
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Compact Message Permutation for a
Fully Pipelined BLAKE-256/512
Accelerator
HOAI LUAN PHAM1, THI HONG TRAN2,VU TRUNG DUONG LE1, and YASUHIKO
NAKASHIMA1
1Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
2Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan

Corresponding author: Thi Hong Tran (e-mail: hong@osaka-cu.ac.jp).

This work was supported by the Japan Science and Technology Agency (JST) under a Strategic Basic Research Programs PRESTO
(Precursory Research for Embryonic Science and Technology), Grant number JPMJPR20M6.

ABSTRACT
Developing a low-cost and high-performance BLAKE accelerator has recently become an attractive research
trend because the BLAKE algorithm is important in widespread applications, such as cryptocurrencies, data
security, and digital signatures. Unfortunately, the existing BLAKE circuits are limited in performance and
hardware efficiency. Therefore, this paper introduces the first fully pipelined BLAKE-256/512 accelerator to
improve throughput and hardware efficiency. Moreover, based on the rates of changed words in consecutive
message inputs, a compact message permutation scheme is proposed to reduce the area and energy
consumption of the fully pipelined BLAKE-256/512 accelerator. To achieve these goals, the compact
message permutation scheme includes two novel optimization techniques: register optimization, reducing
the number of registers used by over 80% compared to conventional message permutation in a theoretical
evaluation, and XOR optimization, decreasing the number of XOR gates by 93.8%. An ASIC-based
experiment shows that the proposed compact message permutation scheme helps reduce the area and power
consumption by up to 11.35% and 21.10%, respectively, for the fully pipelined BLAKE-256 accelerator and
by up to 9.86% and 20.32%, respectively, for the fully pipelined BLAKE-512 accelerator. The correctness
of the compact message permutation scheme is verified on a real hardware platform (an Alveo U280 FPGA).

INDEX TERMS Blockchain mining, FPGA, GPU, BLAKE, fully pipelined.

I. INTRODUCTION

THE National Institute of Standards and Technology
(NIST) launched the SHA-3 competition to select one

or more new hash algorithms with better efficiency and
resilience to future attacks to supersede the older SHA-1
and SHA-2 algorithms. In the third round of the competi-
tion, only five algorithms were chosen from among the 51
candidates, and one of these five finalists was the BLAKE
algorithm. Similar to SHA-2, BLAKE is also a family of hash
functions, namely, BLAKE-224, BLAKE-256, BLAKE-384,
and BLAKE-512, of which BLAKE-256 and BLAKE-512
are the most widely used. Today, the BLAKE functions are
usually applied in generic security applications, such as hash-
based radio frequency identification (RFID) security proto-
cols [1], hash-based message authentication [2], [3], pass-
word encryption [4], JPEG image encryption [5], and digital

signatures [6]. Beyond such generic applications, BLAKE-
256 and BLAKE-512 are currently used for the blockchain
mining process in many famous cryptocurrencies, such as
Decred [7] and Dash [8].

In generic applications such as network security, typi-
cal client devices are sufficiently powerful only to execute
relatively few hash calculations, while servers need high-
performance BLAKE hardware to perform a large number of
hash computations to serve requests from clients. In addition,
in blockchain mining, miners need ultrahigh-performance
BLAKE circuits to maintain the security of the blockchain
network and gain additional profits. Therefore, developing a
high-performance and hardware-efficient BLAKE circuit has
recently become an attractive research trend.

Many studies have proposed various BLAKE architec-
tures based on field-programmable gate arrays (FPGAs) and

