
Compact Implementation and Performance
Evaluation of Block Ciphers in ATtiny Devices

Thomas Eisenbarth1, Zheng Gong2, Tim Güneysu3, Stefan Heyse3,
Sebastiaan Indesteege4,5, Stéphanie Kerckhof6, François Koeune6,

Tomislav Nad7, Thomas Plos7, Francesco Regazzoni6,8,
François-Xavier Standaert6, Loic van Oldeneel tot Oldenzeel6.

1 Department of Mathematical Sciences, Florida Atlantic University, FL, USA.
2 School of Computer Science, South China Normal University.

3 Horst Görtz Institute for IT Security, Ruhr-Universität, Bochum, Germany.
4 Department of Electrical Engineering ESAT/COSIC, KULeuven, Belgium.

5 Interdisciplinary Institute for BroadBand Technology (IBBT), Ghent, Belgium.
6 UCL Crypto Group, Université catholique de Louvain, Belgium.

7 Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology, Austria.

8 ALaRI Institute, University of Lugano, Switzerland.

Abstract. The design of lightweight block ciphers has been a very ac-
tive research topic over the last years. However, the lack of comparative
source codes generally makes it hard to evaluate the extent to which dif-
ferent ciphers actually reach their low-cost goals, on different platforms.
This paper reports on an initiative aimed to partially relax this issue.
First, we implemented 12 block ciphers on an ATMEL ATtiny45 device,
and made the corresponding source code available on a webpage, with an
open-source license. Common design goals and interface have been sent to
all designers in order to enhance the comparability of the implementation
results. Second, we evaluated the performances of these implementations
according to different metrics, including energy-consumption measure-
ments. Although inherently limited by slightly different design choices,
we hope this initiative can trigger more work in this direction, e.g. by
extending the list of implemented ciphers, or adding countermeasures
against physical attacks in the future.

1 Introduction

Small embedded devices (including smart cards, RFIDs, sensor nodes) are now
deployed in many applications. They are usually characterized by strong cost
constraints. Yet, as they may manipulate sensitive data, they also require cryp-
tographic protection. As a result, many lightweight ciphers have been proposed
in order to allow strong security guarantees at a lower cost than standard so-
lutions. Quite naturally, the very idea of “low-cost” is highly dependent on the
target technology. Some operations that are extremely low cost in hardware (e.g.
wire crossings) may turn out to be annoyingly expensive in software. Even within



a class of similar devices (e.g. software), the presence or absence of some options
(such as hardware multipliers) may cause strong variations in the performance
analysis of different algorithms. As a result, it is sometimes difficult to have a
good understanding of which algorithms are actually lightweight on which de-
vice. Also, the lack of comparative studies prevents a good understanding of the
cost vs. performance tradeoff for these algorithms.

In this paper, we consider this issue of performance evaluation for low-
cost block ciphers, and investigate their implementation in ATMEL ATtiny de-
vices [4], i.e. small microcontrollers, with limited memory and instruction set.
Despite the relatively frequent use of such devices in different applications, little
work has been done in benchmarking cryptographic algorithms in this context.
Notable exceptions include B. Poettering’s open-source codes for the AES Rijn-
dael [2], the XBX frameworks from CHES 2010 [20] and an interesting survey of
lightweight cryptography implementations [10]. Unfortunately, these references
are still limited by the number of ciphers under investigation and the fact that
their source code is not always available for evaluation.

Following, the goal of our work is to extend the benchmarking of 12 lightweight
and standard ciphers, and to make their implementation available under an open-
source license. The ciphers were chosen according to three criteria: all selected
candidates should (a) give no indication of flawed security, (b) be freely usable
without patent restrictions and (c) likely result in lightweight implementations
with a footprint of less than 256 bytes of RAM and 4 KB of code size for a
combined encryption and decryption function.

