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Abstract

We study the category of matrix factorizations associated to the germ of an isolated hy-
persurface singularity. This category is shown to admit a compact generator which is given
by the stabilization of the residue field. We deduce a quasi-equivalence between the category
of matrix factorizations and the dg derived category of an explicitly computable dg algebra.
Building on this result, we employ a variant of Toën’s derived Morita theory to identify con-
tinuous functors between matrix factorization categories as integral transforms. This enables
us to calculate the Hochschild chain and cochain complexes of these categories. Finally, we
give interpretations of the results of this work in terms of noncommutative geometry based
on dg categories.
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1 Introduction

Let k be a field and let (R,m) be a regular local k-algebra of finite Krull dimension with residue
field k. We fix a non-zero element w ∈ m and introduce the corresponding hypersurface alge-
bra S = R/w. We are interested in the case when the hypersurface Spec(S) has an isolated
singularity at m. Singularities of this kind have been a classical object of study for centuries.
The perspective on hypersurface singularities we take in this work is one motivated by noncom-
mutative algebraic geometry based on differential graded categories in the sense of [KKP08].
Namely, we study a dg category which we want to think of as a category of complexes of sheaves
on a hypothetical noncommutative space X attached to the singularity: the category of matrix
factorizations of w. In this work, we establish various properties of this category and discuss the
geometric implications for X . Specifically, we show that X is a dg affine, homologically smooth
and proper noncommutative Calabi-Yau space over k. We study the derived Morita theory of
matrix factorization categories which enables us to determine their Hochschild cohomology. We
calculate the noncommutative analogues of Hodge and de Rham cohomology and show that the
Hodge-to-de Rham spectral sequence degenerates.

A matrix factorization of w is defined to be a Z/2-graded finite free R-module X together
with an R-linear endomorphism d of odd degree satisfying d2 = w idX . The collection of all
matrix factorizations naturally forms a differential Z/2-graded category which we denote by
MF(R,w). The associated homotopy category is denoted by [MF(R,w)]. Matrix factorizations
first appeared in Eisenbud’s work [Eis80] on the homological algebra of complete intersections.
Since then, they have been used extensively in singularity theory. We refer the reader to [Yos90]
for a survey as well as further references. In the unpublished work [Buc86], Buchweitz introduced
the notion of the stabilized derived category, giving a new conceptual perspective on Eisenbud’s
work and extending it to a more general context. More recently, matrix factorizations were
proposed by Kontsevich as descriptions of B-branes in Landau-Ginzburg models in topological
string theory. As such they appear in the framework of mirror symmetry as for example explained
in [Sei08]. Orlov [Orl03] introduced the singularity category, generalizing Buchweitz’s categorical
construction to a global setup, and established various important results in [Orl05a, Orl05b,
Orl09].
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In Section 2, we survey some important aspects of the inspiring articles [Eis80] and [Buc86],
which lead to the intuitive insight that the category of matrix factorizations describes the sta-
ble homological features of the algebra S. The main purpose is to introduce notation and to
formulate the results in the form needed later on.

Section 3 introduces finiteness conditions on the singular and critical locus of the function w,
as well as finiteness and regularity conditions on the ambient ring R in both local and nonlocal
scenarios.

Section 4 addresses the question of the existence of generators in matrix factorization cate-
gories. We construct a compact generator of the category MF∞(R,w) consisting of factorizations
of possibly infinite rank. Our argument utilizes Bousfield localization to reduce the problem to
a statement which we call Homological Nakayama Lemma for infinitely generated maximal
Cohen-Macaulay modules. This lemma seems to be an interesting result in its own right since
the Nakayama lemma obviously fails for general infinitely generated modules. We use a method
of Eisenbud to explicitly construct the generator as a matrix factorization corresponding to the
stabilization of the residue field. Finally, we prove a localization theorem which allows us to
generalize the generation result to certain nonlocal ambient rings.

Section 5 contains some first applications of the results on compact generation. We start by
introducing a homotopy theoretic framework for 2-periodic dg categories, analogous to [Toë07],
that will serve as a natural context to study matrix factorization categories.

Using a method due to Keller [Kel94], we obtain a quasi-equivalence between the category
MF∞(R,w) and the dg derived category of modules over a dg algebra A. This algebra A is
given as the endomorphism algebra of the compact generator. Our concrete description of this
generator as a stabilized residue field allows us to determine A explicitly. As an immediate
corollary, we obtain that the idempotent completion of [MF(R,w)] coincides with [MF(R̂, w)].
We also give a short proof of Knörrer periodicity in this context.

In addition, we illustrate how to compute a minimal A∞-model for A. The transfer method
we use originates from the work of Gugenheim-Stasheff [GS86] and Merkulov [Mer99], the elegant
description in terms of trees is due to Kontsevich-Soibelman [KS01]. In the case of a quadratic
hypersurface the A∞-structure turns out to be formal and we recover a variant of a result of
Buchweitz, Eisenbud and Herzog [BEH87] describing matrix factorizations as modules over a
certain Clifford algebra. In the general case, we are able to give partial formulas for the higher
multiplications which are neatly related to the higher coefficients of w.

In Section 6, we use Toën’s derived Morita theory for dg categories [Toë07] to describe
functors between categories of matrix factorizations. It turns out that every continuous functor
can be represented by an integral transform. We describe the identity functor as an integral
transform with kernel given by the stabilized diagonal. This allows us to calculate the Hochschild
cochain complex of matrix factorization categories as the derived endomorphism complex of the
identity functor.

Furthermore, we compute the Hochschild chain complex, proving along the way that it is
quasi-isomorphic to the derived homomorphism complex between the inverse Serre functor and
the identity functor.

In the last section, we give interpretations of our results in terms of noncommutative geom-
etry in the sense of [KKP08].

Finally, I would like to point out relations to previous work. I thank Daniel Murfet for
informing me that Corollary 5.3 was first proven by Schoutens in [Sch03]. An independent
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proof by Murfet will be contained as an appendix in [KVdB08]. It is also possible to deduce
the statement using results from [Orl09] as explained in [Sei08, 11.1]. However, Theorem 4.1
is stronger since it also implies that the category [MF∞(R,w)] is compactly generated which is
essential to obtain Theorem 5.2. We point out that this fact can alternatively be obtained by
using methods developed in [Che07].

I thank Paul Seidel for drawing my attention to his work [Sei08]. The dg algebra A =
End(kstab) which we construct in Section 5 already appears in Section 10 of loc. cit. and
is interpreted as a deformed Koszul dual. In fact, one may expect that the algebra A is in
fact the Koszul dual, in the sense of [Pos09], of the curved dg algebra R with zero differential
and curvature w. Within this framework, Theorem 5.2 could be interpreted as an equivalence of
appropriate module categories over the curved algebra R and its Koszul dual A. The homological
perturbation techniques which we apply in Section 5 were already used in Section 10 of [Sei08].

The idea of describing functors between matrix factorization categories as integral transforms
appeared in [KR08]. Furthermore, our Theorem 4.7 is inspired by Proposition 7 in loc. cit. As
the authors informed me, the argument in loc. cit. is only valid for bounded below Z-graded
matrix factorizations of isolated singularities, which is sufficient for the purposes of loc. cit.
However, in this work we are specifically interested in the Z/2-graded case so we have to use the
alternative argument given in the proof of Theorem 4.7. As an application, we then also prove
a Z/2-graded version of [KR08, Proposition 8] in the form of Corollary 5.4.

The relation between idempotent completion and formal completion is studied in a more
general context on the level of triangulated categories in [Orl09].

A heuristic calculation of the Hochschild cohomology in the one-variable case with w = xn

was carried out in [KR04]. This article already contains the essential idea to represent the
identity functor by a matrix factorization. We also mention that by [Tak05, KST05] the Z-
graded matrix factorization category of a simple singularity is shown to be derived Morita
equivalent to the corresponding path algebra. This allows for a calculation of the Hochschild
invariants in this situation.

There are two alternative approaches to the calculation of Hochschild invariants of ma-
trix factorization categories. In [Seg09], the bar complex of the category is used to calculate
Hochschild homology. However, the author uses the product total complex and it is not clear
how this notion of homology is related to the usual Hochschild homology. Therefore, some addi-
tional reasoning is required to make this argument work. In forthcoming work by Caldararu-Tu
[CT09], the category of matrix factorizations is considered as a category of modules over the
above mentioned curved dg algebra given by R in even degree, zero differential and curvature
w. From this curved dg algebra the authors construct an explicit bar complex, generalizing the
bar complex for dg algebras. The Hochschild homology of the curved dg algebra is then defined
to be the cohomology of this complex. The relation between the Hochschild homology of the
curved dg algebra and the Hochschild homology of the category of modules over it is stated as
a conjecture.

I should also mention that Theorem 6.6 has been anticipated for some time. For example,
it is stated without proof in [KKP08]. However, to my knowledge, no complete proof has previ-
ously appeared in the literature.

Acknowledgements. I would like to thank my thesis advisor Tony Pantev for his continu-
ous support and interest in my work. Furthermore, I thank Matthew Ballard, Jonathan Block,
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Pranav Pandit, Jim Stasheff and Bertrand Toën for many inspiring conversations. I also thank
Mohammed Abouzaid, Vladimir Baranovsky, Chris Brav, Ragnar Buchweitz, Andrei Caldararu,
Xiao-Wu Chen, Daniel Murfet, Ed Segal and Paul Seidel for valuable comments. Finally, I am
indebted to two anonymous referees for their careful reading, corrections and suggestions.

2 Homological algebra of matrix factorizations

Let (R,m) be a regular local ring of finite Krull dimension. We fix a non-zero element w ∈ m.

Definition 2.1. The category of matrix factorizations MF(R,w) of w over R is defined to be
the differential Z/2-graded category specified by the following data:

• The objects of MF(R,w) are pairs (X, d) where X = X0 ⊕ X1 is a free Z/2-graded R-
module of finite rank equipped with an R-linear map d of odd degree satisfying d2 = w idX .

• The morphism complexes MF(X,X ′) are given by the Z/2-graded module of R-linear maps
from X to X ′ provided with the differential given by

d(f) = dX′ ◦ f − (−1)|f |f ◦ dX .

One easily verifies that MF(X,X ′) is a complex. The homotopy category of matrix factorizations
[MF(R,w)] is obtained by applying H0(−) to the morphism complexes of MF(R,w). The set of
morphisms in the homotopy category will be denoted by [X,X ′].

After choosing bases for X0 and X1, we obtain a pair

X1
ϕ //

X0

ψ
oo

of matrices (ϕ,ψ) such that
ϕ ◦ ψ = ψ ◦ ϕ = w id .

This immediately implies that the ranks of X0 and X1 agree, so ϕ and ψ are in fact square
matrices.

Example 2.2. Consider R = C[[x]] and w = xn. Then we have factorizations

R
xk //

R
xn−k

oo

and these are in fact the only indecomposable objects in Z0(MF(R,w)) (cf. [Yos90], [KL04]).

Example 2.3. Consider R = C[[x, y, z]] and w = x3+y3+z3−3xyz. Suppose that (a, b, c) ∈ (C∗)3

is a zero of w. The matrix

ϕ =




ax cy bz
cz bx ay
by az cx




satisfies det(ϕ) = abcw. Thus setting ψ = 1
abcϕ

#, where −# denotes the matrix of cofactors, we
obtain a family of rank 3 factorizations parameterized by {w = 0} ⊂ (C∗)3 (cf. [BHLW06]).

We will now explain the relevance of the category of matrix factorizations in terms of homo-
logical algebra. To this end, we recall how matrix factorizations naturally arise in Eisenbud’s
work [Eis80].
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2.1 Eisenbud’s matrix factorizations

We start with a prelude on the homological algebra of regular local rings that will put us in the
right context. Let (R,m) be a regular local ring and let M be a finitely generated R-module. A
sequence x1, . . . , xr ∈ m is called an M -sequence if xi is a nonzerodivisor inM/(x1, . . . , xi−1) for
all 1 ≤ i ≤ r. The depth of M is the length of a maximal M -sequence. The projective dimension
pd(M) ofM is the length of a minimal free resolution ofM . The Auslander-Buchsbaum formula
(see e.g. [Eis95]) relates these notions via

pd(M) = dim(R)− depth(M).