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

application-specific integrated circuits (ASICs) to improve
performance and power consumption. For example, to en-
sure suitability for power-constrained environments such as
wireless sensor networks or RFID systems, the authors of
[9]–[13] proposed compact BLAKE architectures to optimize
area and energy consumption. Specifically, the authors of
[9] explored shift-register-based compact hardware architec-
tures for the BLAKE functions to minimize area and energy
consumption. Furthermore, [10], [11] introduced a compact
BLAKE implementation that used a small arithmetic and
logic unit (ALU) embedded with all the required operators
in parallel and distributed random access memory (RAM) to
store intermediate values, message blocks, and constants. In
[12], [13], an ALU with a four-stage pipeline was designed
by harnessing the intrinsic parallelism of the algorithm to
interleave the calculation of four instances of the Gi func-
tion, thereby significantly reducing the area of the BLAKE
circuit. However, despite their advantages of low power and
small areas, the compact architectures in [9]–[13] had to
accept extremely high latency as a trade-off, resulting in
very low throughput. In other BLAKE architectures, spe-
cific processor-oriented hardware implementations for the
BLAKE functions have been proposed to accelerate perfor-
mance and reduce area costs [14], [15]. Although the proces-
sors in [14], [15] were significantly improved in terms of the
critical path, those processors still delivered low throughput
because of the need to execute numerous instructions to per-
form a single hash computation. To improve throughput, the
authors of [16]–[27] proposed round-transformation BLAKE
architectures, which can perform several rounds to generate
a hash output. However, the BLAKE architectures in [16]–
[27] are still limited in throughput because of their high
latency. Overall, the main problem with previous BLAKE
architectures is poor performance, making them inefficient
to apply in servers that must perform large amounts of hash
computations or support modern high-performance applica-
tions such as blockchain mining.

To address the problems with related works, this paper
introduces the first fully pipelined BLAKE-256/512 accel-
erator, which can generate one hash value per clock cycle.
Although this fully pipelined BLAKE-256/512 accelerator
shows outstanding advantages in terms of performance and
hardware efficiency, it still suffers from a large area cost and
high energy consumption. Therefore, optimizing the area and
power consumption is necessary to compensate for the disad-
vantages of the fully pipelined BLAKE-256/512 accelerator.

In this study, we propose a new approach to reducing the
hardware cost and power consumption of the fully pipelined
BLAKE-256/512 accelerator. In particular, we classify the
sixteen message words of consecutive message inputs into
three groups in terms of the word change rate: frequently
changed words (CW-2), infrequently changed words (CW-1),
and unchanged words (CW-0). Based on the characteristics
of CW-1 and CW-0 words, we propose a compact message
permutation scheme that significantly reduces the hardware
cost required for the message permutation computations of

FIGURE 1. High-level diagram of the proposed system.

the BLAKE-256/512 functions. Accordingly, the proposed
compact message permutation scheme includes two new
optimization techniques, namely, register optimization and
XOR optimization, which greatly reduce the numbers of reg-
isters and XOR gates needed as the number of CW-1 or CW-0
words increases. Experimental results on an ASIC prove that
this compact message permutation scheme helps significantly
reduce the area and power consumption of the fully pipelined
BLAKE-256/512 accelerator as the number of CW-1 or
CW-0 words increases, thereby considerably improving both
area efficiency and energy efficiency. We have verified the
correctness of the compact message permutation scheme on a
Xilinx Alveo U280 FPGA. Moreover, experiments on several
FPGA boards show that the fully pipelined BLAKE-256/512
accelerator with the proposed compact message permutation
scheme is far superior to related works in terms of throughput
and area efficiency.

The remainder of this paper is organized as follows. Sec-
tion II presents the research background. Section III describes
our proposed compact message permutation scheme in detail.
Section IV reports our evaluations on the basis of theory
as well as ASIC and FPGA experiments. Finally, Section V
concludes the paper.

II. BACKGROUND
A. IMPORTANCE OF A HIGH-PERFORMANCE BLAKE
ACCELERATOR
To clarify the importance of a high-performance BLAKE
accelerator, we analyze a real-world BLAKE application,
namely, the cryptocurrency Decred. Concretely, miners in
the Decred network use BLAKE-256 to perform hash com-
putations for block headers as a proof of work (PoW) to
find a valid block and receive a reward. This process is
commonly called blockchain mining. Fig. 1 illustrates the
BLAKE-256 architecture for Decred mining, which includes
three BLAKE-256 blocks named BLAKE-2560, BLAKE-
2561, and BLAKE-2562. Specifically, the message inputs to
BLAKE-2560, BLAKE-2561, and BLAKE-2562 are three
chunks of 512-bit data, including 1,440 bits of block header
information and 96 bits of padding [28]. In Decred min-
ing, the two 512-bit message pieces provided as input to

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 1. Parameters of the BLAKE functions. All sizes are given in bits.

