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Abstract

Hyperplane hashing aims at rapidly search-
ing nearest points to a hyperplane, and has
shown practical impact in scaling up active
learning with SVMs. Unfortunately, the ex-
isting randomized methods need long hash
codes to achieve reasonable search accuracy
and thus suffer from reduced search speed
and large memory overhead. To this end, this
paper proposes a novel hyperplane hashing
technique which yields compact hash codes.
The key idea is the bilinear form of the pro-
posed hash functions, which leads to higher
collision probability than the existing hy-
perplane hash functions when using random
projections. To further increase the perfor-
mance, we propose a learning based frame-
work in which the bilinear functions are di-
rectly learned from the data. This results
in short yet discriminative codes, and also
boosts the search performance over the ran-
dom projection based solutions. Large-scale
active learning experiments carried out on
two datasets with up to one million sam-
ples demonstrate the overall superiority of
the proposed approach.

1. Introduction

Fast approximate nearest neighbor search arises com-
monly in a variety of domains and applications due to
massive growth in data that one is confronted with. An
attractive solution to overcome the speed bottleneck
that an exhaustive linear scan incurs is the use of algo-
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rithms from the Locality-Sensitive Hashing (LSH) fam-
ily (Gionis et al., 1999)(Charikar, 2002)(Datar et al.,
2004) which use random projections to convert input
data into binary hash codes. Although enjoying theo-
retical guarantees on sub-linear hashing/search time
and the accuracy of the returned neighbors, LSH-
related methods typically need long codes and a large
number of hash tables to achieve good search accuracy.
This may lead to considerable storage overhead and re-
duced search speed. Hence, in the literature, directly
learning data-dependent hash functions to generate
compact codes has become popular. Such hashing
typically needs a small number of bits per data item
and can be designed to work well with a single hash
table and constant hashing time. The state-of-the-
arts include unsupervised hashing (Liu et al., 2011),
semi-supervised hashing (Wang et al., 2012), and su-
pervised hashing (Liu et al., 2012).

Most of the existing hashing methods try to solve
the problem of point-to-point nearest neighbor search.
Namely, both queries and database items are rep-
resented as individual points in some feature space.
Considering complex structures of real-world data,
other forms of hashing paradigms beyond point-to-
point search have also been proposed in the past,
e.g., subspace-to-subspace nearest neighbor search
(Basri et al., 2011). In this paper, we address a
more challenging point-to-hyperplane search problem,
where queries come as hyperplanes in R

d, i.e., (d− 1)-
dimensional subspaces, and database items are con-
ventional points. Then the search problem is: given
a hyperplane query and a database of points, re-
turn the points which have minimal distances to the
hyperplane. In the literature, not much work has
been done on the point-to-hyperplane problem except
(Jain et al., 2010) which demonstrated the vital im-
portance of such a problem in making SVM-based ac-
tive learning feasible on massive data pools.
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Active learning (AL), also known as pool-based active
learning, circumvents the high cost of blind labeling
by selecting a few samples to label. At each iteration,
a typical AL learner seeks the most informative sam-
ple from an unlabeled sample pool, so that maximal
information gain is achieved after labeling the selected
sample. Subsequently, the learning model is re-trained
on the incrementally labeled sample set. The classi-
cal AL algorithm (Tong & Koller, 2001) used SVMs
as learning models. Based on the theory of “version
spaces” (Tong & Koller, 2001), it was provably shown
that the best sample to select is simply the one closest
to the current decision hyperplane if the assumption of
symmetric version spaces holds. Unfortunately, the ac-
tive selection method faces serious computational chal-
lenges when applied to gigantic databases. An exhaus-
tive search to find the best sample is usually compu-
tationally prohibitive. Thus, fast point-to-hyperplane
search is strongly desired to scale up active learning
on large real-world data sets.

Recently, hyperplane hashing schemes were proposed
in (Jain et al., 2010) to cope with point-to-hyperplane
search. Compared with the brute-force scan through
all of the database points, these schemes are signif-
icantly more efficient with theoretical guarantees of
sub-linear query time and tolerable loss of accuracy
for retrieved approximate nearest neighbors. Con-
sequently, when applying hyperplane hashing to the
sample selection task for SVM active learning, one can
scan orders of magnitude fewer database points to de-
liver the next active label request, thereby making ac-
tive learning scalable.