In order to make comparisons as meaningful as possible, we tried to adapt
the guidelines proposed in [11] for the evaluation of hardware implementations to
our software context. Yet, as the project was involving 12 different designers, we
also acknowledge that some biases can appear in our conclusions, due to slightly
different implementation choices. Hence, as usual for performance evaluations,
looking at the source codes is essential in order to properly understand the
reasons of different performance figures. Overall, we hope that this initiative can
be used as a first step in better analyzing the performances of block ciphers in
a specific but meaningful class of devices. We also hope that it can be used as
a germ to further develop cryptographic libraries for embedded platforms and,
in the long term, add security against physical attacks (e.g. based on faults or
side-channel leakage) as another evaluation criteria.

The rest of the paper is structured as follows. Section 2 contains a brief
specification of the implemented ciphers. Section 3 establishes our evaluation
methodology and metrics, followed by Section 4 that gives details about the AT-
tiny45 microcontroller. Section 5 provides succinct descriptions and motivation
of the implementation choices made by our 12 designers. Finally, our perfor-
mance evaluations are in Section 6 and conclusions are drawn in Section 7. The
webpage containing all our open-source codes is given here [1].



2 List of Investigated Ciphers

AES Rijndael [8] is the new encryption standard selected in 2002 as a replace-
ment of the DES. It supports key sizes of 128, 192 or 256 bits, and block size of
128 bits. The encryption iterates a round function a number of times, depending
on the key size. The round is composed of four transformations: SubBytes (that
applies a non-linear S-box to the bytes of the states), ShiftRows (a wire crossing),
MixColumns (a linear diffusion layer), and finally AddRoundKey (a bitwise XOR
of the round key). The round keys are generated from the secret key by means
of an expansion routine that re-uses the S-box used in SubBytes. For low-cost
application, the typical choice is to support only the key size of 128 bits.

DESL, DESX, and DESXL [15] are lightweight variants of the DES cipher.
For the L-variant, all eight DES S-boxes are replaced by a single S-Box with
well chosen characteristics to resist known attacks against DES. Additionally
the initial permutation (IP ) and its inverse (IP−1) are omitted, because they
do not provide additional cryptographic strength. The X-variant includes an
additional key whitening of the form: DESXk,k1,k2(x) = k2 ⊕ DESk(k1 ⊕ x).
DESXL is the combination of both variants. The main goal of the developer was
a low gate count in hardware implementations as for the original DES.

HIGHT [13] is a hardware-oriented block cipher designed for low-cost and low-
power applications. It uses 64-bit blocks and 128-bit keys. HIGHT is a variant
of the generalized Feistel network and is only composed of simple operations:
XOR, mod 28 additions and bitwise rotations. Its key schedule consists of two
algorithms: one generating whitening key bytes for initial and final transforma-
tions; the other one for generating subkeys for the 32 rounds. Each subkey byte
is the result of a mod 28 addition between a master key byte and a constant
generated using a linear feedback shift register.

IDEA [14] is a patented cipher whose patent expired in May 2011 (in all coun-
tries with a 20 year term of patent filing). Its underlying Lai-Massey construction
does not involve an S-box or a permutation network such as in other Feistel or
common SPN ciphers. Instead, it interleaves mathematical operations from three
different groups to establish security, such as addition modulo 216, multiplication
modulo 216 + 1 and addition in GF(216) (XOR). IDEA has a 128-bit key and
64-bit input and output. A major drawback of its construction is the inverse
key schedule that requires the complex extended Euclidean algorithm during
decryption. For efficient implementation, this complex key schedule needs to be
precomputed and stored in memory.

KASUMI [3] is a block cipher derived from MISTY1 [18]. It is used as a
keystream generator in the UMTS, GSM, and GPRS mobile communications
systems. It has a 128-bit key and 64-bit input and output. The core of KASUMI is
an eight-round Feistel network. The round functions in the main Feistel network
are irreversible Feistel-like network transformations. The key scheduling is done
by bitwise rotating the 16-bit subkeys or XORing them with a constant. There
are two S-boxes, one 7 bit and the other 9 bit.