Parameter BLAKE-224 BLAKE-256 BLAKE-384 BLAKE-512

Digest size (D) 224 256 384 512

Block size (B) 512 512 1024 1024

Message size (M) < 264 < 264 < 2128 < 2128

Word size (W) 32 32 64 64

Salt size (S) 128 128 256 256

Round (R) 10/14 8/10/14 14/16 14/16

BLAKE-2560 and BLAKE-2561 are not frequently changed
because they do not include the 32-bit nonce field. Accord-
ingly, BLAKE-2560 and BLAKE-2561 need to be executed
only once per mining task in the software implementation.
Conversely, the 512-bit message input to BLAKE-2562 is
updated frequently because miners must scan all 232 possible
nonce values to find a hashing output smaller than the target.
It has been reported for the Decred network that the BLAKE-
2562 computation must be performed up to 4×1017 times on
average to successfully discover a valid nonce. Therefore, a
high-performance accelerator for the BLAKE-2562 compu-
tation is necessary to quickly find a valid nonce value.

In addition to BLAKE-256, the BLAKE-512 function is
also used for the blockchain mining process in many current
cryptocurrencies, such as Dash. Accordingly, a BLAKE-512
circuit with a high processing rate is also needed to speed
up blockchain mining for miners. Overall, the development
of high-performance BLAKE accelerators has become a re-
search trend in recent years.

B. BLAKE ALGORITHM
Before developing a high-performance BLAKE accelerator,
we first investigate the details of the BLAKE algorithm.
Specifically, the BLAKE algorithm is built based on a combi-
nation of three previously analyzed and reliable components
selected by Aumasson et al. [30], including the HAsh Iter-
ative FrAmework (HAIFA) of Biham and Dunkelman [29],
the internal structure of the LAKE hash function [31], and the
modified version of the ChaCha function presented by Bern-
stein [32]. The BLAKE algorithm is a family of four hash
functions, namely, BLAKE-224, BLAKE-256, BLAKE-384,
and BLAKE-512, as shown in Table 1. Since BLAKE-256
and BLAKE-512 are the most widely used of these functions,
this study focuses only on BLAKE-256 and BLAKE-512. To
distinguish the variants of the BLAKE-256 and BLAKE-512
functions with different numbers of rounds, we denote the
BLAKE-256 function with 8, 10, and 14 rounds by BLAKE-
256r8, BLAKE-256r10, and BLAKE-256r14, respectively,
and the BLAKE-512 function with 14 and 16 rounds by
BLAKE-512r14 and BLAKE-256r16, respectively.

Algorithm 1 shows the pseudocode for the BLAKE-
256/512 functions, where the values of B, M , W , S, and R
are given in Table 1. The calculations of BLAKE-256/512 for
a given message input include three steps: padding, message

Algorithm 1 Hash = BLAKE-256/512(Message)
1: BLAKE-256:
2: M consists of N 512-bit padded blocks.
3: H0

[0:7]: 32-bit square root of the first 8 primes.
4: C[0:15]: sixteen 32-bit constants.
5: BLAKE-512:
6: M consists of N 1024-bit padded blocks.
7: H0

[0:7]: 64-bit square root of the first 8 primes.
8: C[0:15]: sixteen 64-bit constants.
9: T[0:1] = t0, t1 (counter [29])

10: L = Length_in_bit(Message)
11: Padding:
12: k = B - (1 + W + (L mod B))
13: Pad = {1, zeros(1,k-1), 1, L}
14: M[0:N−2] = message[0:((N-2)×B)-1]
15: MN−1 = {message[(N-2)×B:L-1], Pad}
16: for t← 0 to (N-1) do
17: V[0:15] = Initialization(Ht, S, T , C[0:7])
18: W[0:15] = Mt

19: for r← 0 to (R-1) do
20: Permutation:
21: r′ ← (r ≡ 10)
22: for i← 0 to 7 do
23: W ′i = Wσr′ (2i)

⊕ Cσr′ (2i+1)

24: W ′i+1 = Wσr′ (2i+1)⊕ Cσr′ (2i)