In (Jain et al., 2010), two families of randomized hash
functions were proved locality-sensitive to the angle
between a database point and a hyperplane query;
however, long hash bits and plentiful hash tables
are required to cater for the theoretical guarantees.
Actually, 300 bits and 500 tables were adopted in
(Jain et al., 2010) to achieve reasonable performance,
which incurs a heavy burden on both computation and
storage. To mitigate the above mentioned issues, this
paper proposes a compact hyperplane hashing scheme
which exploits only a single hash table with several
tens of hash bits to tackle point-to-hyperplane search.
The thrust of our hashing scheme is to design and learn
bilinear hash functions such that nearly parallel input
vectors are hashed to the same bits whereas nearly per-
pendicular input vectors are hashed to different bits.
In fact, we first show that even without any learn-
ing, the randomized version of the proposed bilinear
hashing gives higher near-neighbor collision probabil-
ity than the existing methods.

Figure 1. The point-to-hyperplane search problem encoun-
tered in SVM active learning. Pw is the SVM’s hyper-
plane decision boundary, w is the normal vector to Pw,
and x is a data vector. (a) Point-to-hyperplane distance
D(x,Pw) and point-to-hyperplane angle αx,w; (b) infor-
mative (x1,x2) and uninformative (x3,x4) samples.

Next, we cast the bilinear projections in a learning
framework and show that one can do even better by us-
ing learned hash functions. Given a hyperplane query,
its normal vector is used as the input and the corre-
sponding hash code is obtained by concatenating the
output bits from the learned hash functions. Then, the
database points whose codes have the farthest Ham-
ming distances to the query’s code are retrieved. Crit-
ically, the retrieved points, called near-to-hyperplane

neighbors, maintain small angles to the hyperplane fol-
lowing our learning principle. Experiments conducted
on two large data sets up to one million corroborate
that our approach enables scalable active learning with
good performance. Finally, although in this paper we
select SVM active learning as the testbed for hyper-
plane hashing, we want to highlight that the proposed
compact hyperplane hashing is a general method and
applicable to a large spectrum of machine learning
problems such as minimal tangent distance pursuit and
cutting-plane based maximum margin clustering.

2. Problem

First of all, let us revisit the well-known margin-based
AL strategy proposed by (Tong & Koller, 2001). For
the convenience of expression, we append each data
vector with a 1 and use a linear kernel. Then, the
SVM classifier becomes f(x) = w

⊤
x where vector

x ∈ R
d represents a data point and vector w ∈ R

d

determines a hyperplane Pw passing through the ori-
gin. Fig. 1(a) displays the geometric relationship be-
tween w and Pw, where w is the vector normal to the
hyperplane Pw. Given a hyperplane query Pw and
a database of points X = {xi}

n
i=1, the active selec-

tion criterion prefers the most informative database
point x

∗ = argminx∈X D(x,Pw) which has the min-
imum margin to the SVM’s decision boundary Pw.
Note that D(x,Pw) = |w⊤

x|/‖w‖ is the point-to-
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hyperplane distance. To derive provable hyperplane
hashing like (Jain et al., 2010), this paper focuses on

a slightly modified “distance” |w⊤
x|

‖w‖‖x‖ which is the sine

of the point-to-hyperplane angle

αx,w =
∣

∣

∣
θx,w −

π

2

∣

∣

∣
= sin−1 |w⊤

x|

‖w‖‖x‖
, (1)

where θx,w ∈ [0, π] is the angle between x and the hy-
perplane normalw. The angle measure αx,w ∈ [0, π/2]
between a database point and a hyperplane query can
readily be reflected in hashing.

As shown in Fig. 1(b), the goal of hyperplane hash-
ing is to hash a hyperplane query Pw and the infor-
mative samples (e.g., x1,x2) with narrow αx,w into
the same or nearby hash buckets, meanwhile avoid-
ing to return the uninformative samples (e.g., x3,x4)
with wide αx,w. Because αx,w =

∣

∣θx,w − π
2

∣

∣, the
point-to-hyperplane search problem can be equiva-
lently transformed to a specific point-to-point search
problem where the query is the hyperplane normal w
and the desirable nearest neighbor to the raw query
Pw is the one whose angle θx,w from w is closest to
π/2, i.e., most closely perpendicular to w. This is
very different from traditional point-to-point nearest
neighbor search which returns the most similar point

to the query point. If we regard | cos(θx,w)| = |w⊤
x|

‖w‖‖x‖

as a similarity measure between x and w, hyperplane
hashing actually seeks for the most dissimilar point
x
∗ of | cos(θx∗,w)| → 0 to the query point w. On the

contrary, the most similar point such as w or −w is
surely uninformative for the active selection criterion,
and must be excluded.

