, i.e., N = HW or N = HWT . To capture long-range dependencies across the whole
feature map, the original non-local operation computes the response Y ∈ R

N×C as the weighted
sum of the features at all positions,

Y = f
(

θ(X), φ(X)
)

g(X), (1)

where θ(·), φ(·), g(·) are learnable transformations on the input. In [27], the authors suggest using
1× 1 or 1× 1× 1 convolution for simplicity, i.e., the transformations can be written as

θ(X) = XWθ ∈ R
N×C , φ(X) = XWφ ∈ R

N×C , g(X) = XWg ∈ R
N×C , (2)

parameterized by the weight matrices Wθ,Wφ,Wg ∈ R
C×C respectively. The pairwise function

f(·, ·) : RN×C ×R
N×C → R

N×N computes the affinity between all positions (space or space-time).
There are multiple choices for f , among which dot-product is perhaps the simplest one, i.e.,

f
(

θ(X), φ(X)
)

= θ(X)φ(X)⊤. (3)

Plugging Eq. 2 and Eq. 3 into Eq. 1 yields a trilinear interpretation of the non-local operation,

Y = XWθW
⊤
φX

⊤
XWg, (4)

where the pairwise matrix XWθW
⊤
φX

⊤ ∈ R
N×N encodes the similarity between any locations of

the input feature. The effect of non-local operation can be related to the self-attention module [1]
based on the fact that each position (row) in the result Y is a linear combination of all the positions
(rows) of XWg weighted by the corresponding row of the pairwise matrix.

3.2 Review of Bilinear Pooling

Analogous to the conventional kernel trick [21], the idea of bilinear pooling [14] has recently been
adopted in ConvNets for enhancing the feature representation in various tasks, such as fine-grained
classification, person re-id, action recognition. At a glance, bilinear pooling models pairwise feature
interactions using explicit outer product at the final classification layer:

Z = X
⊤
X ∈ R

C×C , (5)

where X ∈ R
N×C is the input feature map generated by the last convolutional layer. Each element

of the final descriptor zc1c2 =
∑

n xnc1xnc2 sum-pools at each location n = 1, · · · , N the bilinear
product xnc1xnc2 of the corresponding channel pair c1, c2 = 1, · · · , C.

Despite the distinct design motivation, it is interesting to see that bilinear pooling (Eq. 5) can be
viewed as a special case of the second-order term (Eq. 3) in the non-local operation if we consider,

θ(X) = X
⊤ ∈ R

C×N , φ(X) = X
⊤ ∈ R

C×N . (6)

3.3 Generalized Non-local Operation

The original non-local operation aims to directly capture long-range dependencies between any two
positions in one layer. However, such dependencies are encoded in a joint location-wise matrix
f(θ(X), φ(X)) by aggregating all channel information together. On the other hand, channel-wise
correlation has been recently explored in both discriminative [14] and generative [24] models through
the covariance analysis across channels. Inspired by these works, we generalize the original non-local
operation to model long-range dependencies between any positions of any channels.

1Bold capital letters denote a matrix X, bold lower-case letters a column vector x. xi represents the ith

column of the matrix X. xij denotes the scalar in the ith row and jth column of the matrix X. All non-bold
letters represent scalars. 1m ∈ R

m is a vector of ones. In ∈ R
n×n is an identity matrix. vec(X) denotes the

vectorization of matrix X. X ◦Y and X⊗Y are the Hadamard and Kronecker products of matrices.
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We first reshape the output of the transformations (Eq. 2) on X by merging channel into position:

θ(X) = vec(XWθ) ∈ R
NC , φ(X) = vec(XWφ) ∈ R

NC , g(X) = vec(XWg) ∈ R
NC . (7)

By lifting the row space of the underlying transformations, our generalized non-local (GNL) operation
pursues the same goal of Eq. 1 that computes the response Y ∈ R

N×C as:

vec(Y) = f
(

vec(XWθ), vec(XWφ)
)

vec(XWg). (8)

Compared to the original non-local operation (Eq. 4), GNL utilizes a more general pairwise function
f(·, ·) : RNC × R

NC → R
NC×NC that can differentiate between pairs of same location but at

different channels. This richer similarity greatly augments the non-local operation in discriminating
fine-grained object parts or action snippets that usually correspond to channels of the input feature.
Compared to the bilinear pooling (Eq. 5) that can only be used after the last convolutional layer, GNL
maintains the input size and can thus be flexibly plugged between any network blocks. In addition,
bilinear pooling neglects the spatial correlation which, however, is preserved in GNL.