This yields a rather precise understanding of free resolutions over regular local rings. Let us
point out two immediate important consequences. Firstly, the length of minimal free resolutions
is bounded by the Krull dimension of R. Secondly, if the depth of a module M equals the Krull
dimension of R, then M is free.

A natural problem is to try and obtain a similar understanding of free resolutions over
singular rings. An example of such a ring is a hypersurface singularity defined by S = R/w,
where w is singular at the maximal ideal. It turns out that in contrast to the regular case, the
condition

depth(M) = dim(S) (2.1)

does not imply thatM is free. A finitely generated S-module satisfying (2.1) is called a maximal
Cohen-Macaulay module.

Let M be a maximal Cohen-Macaulay module over S. We may consider M as an R-module
which is annihilated by w and use the Auslander-Buchsbaum formula

pdR(M) = depth(R)− depth(M)

to deduce that M admits an R-free resolution of length 1. Hence, we obtain an exact sequence

0 // X1
ϕ // X0 // M → 0

where X0 and X1 are free R-modules. Since multiplication by w annihilates M , there exists a
homotopy ψ such that the diagram

X1
ϕ //

w

��

X0

ψ

}}{{
{{

{{
{{

w

��
X1

ϕ // X0

commutes. Thus, the pair (ϕ,ψ) is a matrix factorization of w, such that the original maximal
Cohen-Macaulay module M is isomorphic to coker(ϕ).

We come back to the question about properties of S-free resolutions of M . Curiously, every
maximal Cohen-Macaulay module over S admits a 2-periodic S-free resolution. It is obtained
by reducing the corresponding matrix factorization modulo w and extending 2-periodically:

. . . // X1
ϕ // X0

ψ // X1
ϕ // X0 // M // 0.
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We illustrate the consequences of this construction from a categorical point of view. Consider
the stable category of maximal Cohen-Macaulay S-modules MCM(S) which is defined as follows.
The objects are maximal Cohen-Macaulay modules, the morphisms are defined by

HomS(M,M ′) = HomS(M,M ′)/P ,

where P denotes the set of S-linear homomorphisms factoring through some free S-module. Re-
versing the above construction we can associate the maximal Cohen-Macaulay module coker(ϕ)
to a matrix factorization given by

X1
ϕ //

X0.
ψ

oo

In fact, this assignment extends to a functor

coker : [MF(R,w)]→ MCM(S)

establishing an equivalence between the homotopy category of matrix factorizations and the
stable category of maximal Cohen-Macaulay modules.

2.2 Buchweitz’s stabilized derived category

We now want to focus on resolutions of arbitrary finitely generated S-modules. To this end,
we are lucky as it turns out that high enough syzygies of any such module are maximal Cohen-
Macaulay. This follows from the homological characterization of maximal Cohen-Macaulay mod-
ules as being HomS(−, S)-acyclic combined with the fact that S has finite injective dimension.
An immediate implication is the following striking result.

Theorem 2.4 (Eisenbud). Every finitely generated S-module admits a free resolution which will
eventually become 2-periodic.

In other words, the resolution “stabilizes” leading to the slogan that the category MCM(S)
describes the stable homological algebra of S.

While the category MCM(S) restricts attention to maximal Cohen-Macaulay modules, Buch-
weitz’s stabilized derived category is designed to capture the fact that arbitrary finitely generated
S-modules stabilize. Let Db(S) denote the derived category of all complexes of S-modules with
finitely generated total cohomology. Such a complex is called perfect if it is isomorphic in Db(S)
to a bounded complex of free S-modules. The full triangulated subcategory of Db(S) formed
by the perfect complexes is denoted by Db

perf(S). It is easy to see that Db
perf(S) forms a thick

subcategory of Db(S). The stabilized derived category of S is then defined to be the Verdier
quotient

Db(S) := Db(S)/Db
perf(S).

There exists an obvious functor
MCM(S)→ Db(S)

which Buchweitz proves to be an equivalence of categories. Observe that Db(S) as well as
[MF(R,w)] are naturally triangulated categories that via the above equivalences induce two
triangulated structures on MCM(S). Those structures turn out to be isomorphic (via the iden-
tity functor). The triangulated structure can also be constructed directly using the fact that
MCM(S) is the stable category associated to the Frobenius category MCM(S) (cf. [Kel90]).

It is interesting to describe the morphisms in the category Db(S).
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Proposition 2.5 (Buchweitz). Let X, Y be complexes in Db(S). Then there exists a natural
number i(X,Y ) such that

HomDb(S)(X,Y [i]) ∼= HomDb(S)(X,Y [i])

for i ≥ i(X,Y ).

The proposition explains the nomenclature for Db(S). The Ext-groups in the derived cat-
egory “stabilize” in high degrees. After this stabilization has taken place, the Ext-groups and
the Ext-groups coincide. Buchweitz introduces Db(S) more generally for Gorenstein algebras.
In our specific situation of a local hypersurface algebra S the phenomenon of stabilization just
translates into the above mentioned fact that resolutions over S eventually become 2-periodic.

Combining the equivalences of categories explained in this subsection, we conclude that a
finite S-module interpreted as an object of Db(S) functorially corresponds to a matrix factoriza-
tion. If L is an S-module, we call the corresponding matrix factorization Lstab the stabilization
of L. The objects of our interest tend to naturally arise as objects of Db(S) and we will analyze
them computationally by studying their stabilization.

2.3 Stabilization

Let L be an S-module. In [Eis80, Section 7], Eisenbud gives a method for explicitly constructing
Lstab in terms of an R-free resolution of L. We apply his construction in the case when L is
a module of the form L = R/I such that the ideal I is generated by a regular sequence and
w ∈ I. Since we use the construction throughout the article, we give a detailed description of
this special case. We point out that this construction already appears as a key technique in
[BGS87, Section 2]. Its meaning was further clarified in [AB00] via the use of dg modules over
Koszul dg algebras.

Let f1, . . . , fm be a regular sequence generating I. Consider the corresponding Koszul com-
plex

K = (
∧∗V, s0),

where V = Rm and s0 denotes contraction with (f1, . . . , fm) ∈ HomR(V,R). The complex K
is an R-free resolution of L. Since w annihilates the R-module L, multiplication by w on K is
homotopic to zero. In fact, we can explicitly construct a contracting homotopy. Since w ∈ I,
we can write w =

∑
i fiwi for some elements wi ∈ R. Exterior multiplication with the element

(w1, . . . , wm) ∈ V defines a contracting homotopy which we denote by s1.
Since both s0 and s1 square to 0, the Z/2-graded object

(

m⊕

i=0

∧iV, s0 + s1)

defines a matrix factorization of w. We claim that it represents the stabilization of L. To see
this we will construct an explicit S-free resolution of L. Define Z to be the total complex of the
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double complex

. . .
. . .

. . .

Km
s0 // Km−1

s0 //

s1

��

Km−2 //

s1
��

. . . // K0

s1
��

Km
s0 // Km−1

s1

��

// . . . // K1
s0 //

s1
��

K0

s1
��

Km // . . . // K2
s0 // K1

s0 // K0

where − denotes the functor −⊗R S.

Lemma 2.6 (Eisenbud). The complex Z is an S-free resolution of L.

Proof. We use the spectral sequence arising from the horizontal filtration to compute the coho-
mology of Z. On the first page we obtain

. . . L

g

��
L L

g

��
L L

since the complex K ⊗R S is isomorphic in Db(R) to the complex L ⊗R (R
w
−→ R) and L is

annihilated by w. To determine the map g we use the roof establishing the just mentioned
isomorphism.

(. . . K2 s0−→ K1 s0−→ K0)⊗R (R
w
−→ R)

≃
p1

vvmmmmmmmmmmmmmmm

≃
p2

((QQQQQQQQQQQQQQQ

(. . . K2 s0−→ K1 s0−→ K0)⊗R S L⊗R (R
w
−→ R)

We introduce the homotopy

R
w // R
t

ii

which is simply the identity map on R. Then the map s1 ⊗ 1 + 1⊗ t is a map of degree −1 on
the complex forming the apex of the roof. The map induced on K ⊗R S via p1 is s1 ⊗ 1 while
the one induced on L⊗R (R → R) via p2 is 1 ⊗ t. This proves that the vertical maps g on the
first page of the above spectral sequence are in fact given by the identity on L. Passing to the
second page of the spectral sequence we immediately obtain the result.
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Corollary 2.7. The stabilization Lstab of L is given by the matrix factorization

(

m⊕

i=0

∧iV, s0 + s1).

Proof. This simply follows by inspecting the explicit form of the constructed S-free resolution
of L. It becomes 2-periodic after m steps where the 2-periodic part is exactly the reduction
modulo w of the given matrix factorization.

It is convenient to formulate this construction in the language of supergeometry as it is
often done in the physics literature. The underlying space of Lstab can be interpreted as the
superalgebra R 〈θ1, . . . , θm〉 where θi are odd supercommuting variables and R has degree 0.
The twisted differential defining the factorization corresponds to the odd differential operator
δ =

∑
δi with

δi = fi
∂

∂θi
+ wiθi.

This interpretation is useful, since every R-linear endomorphism of the super polynomial ring
R 〈θ1, . . . , θm〉 is represented by a differential operator, as can be easily seen by a dimension
count. Thus, denoting the Z/2-graded R-module of all polynomial differential operators on
R 〈θ1, . . . , θm〉 by A, we obtain an explicit description of the dg algebra of endomorphisms of
Lstab as

MF(Lstab, Lstab) ∼= (A, [δ,−])

with [δ, θi] = fi and [δ, ∂
∂θi

] = wi.
Finally, we point out that, ignoring the differential δ, this setup is classical in the context

of Clifford algebras. Indeed, the graded algebra R 〈θ1, . . . , θm〉 is the exterior algebra of the free
R-module B generated by the θi in odd degree. The endomorphism algebra of this exterior
algebra is well-known to be the Clifford algebra of the associated hyperbolic form on B ⊕ B∗

(cf. [Knu91, IV, §2]). Denoting the elements in the basis of B∗ dual to {θi} by {
∂
∂θi
}, we arrive

at our description of A via differential operators.

2.4 Nonlocal hypersurfaces

We remark that the theory described in this section generalizes to a nonlocal situation where
R is a regular ring of finite Krull dimension. For w ∈ R we define S = R/w and observe that
the whole framework generalizes in the following way. We define maximal Cohen-Macaulay
modules to be HomS(−, S)-acyclic finitely generated S-modules. The matrix factorizations are
defined in complete analogy to the local case, with the exception that the two graded pieces of a
factorization are allowed to be finitely generated projective R-modules. As already pointed out
in [Buc86], the important fact is that the hypersurface algebra S is of finite injective dimension
over itself. Using the flatness of localization, we can generalize all statements in this section
mutatis mutandis.

We use the same notations MF(R,w), MCM(S), etc. to also denote the relevant categories
and constructions in this more general situation.
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3 Singular and critical locus

This short section introduces various technical conditions which we will use later on.

3.1 Local ambient ring

We start by recalling a well-known result (see e.g. [Loo84, Proposition (1.2)] for k = C).

Proposition 3.1. Let k be a field of characteristic 0. Consider a polynomial w ∈ R =
k[x1, . . . , xn]. Let Z be the scheme-theoretic zero locus of the 1-form dw on An (i.e. the critical
locus of w) and denote the hypersurface algebra R/w by S. Then the following are equivalent.

(1) The hypersurface Spec(S) has isolated singularities, i.e. Sp is regular for every non-maximal
prime p ∈ Spec(S).

(2) The restriction of the critical locus Z to Spec(S) is a 0-dimensional scheme.

(3) For each singular point m ∈ Spec(S), the restriction of the critical locus Z to Spec(Rm) is
a 0-dimensional scheme.