3. Randomized Hyperplane Hashing

In this section, we first briefly review the existing lin-
ear function based randomized hashing methods, then
propose our bilinearly formed randomized hashing ap-
proach, and finally provide theoretic analysis for the
proposed bilinear hash function.

3.1. Background – Linear Hash Functions

Jain et al. (Jain et al., 2010) devised two distinct fam-
ilies of randomized hash functions to attack the hyper-
plane hashing problem.

The first one is Angle-Hyperplane Hash (AH-Hash) A,
of which one example is

hA(z) =
{

[sgn(u⊤
z), sgn(v⊤

z)], z is a database point
[sgn(u⊤

z), sgn(−v
⊤
z)], z is a hyperplane normal

(2)

where z ∈ R
d represents an input vector, and u and

v are both drawn independently from a standard d-
variate Gaussian, i.e., u,v ∼ N (0, Id×d). Note that
hA is a two-bit hash function which leads to the prob-
ability of collision for a hyperplane normal w and a
database point x:

Pr
[

hA(w) = hA(x)
]

=
1

4
−

α2
x,w

π2
. (3)

The probability monotonically decreases as the point-
to-hyperplane angle αx,w increases, ensuring angle-
sensitive hashing.

The second is Embedding-Hyperplane Hash (EH-Hash)
function family E of which one example is

hE(z) =

{

sgn
(

U⊤V(zz⊤)
)

, z is a database point
sgn

(

−U⊤V(zz⊤)
)

, z is a hyperplane normal

(4)

where V(A) returns the vectorial concatenation of ma-
trix A, and U ∼ N (0, Id2×d2). In particular, the EH
hash function hE yields hash bits on an embedded
space Rd2

resulting from vectorizing rank-one matrices
zz

⊤ and −zz
⊤. Compared with hA, hE gives a higher

probability of collision for a hyperplane normal w and
a database point x:

Pr
[

hE(w) = hE(x)
]

=
cos−1 sin2(αx,w)

π
, (5)

which also bears the angle-sensitive hashing property.
However, it is much more expensive to compute than
AH-Hash.

It is important to note that both AH-Hash and EH-
Hash are essentially linear hashing techniques. On the
contrary, in this work we introduce bilinear hash func-
tions which allow nonlinear hashing.

3.2. Bilinear Hash Functions

We propose a bilinear hash function as follows

h(z) = sgn(u⊤
zz

⊤
v), (6)

where u,v ∈ R
d are two projection vectors. Our mo-

tivation for devising such a bilinear form comes from
the following two requirements: 1) h should be in-
variant to the scale of z, which is motivated by the
fact that z and βz (β 6= 0) hold the same point-to-
hyperplane angle; and 2) h should yield different hash
bits for two perpendicular input vectors. The former
definitely holds due to the bilinear formulation. We
show in Lemma 1 that the latter holds with a con-
stant probability when u,v are drawn independently
from the standard normal distribution.
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Figure 2. Theoretical comparison of three randomized
hashing schemes. (a) p1 (probability of collision) vs. r

(squared point-to-hyperplane angle); (b) ρ (query time ex-
ponent) vs. r for ǫ = 3.

For the purpose of hyperplane hashing described
above, the pivotal role of bilinear hash functions is
to map the query point w (the hyperplane normal)
and the desirable most informative point (with θx,w =
π/2) to bitwise different hash codes, whereas map w

and the undesirable most uninformative point (with
θx,w = 0 or π) to identical hash codes. Therefore,
hyperplane hashing works by finding the points in X
whose codes have the largest Hamming distances to
the query code of w.