Recently, the idea of dividing channels into groups has been established as a very effective technique
in increasing the capacity of ConvNets. Well-known examples include Xception [3], MobileNet [9],
ShuffleNet [31], ResNeXt [29] and Group Normalization [28]. Given its simplicity and independence,
we also realize the channel grouping idea in GNL by grouping all C channels into G groups, each
of which contains C ′ = C/G channels of the input feature. We then perform GNL operation
independently for each group to compute Y′ and concatenate the results along the channel dimension
to restore the full response Y.

3.4 Compact Representation

A straightforward implementation of GNL (Eq. 8) is prohibitive as the quadratic increase with respect
to the channel number C in the presence of the NC ×NC pairwise matrix. Although the channel
grouping technique can reduce the channel number from C to C/G, the overall computational
complexity is still much higher than the original non-local operation. To mitigate this problem, this
section proposes a compact representation that leads to an affordable approximation for GNL.

Let us denote θ = vec(XWθ), φ = vec(XWφ) and g = vec(XWg), each of which is a NC-D
vector column. Without loss of generality, we assume f is a general kernel function (e.g., RBF,
bilinear, etc.) that computes a NC ×NC matrix composed by the elements,

[

f(θ,φ)
]

ij
≈

P
∑

p=0

α2
p(θiφj)

p, (9)

which can be approximated by Taylor series up to certain order P . The coefficient αp can be computed
in closed form once the kernel function is known. Taking RBF kernel for example,

[f(θ,φ)]ij = exp(−γ‖θi − φj‖2) ≈
P
∑

p=0

β
(2γ)p

p!
(θiφj)

p, (10)

where α2
p = β (2γ)p

p! and β = exp
(

− γ(‖θ‖2 + ‖φ‖2)
)

is a constant and β = exp(−2γ) if the input

vectors θ and φ are ℓ2-normalized. By introducing two matrices,

Θ = [α0θ
0, · · · , αPθ

P ] ∈ R
NC×(P+1), Φ = [α0φ

0, · · · , αPφ
P ] ∈ R

NC×(P+1) (11)

our compact generalized non-local (CGNL) operation approximates Eq. 8 via a trilinear equation,

vec(Y) ≈ ΘΦ
⊤g. (12)

At first glance, the above approximation still involves the computation of a large pairwise matrix
ΘΦ

⊤ ∈ R
NC×NC . Fortunately, the order of Taylor series is usually relatively small P ≪ NC.

According to the associative law, we could alternatively compute the vector z = Φ
⊤g ∈ R

P+1 first
and then calculate Θz in a much smaller complexity of O(NC(P +1)). In another view, the process

that this bilinear form Φ
⊤g is squeezed into scalars can be treated as a related concept of the SE

module [10].
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Complexity analysis: Table 1 compares the com-
putational complexity of CGNL network with the
GNL ones. We cannot afford for directly comput-
ing GNL operation because of its huge complexity of
O(2(NC)2) in both time and space. Instead, our com-
pact method dramatically eases the heavy calculation
to O(NC(P + 1)).

Table 1: Complexity comparison of GNL and
CGNL operations, where N and C indicate the
number of positions and channels respectively.

General NL Method CGNL Method

Strategy f
(

ΘΦ
⊤
)

g ΘΦ
⊤
g

Time O(2(NC)2) O(NC(P + 1))
Space O(2(NC)2) O(NC(P + 1))

3.5 Implementation Details
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Figure 2: Grouped compact generalized non-local (CGNL) module. The feature maps are shown with the
shape of their tensors, e.g., [C,N ], where N = THW or N = HW . The feature maps will be divided along
channels into multiple groups after three conv layers whose kernel size and stride both equals 1 (k = 1, s = 1).
The channels dimension is grouped into C′ = C/G, where G is a group number. The compact representations
for generalized non-local module are build within each group. P indicates the order of Taylor expansion for
kernel functions.

Fig. 2 illustrates the workflow of how CGNL module processes a feature map X of the size N × C,
where N = H ×W or N = T ×H ×W . X is first fed into three 1× 1× 1 convolutional layers
that are described by the weights Wθ,Wφ,Wg respectively in Eq. 7. To improve the capacity of
neural networks, the channel grouping idea [29, 28] is then applied to divide the transformed feature
along the channel dimension into G groups. As shown in Fig. 2, we approximate for each group
the GNL operation (Eq. 8) using the Taylor series according to Eq. 12. To achieve generality and
compatibility with existing neural network blocks, the CGNL block is implemented by wrapping
Eq. 8 in an identity mapping of the input as in residual learning [8]:

Z = concat(BN(Y′
Wz)) +X, (13)

where Wz ∈ R
C×C denotes a 1× 1 or 1× 1× 1 convolution layer followed by a Batch Normaliza-

tion [11] in each group.