25: end for
26: Compression:
27: G0(V0, V4, V8, V12, W ′0, W ′1)
28: G1(V1, V5, V9, V13, W ′2, W ′3)
29: G2(V2, V6, V10, V14, W ′4, W ′5)
30: G3(V3, V7, V11, V15, W ′6, W ′7)
31: G4(V0, V5, V10, V15, W ′8, W ′9)
32: G5(V1, V6, V11, V12, W ′10, W ′11)
33: G6(V2, V7, V8, V13, W ′12, W ′13)
34: G7(V3, V4, V9, V14, W ′14, W ′15)
35: end for
36: Ht+1 = Finalization(V[0:15], Ht, S)
37: end for
38: return Hash = H(N−1)

permutation, and message compression.
Padding: Padding is performed to construct the last block

such that it has the same size as the other blocks. Specifically,
if the original message contains L bits, then a "1" bit is
appended first, the following k bits are "0" bits, and another
"1" bit and the length L are appended as the last bits. The
padded message is then divided into N blocks (M[0:N−1]) of
B bits.

Message permutation: After padding, each of the N
blocks is subjected to message permutation processing. First,
each block is separated into sixteen chunks of 32/64-bit
words (denoted by Wi, 0≤i≤15). In each round, the sixteen
Wi are permuted and then subjected to XOR computations
with sixteen constants. The permutations of the sixteen Wi

and the sixteen constants are parameterized by the round in-

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 2. Permutations used by the BLAKE functions (reprinted from []).

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

dex σr′ , as shown in Table II. The sixteen XOR computations
between the Wi and the constants return sixteen 32/64-bit
permuted words (denoted by W ′i , 0≤i≤15).

Message compression: Essentially, the message compres-
sion process compresses the R chunks of sixteen W ′i ob-
tained in the message permutation step into a 256/512-bit
hash output. First, sixteen internal states (denoted by Vi,
0≤i≤15) are initialized by the initialization() function. Af-
terward, the sixteen internal states V0, ..., V15 are computed
and updated based on eight G-functions (denoted by Gj ,
0≤j≤7) through R rounds. Then, the hash output (Ht+1)
is updated by the finalization() function. Once the message
permutation and compression processes have been completed
for block Mt, the Ht+1 value is used as the hash input to the
initialization() function for the computation of the next block
(Mt+1). Finally, the hash outputHN updated by compressing
the last block (MN−1) is the final hash output of the BLAKE-
256/512 function.

The details of the Gj(), initialization(), and finalization()
functions can be found in [29].

C. NORMAL FULLY PIPELINED BLAKE-256/512
ACCELERATOR
To improve the processing rate of BLAKE functions, the loop
computations of the message permutation and compression
processes need to be performed fully in parallel. There-
fore, this section introduces the first normal fully pipelined
BLAKE-256/512 accelerator, which performs the loop com-
putations in parallel.

According to our investigation, no fully pipelined BLAKE
architecture has previously been proposed, although the pos-
sibility has been mentioned in several related works. On
the other hand, many works have proposed fully pipelined
SHA-2 architectures to optimize performance and hardware
efficiency [33]–[37]. Essentially, a fully pipelined BLAKE
architecture is similar to a fully pipelined SHA-2 architec-
ture, which is unfolded into R (where R is the number of
rounds) pipeline stages.

Fig. 2 illustrates the implementation of the normal fully
pipelined BLAKE-256/512 accelerator, where the message
permutation and compression processes are unfolded into R
pipeline stages (where R is 8, 10, or 14 for BLAKE-256

FIGURE 2. Normal fully pipelined BLAKE-256/512 accelerator.

TABLE 3. Numbers of registers and XORs used in the message permutation
process and the fully pipelined BLAKE-256/512 accelerator.