3.3. Theoretic Analysis

Based on the bilinear formulation in eq. (6), we define a
novel randomized function family Bilinear-Hyperplane

Hash (BH-Hash) as:

B =
{

hB(z) = sgn(u⊤
zz

⊤
v), i.i.d. u,v ∼ N (0, Id×d)

}

.
(7)

Here we prove several key characteristics of B. Spe-
cially, we define hB(Pw) = −hB(w) for an easy deriva-
tion.

Lemma 1. Given a hyperplane query Pw with the
normal vector w ∈ R

d and a database point x ∈ R
d,

the probability of collision for Pw and x under hB is

Pr
[

hB(Pw) = hB(x)
]

=
1

2
−

2α2
x,w

π2
. (8)

Proof. This probability is equal to the probability of
hB(w) 6= hB(x). Because the two random projections
u and v are independent,

Pr
[

hB(w) 6= hB(x)
]

= Pr
[

sgn(u⊤
w) = sgn(u⊤

x)
]

∗

Pr
[

sgn(v⊤
w) 6= sgn(v⊤

x)
]

+

Pr
[

sgn(u⊤
w) 6= sgn(u⊤

x)
]

Pr
[

sgn(v⊤
w) = sgn(v⊤

x)
]

.

By exploiting the fact Pr
[

sgn(u⊤
z) = sgn(u⊤

z
′)
]

=

1− θz,z′/π from (Goemans & Williamson, 1995),

Pr
[

hB(w) 6= hB(x)
]

=

(

1−
θx,w
π

)

θx,w
π

+
θx,w
π

(

1−
θx,w
π

)

=
1

2
−

2(θx,w − π
2 )

2

π2
=

1

2
−

2α2
x,w

π2
,

which completes the proof.

Lemma 1 shows that the probability of hB(w) 6= hB(x)
is 1/2 for perpendicular w and x that hold θx,w = π/2
(accordingly αx,w = 0). It is important to realize that
this collision probability is twice of that from the linear
AH hash function hA described in Sec. 3.1.

Theorem 1. The BH-Hash function family B is
(

r, r(1 + ǫ), 1
2 − 2r

π2 ,
1
2 − 2r(1+ǫ)

π2

)

-sensitive to the dis-

tance measure D(x,Pw) = α2
x,w, where r, ǫ > 0.

Proof. Using Lemma 1, for any hB ∈ B, when
D(x,Pw) ≤ r we have

Pr
[

hB(Pw) = hB(x)
]

=
1

2
−

2D(x,Pw)

π2

≥
1

2
−

2r

π2
= p1. (9)

Likewise, when D(x,Pw) > r(1 + ǫ) we have

Pr
[

hB(Pw) = hB(x)
]

<
1

2
−

2r(1 + ǫ)

π2
= p2. (10)

This completes the proof.

Note that p1, p2 (p1 > p2) depend on 0 ≤ r ≤ π2/4 and
ǫ > 0. We present the following theorem by adapting
Theorem 1 in (Gionis et al., 1999) and Theorem 0.1 in
the supplementary material of (Jain et al., 2010).

Theorem 2. Suppose we have a database X of n
points. Denote the parameters k = log1/p2

n, ρ = ln p1

ln p2

,

and c ≥ 2. Given a hyperplane query Pw, if there ex-

ists a database point x∗ such that D(x∗,Pw) ≤ r, then
the BH-Hash algorithm is able to return a database

point x̂ such that D(x̂,Pw) ≤ r(1+ ǫ) with probability

at least 1− 1
c −

1
e by using nρ hash tables of k hash bits

each. The query time is dominated by O(nρ log1/p2
n)

evaluations of the hash functions from B and cnρ com-

putations of the pairwise distances D between Pw and

the points hashed into the same buckets.

We defer the proof to the supplementary material due
to the page limit. The query time isO(nρ) (0 < ρ < 1).
For each of AH-Hash, EH-Hash and BH-Hash, we plot
the collision probability p1 and the query time expo-
nent ρ under ǫ = 3 with varying r in Fig. 2(a) and (b),
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respectively. At any fixed r, BH-Hash accomplishes
the highest probability of collision, which is twice p1 of
AH-Hash. Though BH-Hash has slightly bigger ρ than
EH-Hash, it has much faster hash function computa-
tion, i.e., Θ(2dk), instead of Θ(d2(k + 1)) of EH-Hash
per hash table for each query or data point.