KATAN and KTANTAN [6] are two families of hardware-oriented block
ciphers. They have 80-bit keys and a block size of either 32, 48 or 64 bits. The
cipher structure resembles that of a stream cipher, consisting of shift registers
and non-linear feedback functions. A LFSR counter is used to protect against
slide attacks. The difference between KATAN and KTANTAN lies in the key
schedule. KTANTAN is intended to be used with a single key per device, which
can then be burnt into the device. This allows KTANTAN to achieve a smaller
footprint in a hardware implementation. In the following, we considered the
implementation of KATAN with 64-bit block size.

KLEIN [12] is a family of lightweight software oriented block ciphers with
64-bit plaintexts and variable key length (64, 80 or 96 bits - our performance
evaluations focus on the 80-bit version). It is primarily designed for software im-
plementations in resource-constrained devices such as wireless sensors and RFID
tags, but its hardware implementation can be compact as well. The structure
of KLEIN is a typical Substitution-Permutation Network (SPN) with 12/16/20
rounds for KLEIN-64/80/96 respectively. One round transformation consists of
four operations AddRoundKey, SubNibbles (4-bit involutive S-box), RotateNib-
bles and MixNibbles (borrowed from AES MixColumns). The key schedule of
KLEIN has a Feistel-like structure. It is agile even if keys are frequently changed
and is designed to avoid potential related-key attacks.

mCrypton [16] is another block cipher designed for resource-constrained de-
vices such as RFID tags and sensors. It uses a block length of 64 bits and a
variable key length of 64, 96 and 128 bits. In this paper, we implemented the
variant with a 96-bit key. mCrypton consists of an AES-like round transforma-
tion (12 rounds) and a key schedule. The round transformation operates on a
4×4 nibble array and consists of a nibble-wise non-linear substitution, a column-
wise bit permutation, a transposition and a key-addition step. The substitution
step uses four 4-bit S-boxes. Encryption and decryption have almost the same
form. The key scheduling algorithm generates round keys using non-linear S-box
transformations, word-wise rotations, bit-wise rotations and a round constant.
The same S-boxes are used for the round transformation and key scheduling.

NOEKEON [7] is a block cipher with a key length and a block size of 128
bits. The block cipher consists of a simple round function based only on bit-wise
Boolean operations and cyclic shifts. The round function is iterated 16 times for
both encryption and decryption. Within each round, a working key is XORed
with the data. The working key is fixed during all rounds and is either the cipher
key itself (direct mode) or the cipher key encrypted with a null string. The self-
inverse structure of NOEKEON allows to efficiently combine the implementation
of encryption and decryption operation with only little overhead.

PRESENT [5] is a hardware-oriented lightweight block cipher designed to
meet tight area and power restrictions. It features a 64-bit block size and 80-bit
or 128-bit key size (we focus on the 80-bit variant). PRESENT implements a
substitution-permutation network and iterates 31 rounds. The permutation layer



consists only of bit permutations (i.e. wire crossings). Together with the tiny 4-
bit S-box, the design enables minimalistic hardware implementations. The key
scheduling consists of a single S-box lookup, a counter addition and a rotation.

SEA [19] is a scalable family of encryption algorithms, defined for low-cost
embedded devices, with variable bus sizes and block/key lengths. In this paper,
we implemented SEA96,8, i.e. a version of the cipher with 96-bit blocks and keys.
SEA is a Feistel cipher that exploits rounds with 3-bit S-boxes, a diffusion layer
made of bit and word rotations and a mod 2n key addition. Its key scheduling
is based on rounds similar to the encryption ones and is designed such that keys
can be derived “on-the-fly” both in encryption and decryption.

TEA [21] is a 64-bit block cipher using 128-bit keys (although equivalent keys
effectively reduce the key space to 2126) . TEA stands for Tiny Encryption Al-
gorithm and, as the name says, this algorithm was built with simplicity and ease
of implementation in mind. A C implementation of the algorithm corresponds
to about 20 lines of code, and involves no S-box. TEA has a 64-round Feistel
structure, each round being based on XOR, 32-bit addition and rotation. The
key schedule is also very simple, alternating the two halves of the key at each
round. TEA is sensitive to related-key attacks using 223 chosen plaintexts and
one related-key query, with a time complexity of 232.