Function

Number of registers (bits) Number of XORs (bits)

Message
permutation

Entire
accelerator

Message
permutation

Entire
accelerator

BLAKE-256r8 4,096 (47.1%) 8,704 4,096 (32.0%) 12,800

BLAKE-256r10 5,120 (47.6%) 10,752 5,120 (32.2%) 15,872

BLAKE-256r14 7,168 (48.3%) 14,848 7,168 (32.6%) 22,016

BLAKE-512r14 14,336 (48.3%) 29,696 14,336 (32.6%) 44,032

BLAKE-512r16 16,384 (48.5%) 33,792 16,384 (32.7%) 50,176

or 14 or 16 for BLAKE-512). More precisely, the message
compression part includes R compression circuit blocks (de-
noted by compression r, 0≤r≤R-1) and R groups of sixteen
working variable registers for the internal states V0, ..., V15.
The message permutation part includesR permutation circuit
blocks (denoted by permutation r, 0≤r≤R-1) and R groups
of sixteen working variable registers for the message words
(denoted by REGr, 0≤r≤R-1). In addition, the accelerator
has initialization and finalization circuits to calculate the
initialization() and finalization() functions, respectively. By
virtue of the unfolding of these fully pipelined stages, the
accelerator can compress a large number of adjacent mes-
sage inputs and deliver one hash output per cycle, thereby
accelerating its performance. However, this unfolding greatly
increases the numbers of registers and computational circuits
required, causing the accelerator to occupy an enormous area
and incur massive power consumption. Therefore, optimiz-
ing the area and power consumption of the fully pipelined

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 3. Characteristics of consecutive message inputs in the (a) normal
and (b) proposed message permutation schemes.

BLAKE-256/512 accelerator is required to achieve high
hardware efficiency.

Many previous works have proposed various optimiza-
tion techniques to improve the message compression pro-
cess because of its complexity. However, these proposed
optimization techniques can only speed up the performance
of the fully pipelined BLAKE-256/512 accelerator without
reducing its area and energy consumption. Meanwhile, al-
though the message permutation process is not complicated,
the numbers of registers and XORs needed are significantly
large. As shown in Table 3, the numbers of registers and
XORs in the message permutation part account for more
than 47.1% and 32%, respectively, of those in the entire
accelerator. Therefore, reducing the numbers of registers and
XORs needed for message permutation can significantly im-
prove the area and power consumption of the fully pipelined
BLAKE-256/512 accelerator.

D. PRELIMINARY IDEA FOR THE MSA
By virtue of the unfolding of the pipeline stages, the fully
pipelined BLAKE-256/512 accelerator is able to process a
long series of consecutive message inputs. By analyzing the
rates of word changes in consecutive message inputs, we
can classify the sixteen message words into three groups:
frequently changed words (CW-2), infrequently changed
words (CW-1), and unchanged words (CW-0). Because each
pipeline stage contains sixteen registers and sixteen XORs,
the normal message permutation scheme can process consec-
utive message inputs with all sixteen message words belong-
ing to the CW-2 group, as shown in Fig. 3 (a). Fundamentally,
since message words in the CW-2 group have continuously
changing and arbitrary values, all registers and XORs for
these message words must be retained and cannot be opti-
mized. However, in several applications, such as blockchain
mining, consecutive message inputs include words of all
three change rates, as shown in Fig. 3 (b). Based on the
characteristics of little or no time variation of CW-1 and CW-
0, two ideas for optimizing the message permutation part of
the accelerator are introduced below.

Idea 1: Register optimization. Since message words in
the CW-0 group remain completely unchanged in all hash

FIGURE 4. (a) Normal and (b) proposed register structures of the message
permutation part of the fully pipelined BLAKE-256 accelerator for Decred
mining.

computation tasks, the registers for storing these message
words are unnecessary and can be eliminated. Moreover, the
registers storing message words in the CW-1 group for the
first round will store the same values as the registers storing
those words for the remaining rounds. As a result, we can
remove registers for storing message words in the CW-1
group in the remaining rounds. For example, we illustrate the
normal and proposed register structures of the message per-
mutation part of the fully pipelined BLAKE-256 accelerator
for Decred mining in Fig. 4. As shown in Fig. 4 (a), each
pipeline stage in the normal register structure uses sixteen
32-bit registers to store the sixteen words, meaning that 224
32-bit registers are needed for 14 pipeline stages. However,
as shown in Fig. 4 (b), message words in the CW-0 group,
including W7, ..., W11 and W13, ..., W15, are constants in all
mining tasks, and consequently, the corresponding registers
can be removed. In addition, the registers for storing message
words in the CW-1 group, including W0, W1, W2, W4,
W5, W6, and W12, for the last 13 rounds can be eliminated
because the values stored in these registers will be the same as
those stored in the registers for the first round during the same
mining task. As a result, each pipeline stage in the proposed
register structure stores only the necessary words, and the
proposed message permutation scheme uses only 24 32-bit
registers in 14 pipeline stages.