It is interesting to see that AH-Hash and our proposed
BH-Hash have a tight connection in the style of hash-
ing database points. BH-Hash actually performs the
XNOR operation over the two bits that AH-Hash out-
puts, returning a composite single bit. As a relevant
reference, the idea of applying the XOR operation over
binary bits in constructing hash functions has ever
been used in (Li & König, 2010). However, this is only
suitable for the limited data type, discrete set, and still
falls into point-to-point search.

4. Compact Hyperplane Hashing

Despite the higher collision probability of the proposed
BH-Hash than AH-Hash and EH-Hash, it is still a ran-
domized approach. The use of random projections
in hB has two potential issues. (i) The probability
of colliding for parallel Pw and x with αx,w = 0 is
not too high (only 1/2 according to Lemma 1). (ii)
The hashing time is sub-linear O(nρ log1/p2

n) in or-
der to bound the approximation error of the retrieved
neighbors, as shown in Theorem 2. AH-Hash and EH-
Hash also suffer from the two issues. Even though
these randomized hyperplane hashing methods main-
tain bounded approximation errors, they require long
hash codes and plenty (even hundreds) of hash tables
to cater for the accuracy guarantees. Hence, these so-
lutions have tremendous computational and memory
costs which limit the practical performance of hyper-
plane hashing.

To this end, we propose a Compact Hyperplane Hash-

ing approach to further enhance the power of bilinear
hash functions such that, instead of being random, the
projections are learned from the data. Such learning
yields compact yet discriminative codes which are used
in a single hash table, leading to substantially reduced
computational and storage needs.

We aim at learning a series of bilinear hash functions
{hj} to yield short codes. Note that hj is different from
the randomized bilinear hash function hB

j , and that we
consistently define hj(Pw) = −hj(w). We would like
to learn hj such that smaller αx,w results in larger
hj(Pw)hj(x). Thus, we make hj(Pw)hj(x) to mono-
tonically decrease as αx,w increases. This is equivalent
to the requirement that hj(w)hj(x) monotonically in-
creases with increasing sin(αx,w) = | cos(θx,w)|.

Suppose k hash functions are learned to produce k-bit
codes. We propose a hash function learning approach
with the goal that

∑k
j=1 hj(w)hj(x)/k ∝ | cos(θx,w)|.

Further, since
∑k

j=1 hj(w)hj(x)/k ∈ [−1, 1] and
| cos(θx,w)| ∈ [0, 1], we specify the learning goal as

1

k

k
∑

j=1

hj(w)hj(x) = 2| cos(θx,w)| − 1, (11)

which makes sense since θx,w = π/2, i.e., αx,w = 0,
causes hj(w) 6= hj(x) or hj(Pw) = hj(x) for any j ∈
[1 : k]. As such, the proposed learning method achieves
explicit collision for parallel Pw and x.

Enforcing eq. (11) tends to make hj to yield identi-
cal hash codes for nearly parallel inputs whereas bit-
wise different hash codes for nearly perpendicular in-
puts. At the query time, given a hyperplane query,
we first extract its k-bit hash code using the k learned
hash functions applied to the hyperplane normal vec-
tor. Then, the database points whose codes have the
largest Hamming distances to the query’s code are
returned. Thus, the returned points, called near-to-

hyperplane neighbors, maintain small angles to the hy-
perplane because such points and the hyperplane nor-
mal are nearly perpendicular. In our learning setting,
k is typically very short, no more than 30, so we can
retrieve the desirable near-to-hyperplane neighbors via
constant time hashing over a single hash table.

Now we desribe how we learn k pairs of projections
(uj ,vj)

k
j=1 so as to construct k bilinear hash functions

{hj(z) = sgn(u⊤
j zz

⊤
vj)}kj=1. Since the hyperplane

normal vectors come up only during the query time, we
cannot access w during the training stage. Instead, we
sample a few database points for learning projections.
Without the loss of generality, we assume that the first
m (k < m ≪ n) samples saved in the matrix Xm =
[x1, · · · ,xm] are used for learning. To capture the
pairwise relationships among them, we define a matrix
S ∈ R

m×m as

Sii′ =







1, | cos(θxi,xi′
)| ≥ t1

−1, | cos(θxi,xi′
)| ≤ t2

2| cos(θxi,xi′
)| − 1, otherwise

(12)

where 0 < t2 < t1 < 1 are two thresholds. For
any sample x, its k-bit hash code is written as
H(x) = [h1(x), · · · , hk(x)], and