3 Methodology and Metrics

In order to be able to compare the performances of the different ciphers in terms
of speed, memory space and energy, the developers were asked to respect a list
of common constraints, detailed hereunder.

1. The code has to be written in assembly, in a single file. It has to be com-
mented and easily readable, for example, giving the functions the name they
have in their original specifications.

2. The cipher has to be implemented in a low-cost way, minimizing the code
size and the data-memory use.

3. Both encryption and decryption routines have to be implemented.
4. Whenever possible, and in order to minimize the data-memory use, the key

schedule has to be computed “on-the-fly”. The computation of the key sched-
ule is always included in the algorithm evaluations.

5. The encryption process should start with plaintext and key in data memory.
The ciphertext should overwrite the plaintext at the end of this process (and
vice versa for decryption).

6. The target device is an 8-bit microcontroller from the ATMEL AVR device
family, more precisely the ATtiny45. It has a reduced set of instructions and,
e.g. has no hardware multiplier.

7. The encryption and decryption routines are called by a common interface.

The SEA reference code was sent as an example to all designers, together with
the common interface (also provided on [1]).



The basic metrics considered for evaluation are code size, number of RAM
words, cycle count in encryption and decryption and energy consumption. From
these basic metrics, a combined metric was extracted (see Section 6). For the
energy-consumption evaluations, each cipher has been flashed in an ATtiny45
mounted on a power-measurement board. A 22 Ohms shunt resistor was inserted
between the Vdd pin and the 5V power supply, in order to measure the current
consumed by the controller while encrypting. The common interface generates
a trigger at the beginning of each encryption, and a second one at the end of
each of them. The power traces were measured between those two triggers by our
oscilloscope through a differential probe. The plaintexts and keys were generated
randomly for each encryption. One hundred encryption traces were averaged for
each energy evaluation. The average energy consumed by an encryption has been
deduced afterwards, by integrating the measured current.

Note finally that, as mentioned in introduction, the 12 ciphers were imple-
mented by 12 different designers, with slightly different interpretations of the
low-cost optimizations. As a result, some of the guidelines were not always fol-
lowed, because of the cipher specifications making them less relevant. In particu-
lar, the following exceptions deserve to be mentioned. (1) The key scheduling of
IDEA is not computed “on-the-fly” but precomputed (as explained in Section 2).
(2) The key in KATAN has to be restored externally for subsequent invocations.
(3) The 4-bit S-boxes of KLEIN, mCrypton, PRESENT were implemented as
8-bit tables (because of a better memory vs. speed tradeoff).

4 Description of the ATtiny45 Microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. The
microcontroller uses a Harvard architecture with separate instruction and data
memory. Instructions are stored in a 4 kB Flash memory (2048× 16 bits). Data
memory involves the 256-byte static RAM, a register file with 32 8-bit general-
purpose registers, and special I/O memory for peripherals like timer, analog-
to-digital converter or serial interface. Different direct and indirect addressing
methods are available to access data in RAM. Especially indirect addressing
allows accessing data in RAM with very compact code size. Moreover, the AT-
tiny45 has integrated a 256-bytes EEPROM for non-volatile data storage.

The instruction-set of the microcontroller contains 120 instructions which
are typically 16-bits wide. Instructions can be divided into arithmetic logic unit
(ALU) operations (arithmetic, logical, and bit operations) and conditional and
unconditional jump and call operations. The instructions are processed within
a two-stage pipeline with a pre-fetch and an execute phase. Most instructions
are executed within a single clock cycle, leading to a good instructions-per-
cycle ratio. Compared to other microcontrollers from ATMEL’s AVR series such
as the ATmega devices, the ATtiny45 has a reduced instruction set (e.g. no
multiply instruction), smaller memories (Flash, RAM, EEPROM), no in-system
debug capability, and less peripherals. However, the ATtiny45 has lower power
consumption and is cheaper in price.