Idea 2: XOR optimization. In the message permutation
process, each pipeline stage has a permutation circuit (de-
noted by permutation r, 0≤r≤R-1), which performs sixteen
32/64-bit XOR computations between sixteen 32/64-bit mes-
sage words (Wi, 0≤i≤15) and sixteen 32/64-bit constants.
Since message words in the CW-0 group always remain
unchanged, the results of the XOR calculations between these
message words and the constants are predictable and can

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 5. (a) Normal and (b) proposed permutation 0 circuits of the
message permutation part of the fully pipelined BLAKE-256 accelerator for
Decred mining.

be hardwired into the circuit to save XOR resources. For
example, we illustrate the normal and proposed permuta-
tion 0 circuits of the message permutation part of the fully
pipelined BLAKE-256 accelerator for Decred mining in Fig.
5. As shown in Fig. 5 (a), the normal permutation 0 circuit
performs sixteen 32-bit XOR calculations between sixteen
words and sixteen 32-bit constants; accordingly, the four-
teen permutation circuits in the normal message permutation
scheme require a total of 224 32-bit XOR gates. In contrast,
as shown in Fig. 5 (b), the 32-bit XOR computations between
message words in the CW-0 group (including W7, ..., W11

and W13, ..., W15) and constants are replaced by hardwired
values in the proposed circuit. As a result, the proposed
permutation 0 circuit needs to perform only eight 32-bit
XOR calculations, and the fourteen permutation circuits of
the proposed message permutation scheme require only 112
32-bit XOR gates.

III. PROPOSED COMPACT MESSAGE PERMUTATION
SCHEME
This section presents the proposed compact message per-
mutation scheme for the fully pipelined BLAKE-256/512
accelerator for use in generic applications and blockchain
mining.

A. OVERVIEW OF THE ARCHITECTURE
Fig. 6 shows the normal and proposed compact message per-
mutation schemes for the fully pipelined BLAKE-256/512
accelerator. The normal and compact message permutation
architectures each contain R pipeline stages (R is given
in Table 1), and each pipeline stage in both architectures
also returns the same sixteen permuted message words (de-
noted by W ′i , 0≤i≤15). Although the two architectures have
the same functionality, the proposed message permutation
scheme is lower in cost and smaller in area than the normal
scheme. Fig. 6 (a) illustrates the overall architecture of the
normal message permutation scheme, in which there are R
permutation circuit blocks (denoted by normal permutation
r, 0≤r≤R-1); each normal permutation circuit contains six-

FIGURE 6. (a) Normal message permutation scheme vs. (b) proposed
compact message permutation scheme.

teen 32/64-bit XORs, and the register structure consumes
R groups of sixteen 32/64-bit registers (denoted by REGr,
0≤r≤R-1) to store the sixteen message words. With this
register and permutation circuit structure, the normal mes-
sage permutation architecture is suitable for message inputs
consisting of sixteen message words, all in the CW-2 group.
However, the normal message permutation scheme requires
many registers and XORs. When the message inputs contain
message words in the CW-1 or CW-0 group, some registers
and XORs in the normal message permutation architecture
will become unnecessary and redundant. Accordingly, we
propose a compact message permutation scheme that utilizes
the minimal numbers of registers and XORs to store and
compute the necessary message words, as shown in Fig. 6
(b). Concretely, the register structure of the compact message
permutation scheme is optimized to utilize R groups of
32/64-bit registers to store only message words in the CW-2
group, while only one cluster of 32/64-bit registers is used to
store message words in the CW-1 group. Details of the reg-
ister structure optimization are covered in Section III-B. In
addition, the compact message permutation scheme requires
R compact permutation circuit blocks (denoted by compact
permutation r, 0≤r≤R-1). Each compact permutation circuit
contains only enough 32/64-bit XORs to perform compu-
tations on message words in the CW-2 and CW-1 groups,
whereas the 32/64-bit XORs for computations on message
words in the CW-0 group are removed. The details of the
XOR optimization for compact permutations are presented
in Section III-C.