∑k
j=1 hj(xi)hj(xi′) =

H(xi)H
⊤(xi′). By taking advantage of the learn-

ing goal given in eq. (11), we formulate a least-
squares style objective function Q to learn Xm’s bi-

nary codes as Q =
∥

∥

1
kBB⊤ − S

∥

∥

2

F
, where B =

[H⊤(x1), · · · , H
⊤(xm)]⊤ represents the code matrix
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of Xm and ‖.‖F denotes the Frobenius norm. The
thresholds t1, t2 used in eq. (12) have an important
role. When two inputs are prone to being parallel
so that | cos(θxi,xi′

)| is large enough (≥ t1), minimiz-
ing Q drives each bit of their codes to collide, i.e.,
H(xi)H

⊤(xi′)/k = 1; when two inputs tend to be per-
pendicular so that | cos(θxi,xi′

)| is small enough (≤ t2),
minimizing Q tries to make their codes bit-by-bit dif-
ferent, i.e., H(xi)H

⊤(xi′)/k = −1.

With simple algebra, one can rewrite Q as

min
(uj ,vj)kj=1

∥

∥

∥

∥

∥

∥

k
∑

j=1

bjb
⊤
j − kS

∥

∥

∥

∥

∥

∥

2

F

s.t. bj =





sgn
(

u
⊤
j x1x

⊤
1 vj

)

· · · · · ·
sgn

(

u
⊤
j xmx

⊤
mvj

)



 . (13)

Every bit vector bj ∈ {1,−1}m in B = [b1, · · · , bk]
determines one hash function hj parameterized by one
projection pair (uj ,vj). Note that bj ’s are separable
in the summation, which inspires a greedy idea for
solving bj ’s sequentially. At a time, it only involves
solving one bit vector bj(uj ,vj) given the previously
solved vectors b

∗
1, · · · , b

∗
j−1. Let us define a residue

matrix Rj−1 = kS−
∑j−1

j′=1 bj′b
⊤
j′ with R0 = kS. Then,

bj can be pursued by minimizing the following cost

∥

∥bjb
⊤
j −Rj−1

∥

∥

2

F
=
(

b
⊤
j bj

)2
− 2b⊤j Rj−1bj + tr(R2

j−1)

=− 2b⊤j Rj−1bj +m2 + tr(R2
j−1)

=− 2b⊤j Rj−1bj + const. (14)

Discarding the constant term, the final cost is given as

g(uj ,vj) = −b
⊤
j Rj−1bj . (15)

Note that g(uj ,vj) is lower-bounded as eq. (14) is al-
ways nonnegative. However, minimizing g is not easy
because it is neither convex nor smooth. Below we
propose an approximate optimization algorithm.

Since the hardness of minimizing g lies in the sign
function, we replace sgn() in bj with the sigmoid-
shaped function ϕ(x) = 2/(1 + exp(−x)) − 1 which
is sufficiently smooth and well approximates sgn(x)
when |x| > 6. Subsequently, we propose to optimize a
smooth surrogate g̃ of g defined by

g̃(uj ,vj) = −b̃
⊤
j Rj−1b̃j , (16)

where the vector

b̃j =





ϕ
(

u
⊤
j x1x

⊤
1 vj

)

· · · · · ·
ϕ
(

u
⊤
j xmx

⊤
mvj

)



 . (17)

We derive the gradient of g̃ with respect to [u⊤
j ,v

⊤
j ]⊤

∇g̃ = −

[

XmΣjX
⊤
mvj

XmΣjX
⊤
muj

]

, (18)

where Σj ∈ R
m×m is a diagonal matrix whose di-

agonal elements come from the m-dimensional vector
(Rj−1b̃j) ⊙ (1 − b̃j ⊙ b̃j). Here the symbol ⊙ repre-
sents the Hadamard product (i.e., elementwise prod-
uct), and 1 denotes a constant vector with m 1 entries.
Since the original cost g in eq. (15) is lower-bounded,
its smooth surrogate g̃ in eq. (16) is lower-bounded as
well. We are thus able to minimize g̃ using the regu-
lar gradient descent technique. Note that the smooth
surrogate g̃ is still nonconvex, so it is unrealistic to
look for a global minima of g̃. For fast convergence,
we adopt a pair of random projections (u0

j ,v
0
j ), which

were used in hB
j , as a warm start and apply Nesterov’s

gradient method (Nesterov, 2003) to accelerate the
gradient decent procedure. In most cases we attain
a locally optimal (u∗

j ,v
∗
j ) at which g̃(u∗

j ,v
∗
j ) is very

close to its lower bound.