Proof. The equivalence of (1) and (2) follows from the Jacobian Criterion ([Eis95, 16.19]). We are
left to show that (2) implies (3). Assume (2) holds but there exists a singular point m ∈ Spec(S)
such that the critical locus Z does not restrict to a 0-dimensional subscheme of Spec(Rm). Then
there exists a non-maximal prime p ⊂ m along which dw vanishes. We claim that w must vanish
along p. Since w vanishes on m it suffices to show that w is constant along p. Indeed, if w were
non-constant it would map the irreducible variety p onto a dense subset U of A1. But then, since
dw vanishes along p, the Jacobian Criterion would imply that every fiber of w over U is singular,
contradicting generic smoothness ([Eis95, 16.23]). Hence, w vanishes along p. But then, again
by the Jacobi Criterion, Sp is not regular which contradicts our assumption.

For any pair (R,w) given by a regular local ring (R,m, k) of Krull dimension n containing k
and a non-zero element w ∈ m, we introduce the following conditions. If there exists a sequence
of k-linear derivations ∂1, . . . , ∂n of R such that

dimk S/(∂1w, . . . , ∂nw) <∞ (3.1)

then we say (R,w) has isolated singular locus. If there exists a sequence of derivations ∂1, . . . , ∂n
of R such that

dimk R/(∂1w, . . . , ∂nw) <∞ (3.2)

then we say (R,w) has isolated critical locus. Note that Proposition 3.1 shows that these notions
are equivalent under the conditions stated. In general, this is not the case.

3.2 Nonlocal ambient ring

Let k be a field, R a k-algebra and w ∈ R. We will frequently refer to the following condition
on the pair (R,w).
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(A) R is essentially of finite type over k, equidimensional of dimension n, and the module of
Kähler differentials ΩR/k is locally free of rank n. Further assume, that the restriction of
the zero locus of dw ∈ ΩR/k to Spec(R/w) is a 0-dimensional scheme supported on a unique
closed point s of Spec(R/w) with residue field k.

In particular, by [Har77, II, 8.7] the local ring Rs is regular, and (Rs, w) has isolated singular

locus in the sense of (3.1). Further, the s-adic completion (R̂s, w) has isolated singular locus.
The main results of Sections 4 and 5 will be valid under the condition (A).

In Section 6, we will employ the operation

(R,w) ⊗k (R
′, w′) := (R⊗k R

′, w ⊗ 1 + 1⊗ w′).

Unfortunately, condition (A) is not necessarily preserved under this operation and we therefore
introduce the following stronger condition.

(B) R is essentially of finite type over k, equidimensional of dimension n, and the module of
Kähler differentials ΩR/k is locally free of rank n. Further assume, that the zero locus of
dw ∈ ΩR/k is a 0-dimensional scheme supported on a unique closed point s of Spec(R) with
residue field k and w ∈ s.

In particular, (Rs, w) has isolated critical locus in the sense of (3.2) and the same is true

for the s-adic completion (R̂s, w). Also note, that condition (B) is preserved under the above
mentioned tensor product operation.

4 Generators in matrix factorization categories

We fix a pair (R,w) consisting of a regular local ring (R,m, k) of Krull dimension n containing
k and a non-zero element w ∈ m. Throughout this section we assume that (R,w) has isolated
singular locus (3.1). We denote the hypersurface algebra R/w by S.

In order to obtain a setup in which we can talk about compactness and apply the technique
of Bousfield localization (cf. [BN93]), we are forced to enlarge the category of matrix factor-
izations to admit arbitrary coproducts. To this end, we use the category MF∞(R,w) of matrix
factorizations of possibly infinite rank. By the existence of a compact generator this category
will simply turn out to be an explicit model for the dg derived category of unbounded modules
over MF(R,w) (see Theorem 5.2).

We introduce some general notions. Let T be a triangulated category admitting infinite
coproducts. Let X be an object of T . We call X compact if the functor Hom(X,−) commutes
with infinite coproducts. The object X is a generator of T if the smallest triangulated subcat-
egory of T containing X and closed under coproducts and isomorphisms is T itself. The full
subcategory of T consisting of all objects Y satisfying Hom(X[i], Y ) = 0 for all integers i is
called the right orthogonal complement of X. Using Bousfield localization, one shows that for a
compact object X the right orthogonal complement of X is equivalent to 0 if and only if X is a
generator of T ([SS03, Lemma 2.2.1]).

Note that the full subcategory [MF(R,w)] ⊂ [MF∞(R,w)] consists of compact objects. This
simply follows since both even and odd components of a factorization X in MF(R,w) are finitely
generated R-modules. Thus, already on the level of morphism complexes, MF(X,−) commutes
with coproducts. We can state the result which we prove in this section.

12



Theorem 4.1. Assume that (R,w) has isolated singular locus (3.1) and consider the residue field
k as an S-module. Then kstab is a compact generator of the triangulated category [MF∞(R,w)].

For the proof we need some preparation.

4.1 The stabilized residue field

We start by computing the matrix factorization kstab and its endomorphism dg algebra explicitly,
using Eisenbud’s method. It can be applied in the form presented in 2.3 since the maximal
ideal m is generated by the regular sequence x1, . . . , xn. Writing w =

∑
xiwi, we obtain the

factorization kstab as

(

n⊕

i=0

∧iV, s0 + s1),

where s0 denotes contraction with (x1, . . . , xn) and s1 is given by exterior multiplication by
(w1, . . . , wn).

In supergeometric terms, kstab is given by the superalgebraR 〈θ1, . . . , θn〉 with odd differential
operator δ =

∑
δi with

δi = xi
∂

∂θi
+ wiθi.

We denote the Z/2-graded R-module of all polynomial differential operators on R 〈θ1, . . . , θn〉
by A and obtain the description

MF(kstab, kstab) ∼= (A, [δ,−]).

We will now reduce the proof of Theorem 4.1 to a statement in homological algebra.

4.2 Maximal Cohen-Macaulay approximations via matrix factorizations

Let Mod(S) be the stable category of S-modules. The objects are arbitrary S-modules whereas
the morphisms HomS(M,N) are defined to be the quotient of HomS(M,N) by the two-sided
ideal of morphisms factoring through some free S-module. Analogously to the case of finitely
generated modules, the category [MF∞(R,w)] is equivalent to a full subcategory of Mod(S)
which we denote by MCM∞(S). For our purposes, it is not necessary to give a characterization
of the class of S-modules which form the objects of MCM∞(S). We may think of them as
generalized maximal Cohen-Macaulay modules (cf. [Che07]).

We will often use the following lemma which corresponds to Buchweitz’s notion of maximal
Cohen-Macaulay approximation (cf. [Buc86]).

Lemma 4.2. Let X and Y be objects in MF∞(R,w) and assume that X has finite rank. Let A
be the endomorphism dg algebra of X and assume that Y is the stabilization of the S-module L.
Then there exists a natural isomorphism

MF(X,Y ) ∼= Hom
Z/2
R (X,L)

in the category D(Aop).
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Proof. We abbreviate the functor − ⊗R S by −. Let Z be the Z-graded total product complex
of the double complex

...

��

...

��

...

��
. . . // Hom(X1, Y 0)

��

// Hom(X0, Y 0)

��

// Hom(X1, Y 0)

�� ��

// . . .

. . . // Hom(X1, Y 1)

��

// Hom(X0, Y 1)

��

// Hom(X1, Y 1)

��

//

��

// . . .

. . . // Hom(X1, Y 0) // Hom(X0, Y 0) // Hom(X1, Y 0) // // . . .

Since the complex Z is 2-periodic, we may think of it as a Z/2-graded complex ZZ/2. Consider
the natural map

MF(X,Y ) −→ ZZ/2

which is given by reducing modulo w and extending 2-periodically. We claim that this map is a
quasi-isomorphism. We prove the surjectivity on H0. Assume an element of H0(Z) is represented
by the map of complexes

. . . // X0

f2

��

// X1

f1

��

// X0

f0

��
. . . // Y 0 // Y 1 // Y 0.

The collection {f i} induces a map f between the maximal Cohen-Macaulay modules M and N
which are resolved by X resp. Y . Alternatively, we can lift f to a map of complexes

X1
ϕ //

f̃1

��

X0

f̃0

��
Y 1

ϕ // Y 0.

Using the relation ϕ ◦ ψ = w one immediately checks that the maps f̃ i also commute with ψ.

Reducing f̃ i modulo w and extending periodically, we obtain a map of complexes representing
f which therefore has to be homotopic to {f i}. A similar argument shows injectivity on H0.

14



Next, denote by W the Z-graded total product complex of the double complex

...

��

...

��

...

��
. . . // Hom(X1, Y 1)

��

// Hom(X0, Y 1)

��

// Hom(X1, Y 1)

��

//

��

// . . .

. . . // Hom(X1, Y 0)

��

// Hom(X0, Y 0)

��

// Hom(X1, Y 0)

��

//

��

// . . .

. . . // Hom(X1, Y −1)

��

// Hom(X0, Y −1)

��

// Hom(X1, Y −1)

����

// . . .

...

��

...

��

...

��
. . . // Hom(X1, Y −r) // Hom(X0, Y −r) // Hom(X1, Y −r) // . . .

where the complex

. . . // Y 0 // Y 1 // Y 0 // Y −1 // . . . // Y −r

is a resolution of the S-module L. Since by assumption N is an even syzygy of L, such a
resolution exists and r is an even number. Again, due to 2-periodicity, we may think of W as a
Z/2-graded complex WZ/2. There is an obvious projection map

p : W → Z

which we claim to be a quasi-isomorphism. This amounts to showing that any map of complexes

. . . // X0

f2

��

// X1

f1

��

// X0

f0

��
. . . // Y 0 // Y 1 // Y 0

can be extended, uniquely up to homotopy, to a map of complexes

. . . // X0

f2

��

// X1

f1

��

// X0

f0

��

// X1

f−1

��

// . . . // X0

f−r

��
. . . // Y 0 // Y 1 // Y 0 // Y −1 // . . . // Y −r.

Using the short exact sequence

0 −→M −→ X1 −→ syz(M) −→ 0
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one shows that the obstruction for the existence of the map f−1 lies in the space Ext1(syz(M), Y −1)
which vanishes since syz(M) is maximal Cohen-Macaulay. Here we use that M (and thus
syz(M)) is a finitely generated S-modules which implies that Exti(syz(M),−) commutes with co-
products. Further, one obtains that any two lifts differ by the pullback of a map in HomS(syz(M), Y −1).
The obstruction for lifting this difference to a map in HomS(X0, Y −1) (which will define the
desired homotopy) lies in Ext1(M,Y −1) = 0. An iteration of this argument leads to the desired
extension which is unique up to homotopy.

Finally, the complexWZ/2 admits an augmentation map to the complex Hom
Z/2
R (X,L) which

is a quasi-isomorphism by [Wei94, 5.5.11].
We conclude by noting that we have constructed quasi-isomorphisms of the form

MF(X,Y )
≃
−→ ZZ/2 ≃

←−WZ/2 ≃
−→ Hom

Z/2
R (X,L),

inducing the claimed isomorphism in the category D(Aop).

The next proposition gives an explicit simple description of the map

MF(X,Y ) ∼= Hom
Z/2
R (X,L)

in the case where L is a complete intersection module.

Proposition 4.3. Let L be a complete intersection module as in 2.3. Let Y = (
⊕m

i=0

∧iV, s0+
s1) be the stabilization of L constructed in Corollary 2.7. Define the map g as the composition

m⊕

i=0

∧iV →
∧0V → L,

where the first map is the projection and the second map is the natural quotient map realizing
(
⊕m

i=0

∧iV, s0) as an R-free resolution of L. Then post-composition by g induces a quasi-
isomorphism

MF(X,Y )→ Hom
Z/2
R (X,L).

Proof. Inspecting the explicit form of the S-free resolution of L constructed in Lemma 2.6, one
directly checks that a possible choice of the extension f−r constructed in the proof of Lemma
4.2 is obtained by post-composition with g.