5 Implementation Details

AES Rijndael. The code was written following the standard specification and
operates on a state matrix of 16 bytes. In order to improve performance, the
state is stored into 16 registers, while the key is stored in RAM. Also, 5 tempo-
rary registers are used to implement the MixColumn steps. The S-box and the
round constants were implemented as simple look-up tables. The multiplication
operation needed in the MixColums is computed with shift and XOR instructions.

DESXL. In order to keep code size small, we wrote a function which can com-
pute all permutations and expansions depending on the calling parameters. This
function is also capable of writing six bit outputs for direct usage as S-box in-
put. Because of the bit-oriented structure of the permutations which are slow
in software, this function is the performance bottleneck of the implementation.
The rest of the code is straightforward and is written according to the specifi-
cation. Beside the storage for plain/ciphertext and the keys k, k1, k2, additional
16 bytes of RAM for the round key and the state are required. The S-box and
all permutation and expansion tables are stored in Flash memory and processed
directly from there.

HIGHT. The implementation choices were oriented in order to limit the code
size. First, the intermediate states are stored in RAM at each round, and only
two bytes of text and one byte of key are loaded at a time. This way, it is possible
to re-use the same code fragment four times per round. Next, the byte rotation
at the output of the round function is integrated in the memory accesses of the
surrounding functions, in order to save temporary storage and gain cycles. Eight
bytes of the subkeys are generated once every two rounds, and are stored in
RAM. Finally, excepted for the mod 28 additions that are replaced by mod 28

subtractions and some other minor changes, decryption uses the same functions
as encryption.

IDEA. This cipher was implemented including a precomputed key schedule
performed by separate functions for encryption and decryption, respectively,
prior the actual cipher operation. During cipher execution the precomputed key
(104 bytes) is then read byte by byte from the RAM. The plaintext/ciphertext
and the internal state are kept completely in registers (using 16 registers) and
9 additional registers are used for temporary computations and counters. IDEA
requires a 16-bit modular multiplication as basic operation. However, in the
AVR device used in this work, no dedicated hardware multiplier unit is available.
Multiplication was therefore emulated in software resulting in a data-dependent
execution time of the cipher operation and an increased cycle count (about
a factor of 4) compared to an implementation for a device with a hardware
multiplier. Note that IDEA’s multiplication is special and maps zero as any
input to 216 (which is equivalent to −1 mod 216 + 1). Therefore, whenever a
zero is detected as input to the multiplication, our implementations returns the
additive inverse of the other input, reduced modulo 216 + 1.



KASUMI. The code was written following the functions described in the cipher
specifications. During the execution, the 16-byte key remains stored in the RAM,
as well as the 8-byte running state. This allows using only 12 registers and
24 bytes of RAM. Some rearrangements were done to skip unnecessary moves
between registers. The 9-bit S-box was implemented in an 8-bit table, with the
MSBs concatenated in a secondary 8-bit table. The 7-bit S-box was implemented
in an 8-bit table, wasting the MSBs in the memory. The round keys are derived
“on-the-fly”. Decryption is very similar to encryption, as usual for a Feistel
structure.

KATAN-641. The main optimization goal was to limit the code size. The en-
tire state of the cipher is kept in registers during operation. To avoid excessive
register pressure, the in- and outputs are stored in RAM, and this RAM space
is used to backup the register contents during operation. Only three additional
registers need to be stored on the stack. The fact that three rounds of KATAN
can be run in parallel was not used in this implementation. Doing so would re-
quire more complicated shifting and masking to extract bits from the state, and
thus significantly increase the code size, for little or no performance gain. As the
KATAN key schedule is computed “on-the-fly”, the key in RAM is clobbered and
needs to be restored externally for subsequent invocations. Keeping the master
key in RAM would require 10 additional words (note that the KTANTAN key
schedule does not modify the key, so it does not have this limitation). In order
to implement the non-linear functions efficiently, addition instructions were used
to compute several logical AND’s and XOR’s in parallel through carefully posi-
tioning the input bits and using masking to avoid undesired carry propagation.