4 Experiments

4.1 Datasets

We evaluate the CGNL network on multiple tasks, including fine-grained classification and action
recognition. For fine-grained classification, we experiment on the Birds-200-2011 (CUB) dataset [25],
which contains 11788 images of 200 bird categories. For action recognition, we experiment on
two challenging datasets, Mini-Kinetics [30] and UCF101 [22]. The Mini-Kinetics dataset contains
200 action categories. Due to some video links are unavaliable to download, we use 78265 videos
for training and 4986 videos for validation. The UCF101 dataset contains 101 actions, which are
separated into 25 groups with 4-7 videos of each action in a group.

4.2 Baselines

Given the steady performance and efficiency, the ResNet [8] series (ResNet-50 and ResNet-101) are
adopted as our baselines. For video tasks, we keep the same architecture configuration with [27],
where the temporal dimension is trivially addressed by max pooling. Following [27] the convolutional
layers in the baselines are implemented as 1× k × k kernels, and we insert our CGNL blocks into
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Table 2: Ablations. Top1 and top5 accuracy (%) on various datasets.

(a) Results of adding 1 CGNL
block on CUB. The kernel of dot
production achieves the best result.
The accuracies of others are at the
edge of baselines.

model top1 top5

R-50. 84.05 96.00

Dot Production 85.14 96.88

Gaussian RBF 84.10 95.78

Embedded Gaussian 84.01 96.08

(b) Results of comparison on UCF-
101. Note that CGNL network is not
grouped in channel.

model top1 top5

R-50. 81.62 94.62

+ 1 NL block 82.88 95.74

+ 1 CGNL block 83.38 95.42

(c) Results of channel grouped CGNL networks on CUB. A few groups
can boost the performance. But more groups tend to prevent the CGNL
block from capturing the correlations between positions across channels.

model groups top1 top5

R-101 - 85.05 96.70

+ 1 CGNL

1 86.17 97.82

block

4 86.24 97.05

8 86.35 97.86

16 86.13 96.75

32 86.04 96.69

model groups top1 top5

R-101 - 85.05 96.70

+ 5 CGNL

1 86.01 95.97

block

4 86.19 96.07

8 86.24 97.23

16 86.43 98.89

32 86.10 97.13

(d) Results of grouped CGNL networks on Mini-Kinetics. More groups
help the CGNL networks improve top1 accuracy obveriously.

model gorups top1 top5

R-50 - 75.54 92.16

+ 1 CGNL
1 77.16 93.56

block
4 77.56 93.00

8 77.76 93.18

model gorups top1 top5

R-101 - 77.44 93.18

+ 1 CGNL
1 78.79 93.64

block
4 79.06 93.54

8 79.54 93.84

the network to turn them into compact generalized non-local (CGNL) networks. We investigate the
configurations of adding 1 and 5 blocks. [27] suggests that adding 1 block on the res4 is slightly
better than the others. So our experiments of adding 1 block all target the res4 of ResNet. The
experiments of adding 5 blocks, on the other hand, are configured by inserting 2 blocks on the res3,
and 3 blocks on the res4, to every other residual block in ResNet-50 and ResNet-101.

Training: We use the models pretrained on ImageNet [20] to initialize the weights. The frames of a
video are extracted in a dense manner. Following [27], we generate 32-frames input clips for models,
first randomly crop out 64 consecutive frames from the full-length video and then drop every other
frame. The way to choose these 32-frames input clips can be viewed as a temporal augmentation.
The crop size for each clip is distributed evenly between 0.08 and 1.25 of the original image and its
aspect ratio is chosen randomly between 3/4 and 4/3. Finally we resize it to 224. We use a weight
decay of 0.0001 and momentum of 0.9 in default. The strategy of gradual warmup is used in the
first ten epochs. The dropout [23] with ratio 0.5 is inserted between average pooling layer and last
fully-connected layer. To keep same with [27], we use zero to initialize the weight and bias of the
BatchNorm (BN) layer in both CGNL and NL blocks [6]. To train the networks on CUB dataset, we
follow the same training strategy above but the final crop size of 448.

Inference: The models are tested immediately after training is finished. In [27], spatially fully-
convolutional inference 2 is used for NL networks. For these video clips, the shorter side is resized to
256 pixels and use 3 crops to cover the entire spatial size along the longer side. The final prediction
is the averaged softmax scores of all clips. For fine-grined classification, we do 1 center-crop testing
in size of 448.