Note that in light of the general theory of MCM approximations developed in [Buc86] the
map g is nothing else than an explicit description (on the level of matrix factorizations) of the
approximation map from the maximal Cohen-Macaulay module corresponding to Y to L.

4.3 Reduction to the Homological Nakayama Lemma

Given a factorization X in MF(R,w) we can define a dual factorization X∨ = Hom
Z/2
R (X,R).

Note however that, due to the usual Koszul signs rule, the factorization X∨ is naturally an
object of the category MF(R,−w).
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Proposition 4.4. Let Y be an object in MF∞(R,w) with corresponding S-module N in MCM∞(S).
For all i > 0, we have a natural isomorphism

[kstab[n+ i], Y ] ∼= TorSi (k,N),

where n is the (parity of) the dimension of R.

Proof. We apply Lemma 4.2 to obtain a quasi-isomorphism

MF(kstab[n+ i], Y )→ Hom
Z/2
R (kstab[n+ i], N).

The right hand complex can be rewritten as

(kstab[n+ i])∨ ⊗S N . (4.1)

A direct inspection of the stabilization construction, using the fact that a Koszul complex is
self-dual, yields that the factorization (kstab[n])∨ in the category MF(R,−w) is a stabilization
of the residue field k. Thus, if M denotes the stable even syzygy of k, then the 0-th cohomology
of the complex 4.1 computes TorSi (M,N). Next, observe that the modules TorSi (M,N) and
TorSi (k,N) are isomorphic for i >> 0. But this means that they must be isomorphic for all
positive i since N admits a 2-periodic free resolution (and thus both Tor-modules are 2-periodic
for positive i).

Note that, since TorSi (k,N) is 2-periodic, vanishing for i ∈ {1, 2} implies vanishing for all
i > 0. Therefore, we reduced Theorem 4.1 to a statement which we might call the Homological
Nakayama Lemma: a module N in MCM∞(S) is free if and only if TorSi (k,N) = 0 for all i > 0.
For general infinitely generated S-modules this statement is certainly false, but it turns out to
be true for modules in MCM∞(S) if we assume that (R,w) has isolated singular locus. We will
give the proof in the next subsection.

4.4 The Homological Nakayama Lemma

Consider a matrix factorization

X1
ϕ //

X0

ψ
oo

where X0 and X1 are free R-modules of possibly infinite rank and let M = coker(ϕ) be the
corresponding S-module. As already explained, applying−⊗RS toX and extending periodically
one obtains an S-free resolution

. . . // X0
d // X1

d // X0 // M // 0

of M . The formula ∂kw = ∂k(ϕψ) = ∂k(ϕ)ψ + ϕ∂k(ψ) establishes that multiplication by ∂kw
is homotopic to zero on the endomorphism complex of X. Interpreting this fact in terms of the
resolution X of M one easily deduces the following fundamental observation.

Lemma 4.5. For any S-module N , multiplication by ∂kw annihilates the S-module TorSi (N,M)
for all i > 0.
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We will use the following result from [GJ81].

Theorem 4.6 (Gruson, Jensen). The projective dimension of an arbitrary flat S-module is at
most n− 1.

Recall that the Tyurina algebra is defined to be Ωw = S/(∂1w, . . . , ∂nw).

Theorem 4.7. Let X be a matrix factorization of possibly infinite rank and let M = coker(ϕ).
Then the following are equivalent:

(1) M is a free S-module.

(2) M is a flat S-module.

(3) TorSi (N,M) = 0 for every finitely generated S-module N and i > 0.

(4) TorSi (N,M) = 0 for every finitely generated Ωw-module N and i > 0.

If w has an isolated singularity then the above are equivalent to

(5) TorSi (k,M) = 0 for i > 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are obvious.

(2) ⇒ (1): The module M is flat and has therefore finite projective dimension by Theorem 4.6.
This implies that syzk(M) is projective for k >> 0. Since M has a 2-periodic resolution, we
have M ∼= syzk(M) for every even natural number k. So M is projective and since S is local
Kaplansky’s theorem implies that M is free.

(3) ⇒ (2): This is the standard homological criterion for flatness.

(4)⇒ (3): Let us fix a non-zero partial derivative ∂w = ∂kw and let N be a finitely generated S-
module. SinceR a regular local ring, it is in particular an integral domain and thus multiplication
by ∂w is injective on R. We compute the cohomology of the complex

R/∂w ⊗L
RM ⊗

L
S N

in two different ways. Namely, this complex is quasi-isomorphic to the total complex of the
double complex

...

��

...

��

...

��
X0 ⊗S N

d
��

X0 ⊗S N

d
��

∂woo 0

��

oo . . .oo

X1 ⊗S N

d
��

X1 ⊗S N

d
��

−∂woo 0

��

oo . . .oo

X0 ⊗S N X0 ⊗S N
∂woo 0oo . . .oo
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which we may filter horizontally as well as vertically. Both filtrations lead to spectral sequences
converging strongly to the target H∗(R/∂w ⊗L

R M ⊗
L
S N). The vertical filtration leads to a

spectral sequence with E1 given by

...
...

...

TorS2 (M,N) TorS2 (M,N)
∂woo 0oo . . .

TorS1 (M,N) TorS1 (M,N)
−∂woo 0oo . . .

M ⊗S N M ⊗S N
∂woo 0oo . . .

It degenerates at E2 which, using Lemma 4.5, is given by

...
...

...

TorS2 (M,N) TorS2 (M,N) 0 . . .

TorS1 (M,N) TorS1 (M,N) 0 . . .

M ⊗S N/∂w TorS1 (M ⊗S N,S/∂w) 0 . . .

This implies that TorSi (M,N) = 0 for i > 0 if and only if Hj(R/∂w ⊗L
RM ⊗

L
S N) = 0 for j ≥ 2.

Using the horizontal filtration of the above double complex we obtain a spectral sequence with
first page

...

��

...

��

...

��
X0 ⊗S N/∂w

d
��

X0 ⊗S TorR1 (N,R/∂w)

d
��

0

��

. . .

X1 ⊗S N/∂w

d
��

X1 ⊗S TorR1 (N,R/∂w)

d
��

0

��

. . .

X0 ⊗S N/∂w X0 ⊗S TorR1 (N,R/∂w) 0 . . .
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and E2 given by

...
...

...

TorS2 (M,N/∂w)

$$JJJJJJJJJJJJJJJJJJJJJJJJJ
TorS2 (M,TorR1 (N,R/∂w)) 0 . . .

TorS1 (M,N/∂w) TorS1 (M,TorR1 (N,R/∂w)) 0 . . .

M ⊗S N/∂w M ⊗S TorR1 (N,R/∂w) 0 . . .

Observe that both S-modules N/∂w and TorR1 (N,R/∂w) are finitely generated and annihilated
by ∂w. This allows us to conclude that Hj(R/∂w ⊗L

R M ⊗
L
S N) = 0 for j ≥ 2 if TorSi (M,−)

vanishes on all finitely generated S/∂w-modules for i > 0.
Applying this construction iteratively to all non-zero partial derivatives of w yields the im-

plication.

(5) ⇒ (4): These are standard arguments for modules over Artinian rings. Let N be a finitely
generated Ωw-module. It admits a finite filtration with successive quotients isomorphic to cyclic
Ωw-modules. If Ωw/I is such a cyclic module then we obtain a short exact sequence

0 // K // Ωw/I // Ωw/m // 0

where by assumption Ωw/m ∼= k. The claim follows inductively from inspection of the associated
long exact Tor-sequence.

4.5 A counterexample

An example of a non-isolated singularity for which the Homological Nakayama Lemma does not
hold can be constructed as follows. We consider the local k-algebra R = k[[x, y]] with w = xy2.
The hypersurface algebra is given by S = R/xy2 and we consider the S-module of formal Laurent
series k((x)). Consider the matrix factorization with underlying Z/2-graded R-module

X1 =
⊕

i∈Z

Rhi ⊕
⊕

i∈Z

Rei

X0 =
⊕

i∈Z

Rfi ⊕
⊕

i∈Z

Rgi

with ϕ given by the assigments

hi 7→ yfi − xgi + gi+1

ei 7→ xygi
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and ψ defined by

fi 7→ xyhi + xei − ei+1

gi 7→ yei.

The cokernel M of ϕ is a first syzygy module of the S-module k((x)). In fact, the factorization
was found by imitating Eisenbud’s method which in general only works for finitely generated
modules. Using the factorization and the resulting 2-periodic S-free resolution of M one checks
that TorSi (k,M) = 0 for all i > 0. But M is not free and in fact, consistently with Theorem 4.7,
we have TorSi (Ωw,M) 6= 0 for both i = 1 and i = 2.

4.6 Localization

In this section we generalize the generation results of 4.4 to nonlocal ambient rings. Let (R,w)
be as in 3.2, satisfying condition (A). We will first show that the category MF∞(R,w) has a
compact generator and then deduce that the localization functor

MF∞(R,w)→ MF∞(Rs, w)

is a quasi-equivalence. We point out that a localization statement of this type was already
proved in [Orl03, 1.14]. As a first step, we have the following variant of Proposition 4.4, again
reducing the compact generation problem to the Homological Nakayama Lemma.

Proposition 4.8. We consider the residue field k of s as an S-module and consider its stabi-
lization kstab(R,−w) in the category MF(R,−w). For an object Y in MF∞(R,w) with corresponding

MCM module N in MCM∞(S) and i > 0, we have a natural isomorphism

[(kstab(R,−w))
∨[i], Y ] ∼= TorSi (k,N).

Note, that we may not be able to obtain an explicit description of (kstab(R,−w))
∨ by using

stabilization method of 2.3, since the ideal s is not necessarily generated globally by a regular
sequence. This is not a problem, all which matters is that (kstab(R,−w))

∨ is a compact object in

MF∞(R,w).
Next we claim that the Homological Nakayama Lemma generalizes to the nonlocal hypersur-

face ring S = R/w. In fact, we can immediately reduce to the local situation via the following
lemma.

Lemma 4.9. Let M,N be objects in MCM∞(S). Then the S-module TorSi (N,M) is supported
on s for i > 0. In particular, we have an isomorphism TorSi (N,M) ∼= TorSs

i (Ms, Ns).

Proof. The S-module TorSi (M,N) for positive i is calculated by the cohomology of the 2-periodic
complex X⊗SN , where X is the matrix factorization corresponding to M . After localizing this
complex at any prime ideal p, we can express dw = ∂1(w)e1+ · · ·+∂n(w)en where e1, . . . , en is a
basis of ΩRp/k with dual derivations ∂1, . . . , ∂n. The same argumentation as in the beginning of

Subsection 4.4 shows that multiplication by ∂i(w) on the complex Sp⊗SX⊗SN is homotopic to
0. For p 6= s at least one partial derivative is invertible which implies that the localized complex
is contractible. The statement of the lemma follows since localization commutes with taking
cohomology.
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Corollary 4.10. The object (kstab(R,−w))
∨ is a compact generator of the category MF∞(R,w).

Proof. This follows by combining Proposition 4.8, Lemma 4.9 and Theorem 4.7.

Theorem 4.11. The localization functor

MF∞(R,w)→ MF∞(Rs, w)

is a quasi-equivalence.

Proof. By the same argument as in the proof of Theorem 5.1, it suffices to check the quasi-fully
faithfullness on the compact generator X = (kstab(R,−w))

∨. Let N denote the maximal Cohen-
Macaulay module corresponding to X. The localization map

MF(X,X)→ MF(Rs ⊗R X,Rs ⊗R X)

induces by Proposition 4.8 on cohomology the localization map

TorSi (k,N)→ TorSs

i (k,Ns)

which is an isomorphism by Lemma 4.9.
The stabilization of the residue field at s in MF∞(R,w) maps to an object in MF∞(Rs, w)

which is isomorphic to kstab, and therefore generates the category MF∞(Rs, w). Thus, the
localization functor is essentially surjective on the homotopy categories.