KLEIN-80. Despite the goal of small memory footprint, the 4-bit involutive
S-box is stored as an 8-bit table for saving clock cycles. As it can be used in
both encryption and decryption, this corresponds to a natural tradeoff between
code size and processing speed (a similar choice is made for mCrypton and
PRESENT, see the next paragraphs). To save memory usage during processing,
the MixNibbles step (borrowed from AES MixColumns) is implemented by a
single function without using lookup tables. Overall, 29 registers are used during
the computations. Among them, 8 registers correspond to the intermediate state,
10 to the key scheduling, 9 registers are used for temporary storage and two for
the round counter.

mCrypton. The reference code directly follows the cipher specification. The
implementation aims for a limited code size. Therefore, we tried to reuse as
much code as possible for decryption and encryption. In addition, we used up
to 20 registers during the computations to reduce the cycle count. 12 registers
are used to compute the intermediate state and the key scheduling, 6 registers
for temporary storage, one for the current key scheduling constant and one for
the round counter. After each round the modified state and key scheduling state

1 All six variants of the KATAN/KTANTAN family are supported via conditional
assembly. Our performance evaluations only focus on the 64-bit version of KATAN.



are stored in RAM. The round key is derived from the key scheduling state and
is temporarily stored in RAM. The four 4-bit S-boxes are stored in four 8-bit
tables, wasting the 4 most significant bits of each entry, but saving cycle counts.
The constants used in the key scheduling algorithm are stored in an 8-bit table.

NOEKEON. The implementation aims to minimize the code size and the num-
ber of utilized registers. During execution of the block cipher, input data and
cipher key are stored in the RAM (32 bytes are required). In that way, only 4
registers are used for the running state, one register for the round counter, and
three registers for temporary computations. The X-register is used for indirect
addressing of the data in the RAM. Similar to the implementation of SEA (de-
tailed below), using more registers for the running state will decrease the cycle
count, but will also increase the code size because of a less generic program-
ming. For decrypting data, the execution sequence of the computation functions
is changed, which leads only to a very small increase in code size.

PRESENT. The implementation is optimized in order to limit the code size
with throughput as secondary criteria. State and round key are stored in the
registers to minimize accesses to RAM. The S-boxes are stored as two 256-byte
tables, one for encryption and one for decryption. This allows for two S-box
lookups in parallel. However, code size can easily be reduced if only encryption
or decryption is performed. A single 16-byte table for the S-boxes could halve
the overall code size, but would significantly impact encryption times. The code
for permutation, which is the true performance bottleneck, can be used for both
encryption and decryption.

SEA. The reference code was written following directly the cipher specifications.
During its execution, plaintexts and keys are stored in RAM (accounting for a
total of 24 bytes), limiting the register consumption to 6 registers for the running
state, one register for the round counter and three registers of temporary storage.
Note that higher register consumption would allow decreasing the cycle count
at the cost of a less generic programming. The S-box was implemented using
its bitslice representation. Decryption uses exactly the same code as encryption,
with “on-the-fly” key derivation in both cases.

TEA. Implementing TEA is almost straightforward due to the simplicity of
the algorithm. The implementation was optimized to limit the RAM usage and
code size. As far as RAM is concerned, we only use the 24 bytes needed for
plaintext and key storage, with the ciphertext overwriting the plaintext in RAM
at the end of the process. The only notable issue regarding implementing TEA
concerns rotations. TEA was optimized for a 32-bit architecture and the fact that
only 1-position shift and rotations are available on the ATtiny, plus the need to
propagate carries, made these operations slightly more complex. In particular,
5-position shifts were optimized by replacing them by a 3-position shift in the
opposite direction and recovering boundary carries. Nonetheless, TEA proved to
be very easy to implement, resulting in a compact code of 648 bytes.