The final optimized bilinear hash functions are given

as
{

hj(z) = sgn
(

(u∗
j )

⊤
zz

⊤
v
∗
j

)}k

j=1
. Although, unlike

the randomized hashing, it is not easy to prove their
theoretical properties such as the collision probabil-
ity, they result in a more accurate point-to-hyperplane
search than the randomized functions

{

hB
j

}

, as demon-
strated by the subsequent experiments.

With the learned hash functions H = [h1, · · · , hk] in
hand, we can implement the proposed compact hyper-
plane hashing by simply treating a -1 bit as a 0 bit.
In the preprocessing stage, each database point x is
converted into a k-bit hash code H(x) and stored in a
single hash table with k-bit hash keys as entries. To
perform search at the query time, given a hyperplane
normal w, we 1) extract its hash key H(w) and per-
form the bitwise NOT operation to get the key H(w);
2) look up H(w) in the hash table for the nearest
entries up to a small Hamming distance, obtaining a
short list L whose points are retrieved from the found
hash buckets; 3) scan the list L and then return the
point x∗ = argminx∈L |w⊤

x|/‖w‖. In fact, searching
within a small Hamming ball centered at the flipped
code H(w) is equivalent to searching the codes that
have largest possible Hamming distances to the code
H(w) in the Hamming space.

5. Experiments

5.1. Datasets

We conduct experiments on two publicly available
datasets including the 20 Newsgroups textual corpus
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and the 1.06 million subset, called Tiny-1M, of the
80 million tiny image collection1. The first dataset is
the version 22 of 20 Newsgroups. It is comprised
of 18,846 documents from 20 newsgroup categories.
Each document is represented by a 26,214-dimensional
tf-idf feature vector that is ℓ2 normalized. The Tiny-

1M dataset is a union of CIFAR-103 and one million
tiny images sampled from the entire 80M tiny image
set. CIFAR-10 is a labeled subset of the 80M tiny
image set, consisting of a total of 60,000 color images
from ten object categories each of which has 6000 sam-
ples. The other 1M images do not have annotated la-
bels. In our experiments, we treat them as the “other”
class besides the ten classes appearing in CIFAR-10,
since they were sampled as the farthest 1M images
to the mean image of CIFAR-10. Each image in
Tiny-1M is represented by a 384-dimensional GIST
(Oliva & Torralba, 2001) feature vector.

For each dataset, we train a linear SVM in the one-
versus-all setting with an initially labeled set which
contains randomly selected labeled samples from all
classes, and then run active sample selection for 300 it-
erations. The initially labeled set for 20 Newsgroups

includes 5 samples per class, while for Tiny-1M in-
cludes 50 samples per class. For both datasets, we try
5 random initializations. After each sample selection
is made, we add it to the labeled set and re-train the
SVM. We use LIBLINEAR4 for running linear SVMs.
All our experiments were run on a workstation with a
2.53 GHz Intel Xeon CPU and 48GB RAM.

5.2. Evaluations and Results

We carry out SVM active learning using the minimum-
margin based sample selection criterion for which we
apply hyperplane hashing techniques to expedite the
selection procedure. To validate the actual perfor-
mance of the discussed hyperplane hashing methods,
we compare them with two baselines: random selec-

tion where the next label request is randomly made,
and exhaustive selection where the margin criterion
is evaluated for all currently unlabeled samples. We
compare four hashing methods including two ran-
domized linear hashing schemes AH-Hash and EH-
Hash (Jain et al., 2010), the proposed randomized bi-
linear hashing scheme BH-Hash, and the proposed
learning-based bilinear hashing scheme that we call
LBH-Hash. Notice that we use the same random pro-
jections for AH-Hash, BH-Hash, and the initializa-
tion of LBH-Hash to shed light on the effect of bi-