Corollary 4.12. Using the above notation, let k denote the residue field of the maximal ideal
s ∈ S and let kstab be its stabilization in the category MF(R,w). Then kstab is a compact
generator of MF∞(R,w).

Proof. This follows since the localization functor commutes with coproducts and maps kstab to
a stabilization of the residue field in the category MF∞(Rs, w). Since the latter object is a
compact generator, kstab generates as well.

5 First applications

5.1 The homotopy theory of 2-periodic dg categories

Before giving applications of Theorem 4.1, we introduce a homotopical framework for 2-periodic
dg categories. Most statements in this subsection are immediate consequences or variants of
well-known results. We define model structures in the 2-periodic context which allow us to
obtain a homotopy theory analogous to the one developed in [Tab05, Toë07]. All dg categories
are assumed to be small by virtue of choosing small quasi-equivalent dg categories. We refer to
loc. cit. for details on how to take the necessary set-theoretic precautions. Our model category
terminology is the one used in [Hov99] which also contains the standard results we need.

For a field k consider the dg algebra k[u, u−1] where the variable u has degree 2 and the
differential is the zero map. Let C(k) be the dg category of unbounded complexes of k-modules
and define C(k[u, u−1]) to be the dg category of functors from k[u, u−1], considered as a dg
category with one object, to C(k). There is an obvious enriched equivalence between the dg
category of Z/2-graded complexes over k and the category C(k[u, u−1]).
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There is an adjunction

C(k)
−⊗kk[u,u

−1] // C(k[u, u−1]) , C(k) C(k[u, u−1])
Foo

where F denotes the forgetful functor. The image under −⊗kk[u, u
−1] of the generating (trivial)

cofibrations for the projective model structure on C(k), as defined in [Hov99], form the generating
(trivial) cofibrations for a model structure on C(k[u, u−1]). Therefore, C(k[u, u−1]) admits a
cofibrantly generated model structure such that the above adjunction is a Quillen adjunction. As
for the category C(k), weak equivalences in C(k[u, u−1]) are defined to be quasi-isomorphisms and
fibrations are levelwise surjective maps. Since k is a field, every object in C(k) and C(k[u, u−1])
is cofibrant. Note that C(k[u, u−1]) has a monoidal structure given by the tensor product over
k[u, u−1]. Under the equivalence with Z/2-graded complexes, this tensor product translates into
the Z/2-graded tensor product.

Let dgcatk denote the category of small dg categories over k. We introduce the category
dgcatk[u,u−1] of 2-periodic dg categories where the objects are small categories enriched over

C(k[u, u−1]) and the morphisms are dg functors. The above adjunction on the level of complexes
induces an adjunction

dgcatk
−⊗kk[u,u

−1] // dgcatk[u,u−1] , dgcatk dgcatk[u,u−1] .
Foo

We claim that dgcatk[u,u−1] admits the structure of a cofibrantly generated model category such
that this adjunction is a Quillen adjunction. The category dgcatk admits a cofibrantly generated
model structure which is described in [Tab05]. Again, we can take the generating (trivial)
cofibrations in dgcatk[u,u−1] to be the image under − ⊗ k[u, u−1] of the generating (trivial)
cofibrations for dgcatk. The only property needed to apply [Hov99, Theorem 2.1.19] which
does not formally follow from the above adjunction is that relative J-cell complexes are weak
equivalences. However, the proof of this fact for dgcatk given in [Tab05] implies the statement
for dgcatk[u,u−1] in complete analogy. As for dgcatk, the weak equivalences in dgcatk[u,u−1] are
quasi-equivalences.

The existence of this model structure allows for a description of the mapping spaces in the
category Ho(dgcatk[u,u−1]) as done for Ho(dgcatk) in [Toë07].

Note that dgcatk[u,u−1] admits a closed monoidal structure where the tensor product of two dg

categories is given by the product on objects and the tensor product over k[u, u−1] on morphism
complexes. Thus, we have an adjunction

Hom(T ⊗ T ′, T ′′) = Hom(T,Hom(T ′, T ′′))

where Hom denotes the dg category of C(k[u, u−1])-enriched functors. For a category T in
dgcatk[u,u−1], we define the dg category of modules over T to be

T -mod = Hom(T,C(k[u, u−1])).

For an object x in T we define hx to be the T op-module given by hx(y) = T (y, x). The dg
Yoneda functor

h− : T −→ T op-mod, x 7→ hx
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is C(k[u, u−1])-fully faithful (i.e. induces an isomorphism of morphism complexes). Dually we
have a C(k[u, u−1])-fully faithful functor

h− : T op −→ T -mod, x 7→ T (x,−).

Functors of the form hx are called representable, the ones of the form hx corepresentable.
There exists a C(k[u, u−1])-model structure on T -mod where the fibrations and weak equiv-

alences are defined levelwise using the model structure on C(k[u, u−1]). This model structure is
cofibrantly generated where generating (trivial) cofibrations are obtained by applying the func-
tors hx ⊗ − to generating (trivial) cofibrations in C(k[u, u−1]) for all x ∈ T . The homotopy
category Ho(T -mod) yields the derived category of T which we denote by D(T ). Note that due
to the existence of the model structure we can define Int(T -mod) to be the full dg subcategory
of T consisting of objects which are both fibrant and cofibrant. As in the last subsection we
denote by [T ] the category obtained from a dg category T by applying the functor H0(−) to all
morphism complexes. This yields a functor [−] from dgcatk[u,u−1] to cat. We have a natural
equivalence of categories [Int(T -mod)] ≃ D(T ).

Since the representable T op-modules hx are cofibrant and fibrant, the Yoneda embedding
yields a functor

T −→ Int(T op-mod).

To simplify notation we introduce T̂ = Int(T op-mod).
A T op-moduleM is called compact or perfect if [M,−] commutes with coproducts. It is easy

to see that all representable modules are perfect. Therefore, the Yoneda embedding provides a
functor

T −→ T̂pe,

where the subscript indicates the full dg subcategory of perfect modules. The category T̂pe is
called the triangulated hull of T and the dg category T is called triangulated if the Yoneda
embedding into its triangulated hull is a quasi-equivalence.

We conclude by observing that the homotopical framework which we defined for 2-periodic
categories is in exact analogy to the one defined in [Toë07]. All properties pointed out in sections
2 and 3 of loc. cit. hold mutatis mutandis in the 2-periodic context. Therefore all proofs in
sections 4,5,6 and 7 can be repeated more or less verbatim to obtain identical results over
k[u, u−1]. In fact, as the author of loc. cit. points out in the introduction, he expects the results
to generalize to M -enriched categories for certain very general monoidal model categories M .
The 2-periodic version would then correspond to the choice M = C(k[u, u−1]). We will therefore
cite results in loc. cit. without further comments, if the 2-periodic reformulation is obvious.

5.2 Equivalences of categories

Let T be a 2-periodic dg category and consider a set W of morphisms in T . By [Toë07, 8.7]
there exists a dg category LW (T ) and a morphism l : T → LW (T ) in Ho(dgcatk[u,u−1]) which is
called the localization of T with respect to W . It enjoys the following universal property which
determines it uniquely up to isomorphism in Ho(dgcatk[u,u−1]). For every dg category T ′ the
pullback map

l∗ : [LW (T ), T ′] −→ [T, T ′]
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is injective and the image consists of morphisms f : T → T ′ such that [f ] maps morphisms in
W to isomorphisms in [T ′].

For a 2-periodic dg category T we introduce the dg derived category of T as the localiza-
tion LW (T -mod) with respect to the set of weak equivalences. The category [LW (T -mod)] is
equivalent to the derived category D(T ) of T which we introduced in Section 5.1.

The essential arguments in the proof of the following theorem are due to Keller [Kel94, 4.3].

Theorem 5.1. Let T be a triangulated 2-periodic dg category which admits coproducts. Let
S be a full dg subcategory of T whose objects are compact in [T ]. Assume that the smallest
triangulated subcategory of [T ] which contains the objects of [S] and is closed under coproducts
is [T ] itself. Then the map

f : T → LW (Sop-mod), x 7→ l(T (−, x)|S)

is an isomorphism in Ho(dgcatk[u,u−1]). Furthermore, f induces an isomorphism

Tpe ≃ LW (Sop-mod)pe

between the full dg subcategories of compact objects.

Proof. Note that, since both T and LW (Sop-mod) are triangulated dg categories, the induced
functor [f ] : [T ]→ D(Sop) is an exact functor of triangulated categories.

We claim that [f ] commutes with coproducts. Indeed, if {xi} are objects in T then the
natural map ∐

T (−, xi)|S → T (−,
∐

xi)|S

is a weak equivalence since the objects in S are compact in [T ]. It therefore becomes an isomor-
phism in D(Sop) which proves the claim.

The restriction of f to the dg subcategory S factors over the weak equivalence Int(Sop-mod)→
LW (Sop-mod) since representable modules are cofibrant in Sop-mod. Therefore, by the dg
Yoneda lemma the restriction of f to S is quasi-fully faithful.

Consider the full subcategory A of [T ] consisting of objects x such that the map

[T ](s, x)→ D(Sop)(f(s), f(x))

is an isomorphism for all objects s of S. By the five-lemma the category A is triangulated and
since [f ] commutes with coproducts, A contains coproducts. However, since we just saw that A
contains the objects of S, we have A = [T ] by assumption. Fixing an object y in T and applying
the same argument to the subcategory formed by objects x such that the map

[T ](x, y)→ D(Sop)(f(x), f(y))

is an isomorphism, we deduce that [f ] is fully faithful. This clearly implies that f is quasi-fully
faithful since f is a map of triangulated dg categories.

It remains to show that [f ] is essentially surjective. Since [f ] commutes with coproducts, the
essential image of [f ] contains the quasi-representable functors and is closed under coproducts.
Using the Bousfield localization argument [SS03, Lemma 2.2.1] which we already used in Section
4, we conclude that the essential image must be all of D(Sop).

Since [f ] is an equivalence, its right adjoint is also a left adjoint and hence preserves co-
products. Thus [f ] and its adjoint preserve compactness implying the statement about the
subcategories of compact objects.
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Recall the notation T̂ = Int(T op-mod) for a 2-periodic dg category T . The natural map
T̂ → LW (T op-mod) is an isomorphism in Ho(dgcatk[u,u−1]). Hence, we may use the dg category

T̂ as an explicit model for the dg derived category of T op.
Recall the description of the dg algebra of endomorphisms of kstab as the Z/2-graded algebra

A = R

〈
θ1, . . . , θn,

∂

∂θ1
, . . . ,

∂

∂θn

〉

of polynomial differential operators on R 〈θ1, . . . , θn〉 equipped with the differential [δ,−] where

δ =

n∑

i=1

xi
∂

∂θi
+ wiθi.

We reserve the letter A for this dg algebra throughout this subsection. We slightly abuse notation
and also use the symbol A to refer to the corresponding 2-periodic dg category with a single
object.

Theorem 5.2. Let (R,w) be as in 3.1 with isolated singular locus (3.1). Then there exist the
following isomorphisms in Ho(dgcatk[u,u−1]).

1. MF∞(R,w)
≃
−→ ̂MF(R,w)

2. MF∞(R,w)
≃
−→ Â

3. ̂MF(R,w)pe
≃
−→ Âpe

Proof. By Theorem 4.1 the object kstab in MF∞(R,w) is a compact generator and the cor-
responding full dg subcategory is isomorphic to A. In particular, the objects in the full dg
subcategory MF(R,w) generate MF∞(R,w). Since MF(R,w) also consists of compact objects
we deduce the first two isomorphisms from Theorem 5.1. The last statement follows immediately
from the second part of Theorem 5.1.

We comment on the relevance of the previous theorem. The first isomorphism gives a natural
interpretation of the dg category MF∞(R,w) which we defined in a somewhat ad hoc way.
Namely, it is an explicit model for the dg derived category of MF(R,w). The second isomorphism
will turn out to be useful since we have an explicit description of the dg algebra A. Finally, the
last isomorphism identifies the triangulated hull of the dg category MF(R,w). Note that the

natural map MF(R,w) → ̂MF(R,w)pe is not necessarily an isomorphism in Ho(dgcatk[u,u−1])
since the triangulated category [MF(R,w)] is not necessarily idempotent complete. We will

determine an explicit model for ̂MF(R,w)pe in Section 5.4.