6 Performance Evaluation

We considered 6 different metrics: code size (in bytes), RAM use (in bytes),
cycle count in encryption and decryption, energy consumption and a combined
metric, namely the code size × cycle count product, normalized by the block
size. The results for our different implementations are given in Figures 2, 3, 4,
5, 6, 7 (all given in appendix). We detail a few meaningful observations below.

First, as our primary goal was to consider compact implementations, we
compared our code sizes with the ones listed in [10]. As illustrated in Figure 1,
we reduced the memory footprint for most investigated ciphers, with specially
strong improvements for DESXL, HIGHT and SEA.

Next, the code sizes of our new implementations are in Figure 2. The fron-
trunners are HIGHT, NOEKEON, SEA and KATAN (all take less than 500
bytes of ROM). One can notice the relatively poor performances of mCrypton,
PRESENT and KLEIN. This can in part be explained by the hardware-oriented
flavor of these ciphers (e.g. the use of bit permutations or manipulation of 4-bit
nibbles is not optimal in 8-bit microcontrollers). As expected, standard ciphers
such as the AES and KASUMI are more expensive, but only up to a limited
extent (both are implemented in less than 2000 bytes of ROM).

The RAM use in Figure 3 first exhibits the large needs of IDEA regarding this
metric (232 words) that are essentially due to the need to store a precomputed
key schedule for this cipher. Besides, and following our design guidelines, this
metric essentially reflects the size of the intermediate state that has to be stored
during the execution of the algorithms. Note that for the AES, this is in contrast
with the “Furious” implementation in [2], that uses 192 bytes of RAM (it also
explains our slightly reduced performances for this cipher).

The cycle count in Figure 4 clearly illustrates the performance loss that
is implied by the use of simple round functions in most lightweight ciphers.
This loss is critical for DESXL and KATAN where the large number of round
iterations lead to cycle counts beyond 50,000 cycles. It is also large for SEA,
NOEKEON and HIGHT. By contrast, these metrics show the excellent efficiency
of the AES Rijndael. Cycle count for decryption (Figure 5) shows similar results,
with noticeable changes. Most visibly, IDEA decryption is much less efficient
than its encryption. The AES also shows non-negligible overhead to decrypt. By
contrast, a number of ciphers behave identically in encryption and decryption,
e.g. SEA where the two routines are almost identical.

As expected, the energy consumption of all the implemented ciphers (Fig-
ure 6) is strongly correlated with the cycle count, confirming the experimental
results in [9]. However, slight code dependencies can be noticed. It is an interest-
ing scope for research to investigate whether different coding styles can further
impact the energy consumption and to what extent.

Eventually, the combined metric in Figure 7 first shows the excellent size vs.
performance tradeoff offered by the AES Rijndael. Among the low-cost ciphers,
NOEKEON and TEA exhibit excellent figures as well, probably due to their
very simple key scheduling. This comes at the cost of possible security concerns



regarding related-key attacks. HIGHT and KLEIN provide a good tradeoff be-
tween code size and cycle count. A similar comment applies to SEA, where parts
of the overhead comes from a complex key scheduling algorithm (key rounds
are as complex as the rounds for this cipher). Despite their hardware-oriented
nature, PRESENT and mCrypton offer decent performance in 8-bit devices as
well. KATAN falls a bit behind, mainly because of its very large cycle count.
Only DESXL appears not suitable for such an implementation context.

7 Conclusion

This paper reported on an initiative to evaluate the performance of different
standard and lightweight block ciphers on a low cost micro-controller. 12 different
ciphers have been implemented with compactness as main optimization criteria.
Their source code is available on a webpage, under an open-source license. Our
results improve most prior work obtained for similar devices. They highlight the
different tradeoffs between code size and cycle count that is offered by different
algorithms. They also put forward the weaker performances of ciphers that were
specifically designed with hardware performance in mind. Scopes for further
research include the extension of this work towards more algorithms and the
addition of countermeasures against physical attacks.