1http://horatio.cs.nyu.edu/mit/tiny/data/index.html
2http://www.zjucadcg.cn/dengcai/Data/TextData.html
3http://www.cs.toronto.edu/~kriz/cifar.html
4http://www.csie.ntu.edu.tw/~cjlin/liblinear/

linear hashing (XNOR two bits). We also follow the
dimension-sampling trick in (Jain et al., 2010) to ac-
celerate EH-Hash’s computation. In order to train
our proposed LBH-Hash, we randomly sample 500
and 5000 database points from 20 Newsgroups and
Tiny-1M, respectively. The two thresholds t1, t2 used
for implementing explicit collision are acquired accord-
ing to the following rule: compute the absolute cosine
matrix C between the m sampled points {xi}

m
i=1 and

all data, average the top 5% values among Ci. across
xi’s as t1, and average the bottom 5% values as t2.

So as to make the hashing methods work under a com-
pact hashing mode for fair comparison, we employ a
single hash table with short code length. Concretely,
we use 16 hash bits for EH-Hash, BH-Hash, and LBH-
Hash, and 32 bits for AH-Hash because of its dual-bit
hashing spirit on 20 Newsgroups. When applying
each hashing method in an AL iteration, we perform
a hash lookup within Hamming radius 3 in the corre-
sponding hash table and then scan the points in the
found hash buckets, resulting in the neighbor near to
the current SVM’s decision hyperplane. Likewise, we
use 20 bits for EH-Hash, BH-Hash, and LBH-Hash,
and 40 bits for AH-Hash on Tiny-1M; the Hamming
radius for search is set to 4. It is possible that a method
finds all empty hash buckets in the Hamming ball. In
that case, we apply random selection as a supplement.

We evaluate the performance of four hashing meth-
ods in terms of: 1) the average precision (AP) which
is computed by ranking the current unlabeled sample
set with the current SVM classifier at each AL itera-
tion; 2) the minimum margin (the smallest point-to-
hyperplane distance |w⊤

x|/‖w‖) of the neighbor re-
turned by hyperplane hashing at each AL iteration; 3)
the number of queries among a total of 300 for every
class that receive nonempty hash lookups. The former
two results are averaged over all classes and 5 runs,
and the latter is averaged over 5 runs. We report such
results in Fig. 3 and Fig. 4, which clearly show that
1) LBH-Hash achieves the highest mean AP (MAP)
among all compared hashing methods, and even out-
performs exhaustive selection at some AL iterations; 2)
LBH-Hash accomplishes the minimum margin closest
to that by exhaustive selection; 3) LBH-Hash enjoys
almost all nonempty hash lookups (AH-Hash gets al-
most all empty lookups). The superior performance
of LBH-Hash corroborates that the proposed bilinear
hash function and the associated learning technique
are successful in utilizing the underlying data infor-
mation to yield compact yet discriminative codes.

Finally, we report the computational efficiency in Ta-
bles 1-3 of the supplementary material, which indicate

http://horatio.cs.nyu.edu/mit/tiny/data/index.html
http://www.zjucadcg.cn/dengcai/Data/TextData.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Figure 3. Results on 20 Newsgroups. (a) Learning curves of MAP, (b) minimum-margin curves of active sample selec-
tion, and (c) the number of queries (≤ 300) receiving nonempty hash lookups across 20 classes.
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Figure 4. Results on Tiny-1M. (a) Learning curves of MAP, (b) minimum-margin curves of active sample selection, and
(c) the number of queries (≤ 300) receiving nonempty hash lookups across 10 classes.

that LBH-Hash takes comparable preprocessing time
as EH-Hash and achieves fast search speed.

6. Conclusions

We have addressed hyperplane hashing by proposing a
specialized bilinear hash function which allows efficient
search of points near a hyperplane query. Even when
using random projections, the proposed hash function
enjoys higher probability of collision than the exist-
ing randomized methods. By learning the projections
further, we achieve compact yet discriminative codes
that permit substantial savings in both storage and
time needed during search. Large-scale active learn-
ing experiments on two datasets have demonstrated
the superior performance of our compact hyperplane
hashing approach.
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