Corollary 5.3. The triangulated category [ ̂MF(R,w)pe] is equivalent to the smallest triangulated

subcategory of [MF∞(R,w)] which contains kstab and is closed under summands.

The next corollary introduces a notion of quasi-isomorphism between matrix factorizations.
The category [MF∞(R,w)] is obtained as a localization from MF∞(R,w) by inverting all such
quasi-isomorphisms. One may therefore think of the category [MF∞(R,w)] as a derived category
of twisted complexes of R-modules.

26



Corollary 5.4. Let X,Y be objects in MF∞(R,w). A 0-cycle f ∈ Hom(X,Y ) induces an
isomorphism in [MF∞(R,w)] if and only if f induces a quasi-isomorphism of the complexes of
k-modules k ⊗R X and k ⊗R Y .

Proof. By Theorem 5.2, f induces an isomorphism if and only if Hom(kstab, f) is a quasi-
isomorphism. However, by Proposition 4.4 the cohomology of the complex Hom(kstab,X) is
up to shift naturally isomorphic to the cohomology of the complex k ⊗R X and the analogous
statement is true for Y .

Finally, we point out that everything generalizes to the nonlocal situation of 3.2.

Corollary 5.5. Let (R,w) be as in 3.2, satisfying condition (A). Then all statements of Theo-
rem 5.2 remain true verbatim.

Proof. This follows directly from Corollary 4.12.

5.3 Knörrer periodicity

Let (R,w) be as in 3.2, satisfying condition (B). We show that the dg categories MF∞(R,w) and
MF∞(R[x, y], w+xy) are weakly equivalent. This phenomenon is known as Knörrer periodicity
(cf. [Knö87]) and illustrates in particular that it is not possible to reconstruct the ambient ring
R from the matrix factorization category MF∞(R,w). Observe that if (R,w) satisfies (B), then
the same is true for (R[x, y], w + xy).

First, we consider the category MF∞(k[x, y], xy). By the results of 4.6, the stabilized residue
field at the origin is a generator. It splits into a direct sum X

⊕
X[1], where X denotes the

factorization

k[x, y]
x // k[x, y].
y

oo

Thus, we can as well take X as a generator of the category MF∞(k[x, y], xy). For example by
using Lemma 4.2, one immediately checks that the endomorphism dg algebra B of X is weakly
equivalent to the algebra k concentrated in even degree. Thus, by Corollary 5.5, the category
MF∞(k[x, y], xy) is weakly equivalent to the dg category of Z/2-graded complexes of k-vector
spaces.

To obtain the Knörrer periodicity statement, we observe that the factorization kstab ⊗
Z/2
k

(X
⊕
X[1]) in the category MF∞(R[x, y], w + xy) stabilizes the residue field at the maximal

ideal supporting the critical locus. Thus, the object kstab ⊗
Z/2
k X generates the category

MF∞(R[x, y], w + xy). The endomorphism dg algebra of this generator is given by A ⊗k B,
where A and B are the endomorphism dg algebras of kstab in MF(R,w) and X in MF(k[x, y], xy)

respectively. But since k is a field, the dg algebra A⊗
Z/2
k B is weakly equivalent to A. In view

of Corollary 5.5, this implies that the dg categories MF∞(R[x, y], w + xy) and MF∞(R,w) are
weakly equivalent. By the results explained in 5.4, we also obtain an equivalence of the categories
of finite rank factorizations after passing to completions of R and R[x, y].

5.4 Formal completion

Let (R,w) be as in 3.1 with isolated singular locus (3.1). We address the question of describing

the triangulated hull ̂MF(R,w)pe of MF(R,w) explicitly. Let R̂ denote the m-adic completion

of R and consider the category MF(R̂, w).
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Lemma 5.6. The Yoneda embedding

MF(R̂, w)→
̂

MF(R̂, w)pe

is an isomorphism in Ho(dgcatk[u,u−1]). In other words, the dg category MF(R̂, w) is triangulated

and, in particular, the triangulated category [MF(R̂, w)] is idempotent complete.

Proof. By [Kel94, 5.3], the category [
̂

MF(R̂, w)pe] is the smallest triangulated subcategory of

[
̂

MF(R̂, w)] which is closed under summands and contains the Yoneda image of [MF(R̂, w)]. It
therefore suffices to show that [MF(R̂, w)] is idempotent complete.

As explained in 2.1, the category [MF(R̂, w)] is equivalent to the stable category associated
to the Frobenius category MCM(R̂/w) of maximal Cohen-Macaulay modules over R̂/w. By
the classical result [Swa60, Remark on page 566], the endomorphism algebra End(M) of an
indecomposable module M over a complete local ring is local, i.e. the sum of two non-units is
a non-unit. Now let e be an element in End(M) whose image e in the stable endomorphism
algebra End(M) is a non-trivial idempotent. In particular, e and 1 − e are non-units. This
certainly implies that e and 1 − e are non-units in End(M) and therefore 1 = e + (1 − e) is a
non-unit which is a contradiction. So End(M) does not contain non-trivial idempotents which
implies the statement.

The lemma enables us to describe the category ̂MF(R,w)pe explicitly.

Theorem 5.7. There exists an isomorphism in Ho(dgcatk[u,u−1])

̂MF(R,w)pe ≃ MF(R̂, w).

In particular, the idempotent completion of [MF(R,w)] in [ ̂MF(R,w)] is equivalent to [MF(R̂, w)].

Proof. Combining Lemma 5.6 with Theorem 5.2, we obtain an isomorphism in Ho(dgcatk[u,u−1])

MF(R̂, w)
≃
−→ Â(R̂,w)pe

,

where A(R̂,w) denotes the endomorphism dg algebra of the stabilized residue field in the category

MF(R̂, w). On the other hand denoting the analogous dg algebra for MF(R,w) by A(R,w) we
have an isomorphism

̂MF(R,w)pe
≃
−→ Â(R,w)pe

,

by Theorem 5.2. There is a natural inclusion map of dg algebras A(R,w) → A
(R̂,w)

which,

using our explicit description of both algebras, is a quasi-isomorphism. Indeed, we can filter
the complex underlying A(R,w) by the total degree in the variables ∂i. The associated graded
complex is of the form

R 〈θ1, . . . , θn〉 ⊗R R 〈∂1, . . . , ∂n〉

where the complex R 〈θ1, . . . , θn〉 is the Koszul complex of the regular sequence x1, . . . , xn and the
complex R 〈∂1, . . . , ∂n〉 has zero differential. Thus, the cohomology is given by k 〈∂1, . . . , ∂n〉.
Introducing the analogous filtration on A

(R̂,w)
, the inclusion map A(R,w) → A

(R̂,w)
respects
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both filtrations and the induced map on spectral sequences is an isomorphism on the second
page. Therefore, the inclusion map is a quasi-isomorphism. This weak equivalence implies an
isomorphism in Ho(dgcatk[u,u−1]) between Â(R,w)pe

and Â(R̂,w)pe
.

In [Orl09], the relation between idempotent completion and formal completion is studied in
a more general context on the level of triangulated categories.

5.5 Quadratic Hypersurfaces

Let R = k[[x1, . . . , xn]] and let w ∈ R be a non-zero quadratic form. Assuming char(k) 6= 2 we
may diagonalize w, so after a change of coordinates we have w =

∑n
i=1 aix

2
i with ai ∈ k. Since

we assume the singularity to be isolated, all coefficients ai are non-zero. We write w = xiwi
setting wi = aixi. With above notation we have

A = R 〈θ1, . . . , θn, ∂1, . . . , ∂n〉

with differential d given by

θi 7→ xi

∂i 7→ aixi.

The elements ∂i = ∂i − aiθi are cycles in A and generate the cohomology H∗(A) as a k-algebra.
Note that the relations

∂i
2
= −ai

∂i ∂j = −∂j ∂i for i 6= j

imply that the k-subalgebra of Aop generated by
{
∂i
}
is isomorphic to the Clifford algebra Cl(w)

corresponding to the quadratic form w. Furthermore, the inclusion

(Cl(w), 0) ⊂ (Aop, d)

is a quasi-isomorphism establishing the formality of the dg algebra Aop. Therefore, in the
quadratic case Theorem 5.2 reproduces a variant of the results in [BEH87] describing matrix
factorizations as modules over the Clifford algebra Cl(w) (see also [Yos90, Chapter 14]).

5.6 A minimal A∞ model

If w is of degree greater than 2, the algebra A will not be formal. However, there is a well-known
structure which allows us nevertheless to pass to the cohomology algebra of A: the structure
of an A∞ algebra. For the basic theory we refer the reader to [Sta70, Che77, Kel99, KS].
The relevance to our situation is the following. In addition to the usual multiplication on the
cohomology algebra of A there exist higher multiplications. In a precise sense, they measure
the failure of being able to choose a multiplicatively closed set of representatives of H∗(A) in
A. The system of higher multiplications forms an A∞-algebra and as such H∗(A) will be quasi-
isomorphic to A.
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One of the motivations for passing from A to H∗(A) is that the latter algebra is finite
dimensional over k; it is referred to as a minimal model of A. By the general theory in [LH03]
we obtain a description of the category of matrix factorizations as a category of modules over
the A∞ algebra H∗(A). We do not spell out a precise formulation of this equivalence but restrict
ourselves to the description of the A∞ structure in some special cases.

We use the method described in [KS01, 6.4] (also cf. [GS86, Mer99]) to compute the A∞

structure in terms of trees. The setup is as follows. Let X be an A∞ algebra. This structure
can be described by the data of a coderivation q of degree 1 on the coalgebra TX[1] such that
[q, q] = 0. The Taylor coefficients of q = q1 + q2 + q3 + . . . are maps

qk : X[1]⊗k → X[1]

which describe, after introducing the sign shifts accounting for the transfer from X[1] to X, the
higher multiplications mk on X. Now assume, that we are given an idempotent p : X → X of
degree 0 commuting with d. The image of p is therefore a subcomplex of X which we denote
by Y . Let i denote the inclusion of Y into X. We also assume, that a homotopy h : X → X[1]
between id and p is given, i.e.

dh+ hd = id−p

identifying p as a homotopy equivalence between X and Y . In this situation, the A∞-structure
induced on Y can be calculated explicitly in terms of trees as for example described in [KS01,
6.4]. This method can in principle be used to determine the A∞ structure on H∗(A) for R =
k[[x1, . . . , xn]]. However the computation is rather tedious and the author has not been able
to find closed formulas for all higher multiplications. Since we will not use the results of this
calculation elsewhere, we will define the contracting homotopy h and only state the results of
the tree calculation.

We start with the one-dimensional case R = k[[x]] which will serve as a guideline for what
to do in the higher dimensional case. For an element a in k[[x]] we define a to be the unique
element in xk[[x]] defined by

a = a0 + a

with a0 ∈ k. The algebra A is of the form

A ∼= k[[x]]⊗k k 〈θ, ∂〉

with differential d given by

θ 7→ x

∂ 7→
w

x
.

We define a homotopy h contracting A onto its cohomology. The assignment h(a) = a
xθ for

a ∈ k[[x]] extends to a unique k 〈θ, ∂〉-linear homotopy of A. A simple calculation shows that
the map

p = id−[d, h]
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is a projection and we have maps of complexes

k[[x]]⊗k k 〈θ, ∂〉

p

��
k
〈
∂
〉

ι

OO

where the differential on k
〈
∂
〉
is 0 and ι(∂) = ∂ − w

x2
θ.

We have determined all the data needed for the tree formula. It leads to the following higher
multiplications.

Theorem 5.8. Let R = k[[x]] with w =
∑∞

i=2 rix
i. Then the unital A∞-structure on H∗(A) ∼=

k1⊕ k∂ induced by the above homotopy is uniquely determined by the formulas

mi(∂, . . . , ∂) = ±ri.