4.3 Ablation Experiments

Kernel Functions: We use three popular kernel functions, namely dot production, embedded
Gaussian and Gaussian RBF, in our ablation studies. For dot production, Eq. 12 will be held for
direct computation. For embedded Gaussian, the α2

p will be 1
p! in Eq. 9. And for Gaussian RBF,

the corresponding formula is defined as Eq. 10. We expend the Taylor series with third order and
the hyperparameter γ for RBF is set by 1e-4 [4]. Table 2a suggests that dot production is the best
kernel functions for CGNL networks. Such experimental observations are consistent with [27]. The
other kernel functions we used, Embedded Gaussion and Gaussian RBF, has a little improvements
for performance. Therefore, we choose the dot production as our main experimental configuration for
other tasks.

2https://github.com/facebookresearch/video-nonlocal-net
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Grouping: The grouping strategy is another important technique. On Mini-Kinetics, Table 2d shows
that grouping can bring higher accuracy. The improvements brought in by adding groups are larger
than those by reducing the channel reduction ratio. The best top1 accuracy is achieved by splitting
into 8 groups for CGNL networks. On the other hand, however, it is worthwhile to see if more groups
can always improve the results, and Table 2c gives the answer that more groups will hamper the
performance improvements. This is actually expected, as the affinity in CGNL block considers the
points across channels. When we split the channels into a few groups, it can facilitate the restricted
optimization and ease the training. However, if too many groups are adopted, it hinder the affinity to
capture the rich correlations between elements across the channels.

Figure 3: The workflow of our
CGNL block. The corresponding
formula is shown below in a blue
tinted box.

Figure 4: The workflow of the
simple residual block for compar-
ison. The corresponding formula is
shown below in a blue tinted box.

Table 3: Results comparison of
the CGNL block to the simple
residual block on CUB dataset.

model top1 top5

R-50 84.05 96.00

+ 1 Residual Block 84.11 96.23

+ 1 CGNL block 85.14 96.88

Comparison of CGNL Block to Simple Residual Block: There is a confusion about the efficiency
caused by the possibility that the scalars from Φ

⊤g in Eq. 12 could be wiped out by the BN layer.
Because according to Algorithm 1 in [11], the output of input Θ weighted by the scalars s = Φ

⊤g

can be approximated to O = sΘ−E(sΘ)√
V ar(sΘ)

∗ γ + β = sΘ−sE(Θ)√
s2V ar(Θ)

∗ γ + β = Θ−E(Θ)√
V ar(Θ)

∗ γ + β. At

first glance, the scalars s is totally erased by BN in this mathmatical process. However, the de facto
operation of a convolutional module has a process order to aggregate the features. Before passing into
the BN layer, the scalars s has already saturated in the input features Θ and then been transformed
into a different feature space by a learnable parameter Wz . In other words, it is Wz that "protects" s
from being erased by BN via the convolutional operation. To eliminate this confusion, we further
compare adding 1 CGNL block (with the kernel of dot production) in Fig 3 and adding 1 simple
residual block in Fig 4 on CUB dataset in Table 3. The top1 accuracy 84.11% of adding a simple
residual block is slightly better than 84.05% of the baseline, but still worse than 85.14% of adding a
linear kerenlized CGNL module. We think that the marginal improvement (84.06% → 84.11%) is
due to the more parameters from the added simple residual block.

Figure 5: Result analysis of the NL block and our CGNL block on CUB. Column 1: the input images with
a small reference patch (green rectangle), which is used to find the highly related patches (white rectangle).
Column 2: the highly related clues for prediction in each feature map found by the NL network. The dimension
of self-attention space in NL block is N × N , where N = HW . So its visualization only has one column.
Columns 3 to 7: the most related patches computed by our compact generalized non-local module. We first
pick a reference position in the space of g, then we use the corresponding vectors in Θ and Φ to compute the
attention maps with a threshold (here we use 0.7). Last column: the ground truth of body parts. The highly
related areas of CGNL network can easily cover all of the standard parts that provide the prediction clues.

7



Figure 6: Visualization with feature heatmaps. We select a reference patch (green rectangle) in one frame, then
visualize the high related ares by heatmaps. The CGNL network enjoys capturing dense relationships in feature
space than NL networks.

Table 4: Main results. Top1 and top5 accuracy (%) on various datasets.