Acknowledgements. This work has been funded in part by the European Com-
mission’s ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP pro-
gram P6/26 BCRYPT, by the ERC project 280141 (acronym CRASH), by the
7th framework European project TAMPRES, by the Walloon region’s S@T Sky-
win, MIPSs and NANOTIC-COSMOS projects. Stéphanie Kerckhof is a PhD
student funded by a FRIA grant, Belgium. F.-X. Standaert is a Research As-
sociate of the Belgian Fund for Scientific Research (FNRS-F.R.S). Zheng Gong
is supported by NSFC (No. 61100201). The authors would like to thank Svetla
Nikova for her help regarding the implementation of the block cipher KLEIN.

References

1. http://perso.uclouvain.be/fstandae/lightweight ciphers/.
2. http://point-at-infinity.org/avraes/.
3. 3rd Generation Partnership Project. Technical specification group services and

system aspects, 3g security, specification of the 3gpp confidentiality and integrity
algorithms, document 2: Kasumi specification (release 10), 2011.

4. ATMEL. Avr 8-bit microcontrollers, http://www.atmel.com/products/avr/.
5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-

shaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher.
In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727 of LNCS, pages
450–466. Springer, 2007.

6. C. D. Cannière, O. Dunkelman, and M. Knezevic. Katan and ktantan - a family
of small and efficient hardware-oriented block ciphers. In C. Clavier and K. Gaj,
editors, CHES, volume 5747 of LNCS, pages 272–288. Springer, 2009.



7. J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Nessie proposal: NOEKEON,
2000. Available online at http://gro.noekeon.org/Noekeon-spec.pdf.

8. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

9. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the energy cost
of communication and cryptography in wireless sensor networks. In WiMob, pages
580–585. IEEE, 2008.

10. T. Eisenbarth, S. S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A survey
of lightweight-cryptography implementations. IEEE Design & Test of Computers,
24(6):522–533, 2007.

11. K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and comprehensive methodology
for comparing hardware performance of fourteen round two sha-3 candidates using
fpgas. In Mangard and Standaert [17], pages 264–278.

12. Z. Gong, S. Nikova, and Y.-W. Law. Klein: A new family of lightweight block
ciphers. to appear in the proceedings of RFIDsec 2011.

13. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. Hight: A new block cipher suitable for
low-resource device. In L. Goubin and M. Matsui, editors, CHES, volume 4249 of
LNCS, pages 46–59. Springer, 2006.

14. X. Lai and J. L. Massey. A proposal for a new block encryption standard. In
EUROCRYPT, pages 389–404, 1990.

15. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New lightweight des vari-
ants. In A. Biryukov, editor, FSE, volume 4593 of LNCS, pages 196–210. Springer,
2007.

16. C. H. Lim and T. Korkishko. mcrypton - a lightweight block cipher for security of
low-cost rfid tags and sensors. In J. Song, T. Kwon, and M. Yung, editors, WISA,
volume 3786 of LNCS, pages 243–258. Springer, 2005.

17. S. Mangard and F.-X. Standaert, editors. Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of LNCS. Springer, 2010.

18. M. Matsui. New block encryption algorithm misty. In E. Biham, editor, FSE,
volume 1267 of LNCS, pages 54–68. Springer, 1997.

19. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. Sea: A scal-
able encryption algorithm for small embedded applications. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, CARDIS, volume 3928 of LNCS, pages
222–236. Springer, 2006.

20. C. Wenzel-Benner and J. Gräf. Xbx: external benchmarking extension for the
supercop crypto benchmarking framework. In Mangard and Standaert [17], pages
294–305.

21. D. J. Wheeler and R. M. Needham. Tea, a tiny encryption algorithm. In B. Preneel,
editor, FSE, volume 1008 of LNCS, pages 363–366. Springer, 1994.



Fig. 1. Code size: comparison with previous work [10].

Fig. 2. Performance evaluation: code size.



Fig. 3. Performance evaluation: RAM use.

Fig. 4. Performance evaluation: cycle count (encryption).



Fig. 5. Performance evaluation: cycle count (decryption).

Fig. 6. Performance evaluation: energy consumption.



Fig. 7. Performance evaluation: combined metric.