In the more general case R = k[[x1, . . . , xn]] one can still construct an explicit contracting
homotopy, however the resulting formulas get more complicated. The following result does not
determine the A∞ structure completely but at least shows some interesting properties.

Theorem 5.9. Let R = k[[x1, . . . , xn]] with w =
∑

i rix
i where i = (i1, . . . , in) denotes a multi-

index. Then there exists a contracting homotopy of A such that the induced A∞ structure on
H∗(A) has the following properties

• The underlying associative algebra on H∗(A) is given by the Clifford algebra corresponding
to the quadratic term of w as described in the previous subsection.

• For the generators ∂1, . . . , ∂n we have

mi(∂1, . . . , ∂1︸ ︷︷ ︸
i1

, ∂2, . . . , ∂2︸ ︷︷ ︸
i2

, . . . , ∂n, . . . , ∂n︸ ︷︷ ︸
in

) = ±ri

where i = |i|.

Note that the formulas on the generators ∂i do not determine the A∞-structure. Still, one
instructive feature is the direct relation to the coefficients of w. Formality can thereafter only
be expected if w is quadratic. Further, the formulas raise the question of how much information
about w can be recovered from the weak equivalence class of the dg algebra A. This question is
explored in [Efi09] by using Kontsevich formality.

We illustrate the determination of the contracting homotopy for R = k[[x1, x2]]. Note that
it is possible to write w = x1w1 + x2w2 with w1 ∈ k[[x1]] and w2 ∈ k[[x1, x2]]. Then the
endomorphism algebra A of the stabilized residue field is of the form

k[[x1]] 〈θ1, ∂1〉 ⊗k[[x1]] k[[x1, x2]] 〈θ2, ∂2〉

with differential d given by

θi 7→ xi

∂i 7→ wi
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Applying the construction from the one dimensional case twice, we obtain maps of complexes

k[[x1]] 〈θ1, ∂1〉 ⊗k[[x1]] k[[x1, x2]] 〈θ2, ∂2〉

p2
��

ι2 ◦ p2 = id− [d, h2]

k[[x1]] 〈θ1, ∂1〉 ⊗k[[x1]] k[[x1]]
〈
∂̃2

〉

p1

��

ι2

OO

ι1 ◦ p1 = id− [d, h1]

k < ∂1, ∂2 >

ι1

OO

where h2(a) = a
x2
θ2 for a ∈ k[[x1, x2]] and h1(b) = b

x1
θ1 for b ∈ k[[x1]]. Here, the symbol y

denotes division by y, discarding the remainder. As in the one dimensional case, h1 and h2 are
extended linearly to yield the homotopies in the above diagram. In fact, we can collapse the
sequence of homotopy equivalences to a single one given by

ι = ι2 ◦ ι1

p = p1 ◦ p2

h = h2 + ι2 ◦ h1 ◦ p2

The inclusions into A are given by

∂1 = ∂1 −
w1

x1
θ1

∂2 = ∂2 −
w2

x2
θ2 −

r2
x1
θ1

where r2 ∈ k[[x1]] is the remainder of the division of w2 by x2.
An application of the tree formula yields the formulas described in Theorem 5.9. This cal-

culation generalizes to an arbitrary number of variables.

6 Derived Morita theory

In this section we will use the operation

(R,w) ⊗k (R
′, w′) = (R ⊗k R

′, w ⊗ 1 + 1⊗w′).

In order for it to be well-behaved, we have to impose conditions on (R,w). We require (R,w)
and (R′, w′) to satisfy condition (B) from 3.2. These assumptions on (R,w) and (R′, w′) ensure
that (R⊗k R

′, w ⊗ 1 + 1⊗ w′) will still satisfy condition (B), making the localization results of
4.6 and Corollary 5.5 applicable. Also note, that due to 4.6, we can without loss of generality
assume that R and R′ are local.

As proved in [Toë07, Section 6] the category Ho(dgcatk[u,u−1]) admits internal homomorphism
categories satisfying the usual adjunction

[U ⊗L T, T ′] ∼= [U,RHom(T, T ′)].

We will use Morita theory [Toë07, Section 7] to determine the dg category of functors between
two matrix factorization categories. As an application, we calculate the Hochschild chain and
cochain complexes of these categories.
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6.1 Internal homomorphism categories

Given two categories MF∞(R,w) and MF∞(R′, w′) there is a natural class of dg functors between
them. Namely, every object T in the category MF∞(R ⊗k R

′,−w ⊗ 1 + 1 ⊗ w′) defines a dg
functor via the association

MF∞(R,w)→ MF∞(R′, w′), X 7→ X ⊗R T ,

where the tensor product is Z/2-graded. In other words, the object T acts as the kernel of an
integral transform. We will show that every continuous functor between matrix factorization
categories is isomorphic to an integral transform.

By Theorem 5.2, there is an isomorphism

MF∞(R,w)
≃
−→ Â

where A is the 2-periodic endomorphism dg algebra of the compact generator E = kstab. The

matrix factorization E∨ = Hom
Z/2
R (E,R) is a compact generator of the category MF∞(R,−w).

Indeed, as already pointed out in the proof of Lemma 4.4, one explicitly verifies that E∨ stabilizes
a shift of the residue field. Therefore, Theorem 5.2 gives a natural isomorphism

MF∞(R,−w)
≃
−→ Âop.

Consider a second hypersurface singularity (R′, w′) with corresponding category MF∞(R′, w′)
and stabilized residue field E′. One immediately identifies the object E ⊗k E

′ of the category
MF∞(R ⊗k R

′, w ⊗ 1 + 1 ⊗ w′) as a stabilization of the residue field. Therefore, we obtain an
isomorphism of dg algebras

A(R⊗kR′,w⊗1+1⊗w′)

∼=
−→ A(R,w) ⊗A(R′,w′).

Combining Theorem 1.4 in [Toë07] with the above observations and Corollary 5.5, we obtain
the following result.

Theorem 6.1. There exists a natural isomorphism in Ho(dgcatk[u,u−1])

RHomc(MF∞(R,w),MF∞(R′, w′)) ∼= MF∞(R⊗k R
′,−w ⊗ 1 + 1⊗ w′).

We conclude the subsection with a compatibility statement.

Proposition 6.2. Let T be an object in MF∞(R⊗k R
′,−w⊗ 1 + 1⊗w′), let E resp. E′ be the

compact generators of MF∞(R,w) resp. MF∞(R′, w′) as constructed above. Then the diagram
of functors

[MF∞(R,w)]

Hom(E,−)

��

−⊗RT // [MF∞(R′, w′)]

Hom(E′,−)
��

D(Aop)
−⊗L

A
Hom(E∨⊗kE

′,T )
// D(A′ op)

commutes up to a natural equivalence.
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Proof. Using the natural isomorphism of complexes

HomR⊗kR′(E∨ ⊗k E
′, T ) ∼= HomR′(E′, E ⊗R T )

we obtain a natural transformation

HomR(E,−) ⊗
L
A HomR′(E∨ ⊗k E

′, T )→ Hom(E′,−⊗R T )

via composition. Both functors respect the triangulated structure and commute with infinite
coproducts. Evaluated on the compact generator E, the above transformation yields an isomor-
phism in D(A′ op). Therefore, it must be an equivalence of functors on [MF∞(R,w)].

6.2 Hochschild cohomology

One of the many neat applications of the homotopy theory developed in [Toë07] is the description
of the Hochschild cochain complex of a dg category as the endomorphism complex of the identity
functor. This result carries over to the 2-periodic case and we will use it to determine the
Hochschild cohomology of the dg category MF∞(R,w).

Consider the matrix factorization category MF∞(R,w) corresponding to an isolated hyper-
surface singularity. We choose the stabilized residue field as a compact generator which yields
an isomorphism

MF∞(R,w)
≃
−→ Â

in Ho(dgcatk[u,u−1]) as explained above. Let us introduce the notation w̃ = −w⊗ 1+1⊗w. We
have to identify an object in MF∞(R⊗kR, w̃) which induces the identity functor on MF∞(R,w).
Equivalently, we have to find an object whose image under the equivalence

[MF∞(R⊗k R, w̃)]
≃
−→ D(A⊗Aop)

given by Hom(E∨ ⊗k E,−) is isomorphic to the A ⊗ Aop-module A. There is an obvious can-
didate for the integral kernel which induces the identity functor: the stabilized diagonal ∆stab.
Analogously to the stabilized residue field, it is defined as a stabilization of R considered as an
R ⊗k R/w̃-module. To prove that ∆stab is actually isomorphic to the identity functor we will
use Lemma 4.2.

Proposition 6.3. The stabilized diagonal ∆stab is isomorphic to the identity functor on MF∞(R,w).

Proof. We apply Lemma 4.2 with
X = E∨ ⊗k E

where E is the stabilized residue field in MF(R,w) and Y = ∆stab which is the stabilization of
the diagonal R as an R⊗k R/w̃-module. We obtain an isomorphism

MF(E∨ ⊗k E,∆
stab) ∼= Hom

Z/2
R⊗kR

(E∨ ⊗k E,R)

and further

Hom
Z/2
R⊗kR

(E∨ ⊗k E,R) ∼= Hom
Z/2
R (E∨ ⊗R E,R)

∼= Hom
Z/2
R (E,E)

∼= MF(E,E).

But the latter complex is by definition A and all the maps respect the A⊗Aop-module structure.
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We can make the stabilized diagonal explicit after passing to the formal completion. Indeed,
by combining Theorem 4.11 and Theorem 5.7, we obtain a weak equivalence

MF∞(R⊗k R, w̃)
≃
−→ MF∞(R̂ ⊗k R, w̃),

where R̂⊗k R denotes the completion with respect to the maximal ideal supporting the critical
locus of w̃. Over R̂⊗k R, the stabilized diagonal admits an explicit description via the Koszul
method described in subsection 2.3. Indeed, for a minimal system of generators t1, . . . , tn of the
maximal ideal m ⊂ R, we obtain an isomorphism

R̂⊗k R ∼= k[[x1, . . . , xn, y1, . . . , yn]],

where xi = ti ⊗ 1 and yi = 1 ⊗ ti. In this situation, the diagonal R̂ is given as the quotient
R̂⊗k R/I where I = (∆1, . . . ,∆n) with ∆i = xi − yi. We can find an expression of the form

w̃ =
∑n

i=1 ∆iw̃i. By Corollary 2.7, the matrix factorization ∆stab

R̂⊗kR
in MF∞(R̂⊗k R, w̃) is of

the form

(
n⊕

i=0

∧iV, s0 + s1),

with s0 given by contraction with (∆1, . . . ,∆n) and s1 by exterior multiplication with (w̃1, . . . , w̃n)
tr.

We abbreviate the factorization by ∆stab

R̂⊗kR
by ∆̂stab.

Corollary 6.4. The Hochschild cochain complex of MF∞(R,w) is quasi-isomorphic to the Z/2-
folded Koszul complex of the regular sequence ∂1w, . . . , ∂nw in R. In particular, the Hochschild
cohomology is isomorphic, as an algebra, to the Jacobian algebra

HH∗(MF∞(R,w)) ∼= R/(∂1w, . . . , ∂nw)

concentrated in even degree.

Proof. By [Toë07, Corollary 8.1] and Proposition 6.3 the Hochschild cochain complex is quasi-
isomorphic to

MF(∆stab,∆stab).

By the discussion preceding the Corollary, we can pass to the formal completion R̂⊗k R and
use the explicit Koszul description of ∆̂stab. We apply Lemma 4.2 with X = Y = ∆̂stab. Since
Y stabilizes the R̂⊗k R/w̃-module R̂, we obtain an isomorphism

MF(∆̂stab, ∆̂stab) ∼= Hom
Z/2

R̂⊗kR
(∆̂stab, R̂).