(a) Main validation results on
Mini-Kinetics. The CGNL net-
works is build within 8 groups.

model top1 top5

R-50 75.54 92.16

+ 1 NL block 76.53 92.90

+ 1 CGNL block 77.76 93.18

+ 5 NL block 77.53 94.00

+ 5 CGNL block 78.79 94.37

R-101 77.44 93.18

+ 1 NL block 78.02 93.86

+ 1 CGNL block 79.54 93.84

+ 5 NL block 79.21 93.21

+ 5 CGNL block 79.88 93.37

(b) Results on CUB. The CGNL networks are set by 8 channel groups.

model top1 top5

R-50 84.05 96.00

+ 1 NL block 84.79 96.76

+ 1 CGNL block 85.14 96.88

+ 5 NL block 85.10 96.18

+ 5 CGNL block 85.68 96.69

model top1 top5

R-101 85.05 96.70

+ 1 NL block 85.49 97.04

+ 1 CGNL block 86.35 97.86

+ 5 NL block 86.10 96.35

+ 5 CGNL block 86.24 97.23

(c) Results on COCO. 1 NL or 1 CGNL block is added in Mask R-CNN.

model APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Baseline 34.47 54.87 36.58 30.44 51.55 31.95

+ 1 NL block 35.02 55.79 37.54 30.23 52.40 32.77

+ 1 CGNL block 35.70 56.07 38.69 31.22 52.44 32.67

4.4 Main Results

Table 4a shows that although adding 5 NL and CGNL blocks in the baseline networks can both
improve the accuracy, the improvement of CGNL network is larger. The same applies to Table 2b
and Table 4b. In experiments on UCF101 and CUB dataset, the similar results are also observed that
adding 5 CGNL blocks provides the optimal results both for R-50 and R-101.

Table 4a shows the main results on Mini-Kinetics dataset. Compared to the baseline R-50 whose top1
is 75.54%, adding 1 NL block brings improvement by about 1.0%. Similar results can be found in
the experiments based on R-101, where adding 1 CGNL provides about more than 2% improvement,
which is larger than that of adding 1NL block. Table 2b shows the main results on the UCF101
dataset, where adding 1CGNL block achieves higher accuracy than adding 1NL block. And Table 4b
shows the main results on the CUB dataset. To understand the effects brought by CGNL network, we
show the visualization analysis as shown in Fig 5 and Fig 6. Additionly, to investigate the capacity
and the generalization ability of our CGNL network. We test them on the task of object detection and
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instance segmentation. We add 1 NL and 1 CGNL block in the R-50 backbone for Mask-RCNN [7].
Table 4c shows the main results on COCO2017 dataset [13] by adopting our 1 CGNL block in the
backbone of Mask-RCNN [7]. It shows that the performance of adding 1 CGNL block is still better
than that of adding 1 NL block.

We observe that adding CGNL block can always obtain better results than adding the NL block with
the same blocks number. These experiments suggest that considering the correlations between any
two positions across the channels can significantly improve the performance than that of original
non-local methods.

5 Conclusion

We have introduced a simple approximated formulation of compact generalized non-local operation,
and have validated it on the task of fine-grained classification and action recognition from RGB images.
Our formulation allows for explicit modeling of rich interdependencies between any positions across
channels in the feature space. To ease the heavy computation of generalized non-local operation, we
propose a compact representation with the simple matrix production by using Taylor expansion for
multiple kernel functions. It is easy to implement and requires little additional parameters, making it
an attractive alternative to the original non-local block, which only considers the correlations between
two positions along the specific channel. Our model produces competitive or state-of-the-art results
on various benchmarked datasets.

Appendix: Experiments on ImageNet

As a general method, the CGNL block is compatible with complementary techniques developed for
the image task of fine-grained classification, temporal feature needed task of action recognition and
the basic task of object detection.

Table 5: Results on ImageNet. Best top1 and top5 accuracy (%).

model top1 top5

R-50 76.15 92.87

+ 1 CGNL block 77.69 93.64

+ 1 CGNLx block 77.32 93.46

R-152 78.31 94.06

+ 1 CGNL block 79.53 94.59

+ 1 CGNLx block 79.37 94.47

In this appendix, we further report the results of our spatial CGNL network on the large-scale
ImageNet [20] dataset, which has 1.2 million training images and 50000 images for validation in
1000 object categories. The training strategy and configurations of our CGNL networks is kept same
as those in Sec 4, only except the crop size here used for input is 224. For a better demonstration
of the generality of our CGNL network, we investigate both adding 1 dot production CGNL block
and 1 Gaussian RBF CGNL block (identified by CGNLx) in Table 5. We compare these models with
two strong baselines, R-50 and R-152. In Table 5, all the best top1 and top5 accuracies are reported
under the single center crop testing. The CGNL networks beat the basemodels by larger than 1 point
no matter whichever the dot production or Gaussian RBF plays as the kernel function in the CGNL
module.
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