The latter complex is isomorphic to the Koszul complex of the sequence formed by the reduction
of the elements w̃1, . . . , w̃n modulo the ideal (∆1, . . . ,∆n). We only have to observe that w̃i is
congruent to ∂iw modulo (∆1, . . . ,∆n). Indeed,

∂iw(x) = lim
∆i→0

w(x+∆i)−w(x)

∆i

= lim
∆i→0

w̃ mod (∆1, . . . , ∆̂i, . . . ,∆n)

∆i

= lim
∆i→0

w̃i mod (∆1, . . . , ∆̂i, . . . ,∆n)

= w̃i mod (∆1, . . . ,∆n)
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Finally, one verifies that the 0-cycle in MF(∆̂stab, ∆̂stab) given by multiplication by a scalar of
the form r⊗ 1 maps under the quasi-isomorphism of Proposition 4.3 to a cycle which represents
the residue class of r in the Jacobian algebra. Thus, the induced map on cohomology is an
algebra homomorphism.

From this calculation we can also obtain the Hochschild cohomology of the finite rank cate-
gory MF(R,w).

Corollary 6.5. The Hochschild cohomology of the 2-periodic dg category MF(R,w) is isomor-
phic to the Jacobian algebra

HH∗(MF(R,w)) ∼= R/(∂1w, . . . , ∂nw)

concentrated in even degree.

Proof. By Theorem 5.2 we have an isomorphism MF∞(R,w) ≃ ̂MF(R,w) in the category
Ho(dgcatk[u,u−1]). Therefore, the statement follows immediately from [Toë07, Corollary 8.2].

Note that, by the same argument, HH∗( ̂MF(R,w)pe) is isomorphic to the Jacobian algebra.

6.3 Hochschild homology

We draw attention to the well-known fact that the category [MF(R,w)] is a Calabi-Yau category
(cf. [Buc86, 10.1.5]). A lift of this result to a statement about dg categories would therefore
show that Hochschild cochain and chain complex are in duality via the trace pairing. According
to the above computation we would then expect the following result to hold for the Hochschild
homology of the category MF(R,w).

Theorem 6.6. The Hochschild homology of the 2-periodic dg category MF(R,w) is given by

HH∗(MF(R,w)) ∼= R/(∂1w, . . . , ∂nw)

concentrated in the degree given by the parity of the Krull dimension of R.

We give a proof of this theorem which does not refer to the trace pairing. Along the way,
we actually prove that matrix factorization categories are Calabi-Yau in the sense of [KKP08,
4.28].

The following definition of Hochschild homology is due to Toën and we reformulate it in the
2-periodic situation. Let T be a 2-periodic dg category. Let 1 denote k[u, u−1] considered as a
dg category with a single object. Applying [Toë07, Lemma 6.2] we obtain an isomorphism

[T ⊗ T op, 1̂] ∼= Iso(Ho(T ⊗ T op-mod)),

where Iso refers to the set of isomorphism classes of objects. On the other hand, by [Toë07,
Theorem 7.2] we have a natural isomorphism

[ ̂T ⊗ T op, 1̂]c
≃
−→ [T ⊗ T op, 1̂]
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given by the pullback functor. Therefore T , considered as an object in T ⊗T op-mod gives rise to
a continuous functor ̂T ⊗ T op → 1̂. Passing to homotopy categories we obtain a map of derived
categories

tr : D(T op ⊗ T )→ D(k[u, u−1]).

The Hochschild chain complex of T is then defined to be the image of T under this map which,
in Morita theoretic terms, coincides with the trace of the identity functor on T .

If A is a 2-periodic dg algebra, then there is an alternative description of the Hochschild
chain complex of A. Let us introduce the notation Ae = A⊗Aop. Consider the tensor product

(Ae)op-mod×Ae-mod→ C(k[u, u−1]), (M,N) 7→M ⊗Ae N

which is defined to be the coequalizer of the two natural maps

M ⊗Ae ⊗N
//// M ⊗N .

The tensor product is a Quillen bifunctor and can thus be derived. In this situation, one checks
directly from the definition that the map

tr : D(Aop ⊗A)→ D(k[u, u−1])

is given by the functor − ⊗L
Ae A. Therefore, the Hochschild chain complex of A admits the

familiar description
C∗(A) = A⊗L

Ae A.

The following lemma is well-known.

Lemma 6.7. The Hochschild chain complex of a 2-periodic dg category T and its triangulated
hull T̂pe are isomorphic in D(k[u, u−1]).

Proof. Consider the natural functor f : T ⊗ T op → T̂pe ⊗ (T̂pe)
op. By the dg Yoneda lemma,

the restriction of the T̂pe ⊗ (T̂pe)
op-module T̂pe along f coincides with T . From this, we obtain

a commutative diagram

T̂pe ⊗ (T̂pe)
op // ̂

T̂pe ⊗ (T̂pe)op
//
1̂

T ⊗ T op //

f

OO

̂T ⊗ T op

f!

OO

//
1̂

id

OO

in Ho(dgcatk[u,u−1]), where the horizontal functors are the ones constructed in the definition of
the Hochschild chain complex above. To obtain the result, we have to show that the functor

[f!] : D(T ⊗ T op)→ D(T̂pe ⊗ (T̂pe)
op)

maps T to T̂pe. Since, by iterated application of [Toë07, Lemma 7.5], we have a Quillen equiva-
lence

T ⊗ T op-mod
f! //

T̂pe ⊗ (T̂pe)
op-mod

f∗
oo

it suffices to show that f∗ maps T̂pe to T . This follows from the dg Yoneda lemma.

37



Let E be the stabilized residue field in the category MF(R,w) and denote Hom(E,E) by A.
We have morphisms in Ho(dgcatk[u,u−1])

MF(R,w) −→ ̂MF(R,w)pe
≃
−→ Âpe ←− A

where the middle morphism is the isomorphism from Theorem 5.2. Applying Lemma 6.7, we
conclude that the Hochschild chain complexes of the categories MF(R,w) and A are isomorphic
in Ho(C(k[u, u−1])). Then, using that A is a perfect Ae-module by Proposition 6.3, we have an
isomorphism

C∗(A) ≃ A⊗
L
Ae A ≃ RHomAe(A!, A)

in Ho(dgcatk[u,u−1]). Here, RHomAe denotes the Ho(C(k[u, u−1]))-enriched derived Hom functor

with respect to the natural C(k[u, u−1])-module structure on the model category Ae-mod and
we define

A! = RHom(Ae)op(A,A
e).

Note that A! admits a natural Ae-module structure.
Via the compact generator E ⊗k E

∨ we obtain an isomorphism

MF∞(R⊗k R,−w̃)
≃
−→ (̂Ae)op = Int(Ae-mod).

Therefore, we can calculate C∗(A) as a morphism complex in MF∞(R ⊗k R,−w̃), provided we
determine the matrix factorization corresponding to A!.

Lemma 6.8. The matrix factorization corresponding to A! is the stabilized diagonal shifted by
the parity of the dimension of R.

Proof. Let Ẽ = E ⊗k E
∨. We have to find a matrix factorization X in MF(R ⊗k R,−w̃) such

that
MF(Ẽ,X) ≃ RHom(Ae)op(A,A

e)

For any factorization X, we have

MF(Ẽ,X) ∼= MF(X∨, Ẽ∨),

where the right-hand side is a morphism complex in the category MF(R ⊗k R, w̃). Now Ẽ∨ is
a compact generator of MF∞(R⊗k R, w̃) with endomorphism dg algebra Ae. By Theorem 5.2,
we obtain a quasi-isomorphism

MF(X∨, Ẽ∨) ≃ RHom(Ae)op(MF(Ẽ∨,X∨), Ae).

We choose X to be the stabilized diagonal shifted by the parity of the dimension of R. Then X∨

is isomorphic to the stabilized diagonal in the category MF(R ⊗k R, w̃). This can be explicitly
verified by passing to completions and using the explicit Koszul description of the stabilized
diagonal (cf. discussion preceding Corollary 6.4). Finally, the argument of Proposition 6.3
yields a quasi-isomorphism

MF(Ẽ∨,X∨) ≃ A

completing the proof.

Note that the lemma in combination with Corollary 6.4 immediately implies Theorem 6.6.
We also remark that, in light of derived Morita theory, the bimodule A! determines an endo-
functor on the category MF(R,w). It corresponds to the inverse Serre functor and the fact that
it is isomorphic to a shift of the identity expresses the Calabi-Yau property of MF(R,w).
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7 Noncommutative geometry

We conclude with some remarks on the geometric implications of our results. In the introduction,
we pointed out that we want to think of the dg category of matrix factorizations as the derived
category of sheaves on a noncommutative space. Let X be a hypothetical noncommutative space
associated to an isolated hypersurface singularity (R,w), where R is a regular local k-algebra
with residue field k. Without explicitly knowing how to think of X itself, we postulate

Dqcoh
dg (X ) ≃ MF∞(R,w).

The symbol X is thus merely of linguistical character, the defining mathematical structure at-
tached to it is Dqcoh

dg (X ). We show how to establish several important properties of the space
X , using the results of the previous sections. Details on the terminology which we use can be
found in [KS06] and [KKP08].

X is dg affine. A noncommutative space X is called dg affine if Dqcoh
dg (X ) is quasi-equivalent

to the dg derived category of some dg algebra A. In our case, this is expressed by Theorem 5.2
where A is explicitly given as the endomorphism algebra of the stabilized residue field.

Perfect complexes on X . A general noncommutative space X is given by the dg category
Dqcoh

dg (X ) of quasi-coherent sheaves on X . The category Dperf
dg (X ) is then defined to be the full

dg subcategory of compact objects. In the case at hand, we have

Dperf
dg (X ) ≃ ̂MF(R,w)pe

by Corollary 5.3. Note that the explicit description

̂MF(R,w)pe ≃ MF(R̂, w)

given in Theorem 5.7 implies that X in fact only depends on the formal germ of (R,w).

X is proper over k. By definition, a dg affine noncommutative space is proper over k if the
cohomology of its defining dg algebra is finite dimensional over k. In our case, the algebra H∗(A)
is isomorphic to a finitely generated Clifford algebra and thus finite dimensional. Note that, in
our 2-periodic situation, the finiteness condition refers to the Z/2-graded object A. To be more
precise, we should call X proper over k[u, u−1].

X is homologically smooth over k. A dg affine noncommutative space is defined to be
homologically smooth if A is a perfect A ⊗ Aop-module. For X this follows from the proof of
Proposition 6.3: the stabilized diagonal is a compact object in [MF∞(R ⊗k R, w̃)] which maps
to A under the coproduct preserving equivalence

[MF∞(R⊗k R, w̃)]
≃
−→ D(A⊗Aop).

The homological smoothness of X suggests that we may as well think of the category Dperf
dg (X )

as an analogue of the bounded derived category of coherent sheaves on X .
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Hodge-to-de Rham degeneration for X . The Hochschild homology of the category Dperf
dg (X )

should be thought of as the Hodge cohomology of the space X . The periodic cyclic homology of
Dperf

dg (X ) plays the role of the de Rham cohomology of X . Generalizing the case of a commutative
scheme, there is a spectral sequence from Hochschild homology to periodic cyclic homology. For
the space X this spectral sequence degenerates, confirming the general degeneration conjecture
in the case of matrix factorization categories. Indeed, this immediately follows from the fact
that the Hochschild homology is concentrated in a single degree. Therefore, Connes’ B operator
must vanish on all higher pages of the Hodge-to-de Rham spectral sequence since it has degree
1. In particular, we obtain

HP∗(MF(R,w)) ∼= HH∗(MF(R,w))

where HP∗ denotes periodic cyclic homology.

X is a Calabi-Yau space. Lemma 6.8 implies the existence of an isomorphism

A! ≃ A[n]

in D(A ⊗ Aop) where n is the dimension of R. Thus, X is a Calabi-Yau space in the sense of
[KKP08, 4.28]. In view of [DM10, 5.2] this gives, in the case of matrix factorization categories,
an affirmative answer to a general conjecture by Kontsevich-Soibelman [KS06, 11.2.8].
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