B. REGISTER OPTIMIZATION
This section analyzes the theory of register optimization
and the register optimization coefficient. In addition, the
hardware architecture of the optimized register structure in
the compact message permutation scheme for generic appli-
cations and blockchain mining is presented.

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 7. Register structures of (a) the normal message permutation
scheme vs. (b-c) the proposed compact message permutation scheme for (b)
generic applications and (c) blockchain mining.

1) Basic theory of optimization
In the normal message permutation scheme, sixteen registers
are used to store sixteen words (denoted by Wi, 0 ≤ i ≤
15) in each pipeline stage. The total number of registers
(REGTotal) for R pipeline stages in the normal message
permutation scheme is calculated as shown in eq. (1).

REGTotal = R×
15∑
i=0

Wi (1)

In the proposed message permutation scheme, the posi-
tions of message words in the CW-1 group are represented
by a vector PCW-1, where PCW-1 is [P0,P1,...,P15]T . For
example, Pt will equal 1 if Wt belongs to the CW-1 group
and 0 otherwise. The number of optimizable registers (OP-
REGCW-1) due to message words belonging to the CW-1
group is calculated as shown in eq. (2).

OP-REGCW-1 = (R− 1)× [W0,W1, ..,W15]× PCW-1 (2)

Additionally, the positions of message words in the CW-
0 group are represented by a vector QCW-0, where QCW-0
is [Q0,Q1,...,Q15]T . For example, Qt will equal 1 if Wt

belongs to the CW-0 group and 0 otherwise. The number of
optimizable registers (OP-REGCW-0) due to message words
belonging to the CW-0 group is calculated as shown in eq.
(3).

OP-REGCW-0 = R× [W0,W1, ..,W15]×QCW-0 (3)

The total number of optimizable registers due to mes-
sage words belonging to the CW-1 and CW-0 groups
(OP-REGCW-1|0) is calculated as shown in eq. (4).

OP-REGCW-1|0 = OP-REGCW-0 + OP-REGCW-1

= R× [W0,W1, ..,W15]× (PCW-1 +QCW-0)

− [W0,W1, ..,W15]× PCW-1
(4)

FIGURE 8. (a) Normal permutation circuit in the normal message permutation
scheme and (b) compact permutation circuit in the compact message
permutation scheme.

Overall, the register optimization coefficient (OCREG) of
the proposed message permutation scheme compared to the
normal message permutation scheme is calculated as shown
in eq. (5).

OCREG =
OP-REGCW-1|0

REGTotal
(5)

2) Optimized register structure

Fig. 7 shows the register structures in the normal and compact
message permutation architectures for generic applications
and blockchain mining. Specifically, Fig. 7 (a) shows the
register structure in the normal message permutation scheme,
in which sixteen registers for storing sixteen message words
are linearly propagated through R rounds. Since the register
structure includes the full sixteen registers in every pipeline
stage, the normal message permutation scheme is most suit-
able for message inputs consisting of sixteen message words,
all in the CW-2 group. However, when the message inputs
contain message words in the CW-1 or CW-0 group, many
registers in the register structure will have unchanged values
and become redundant. Therefore, we propose a new register
structure to reduce redundant registers when message words
in the CW-1 or CW-0 group are introduced into the message
inputs. Accordingly, Fig. 7 (b) and Fig. 7 (c) show our pro-
posed register structures for compact message permutation
for generic applications and blockchain mining, respectively.
We denote the numbers of message words in the CW-2, CW-
1, and CW-0 groups by a, b, and c, respectively. a, b and
c are calculated as shown in eq. (6), eq. (7), and eq. (8),
respectively.

a = 16− b− c (6)

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

b = Sum(PCW-1) =

15∑
i=0

Pi (7)

c = Sum(QCW-0) =

15∑
i=0

Qi (8)

In the compact message permutation scheme, the redundant
registers for storing the c message words in the CW-0 group
are removed. In addition, the registers for storing the b
message words in the CW-1 group are placed only in the first-
round stage and are shared with the stages for other rounds.
Finally, each pipeline stage includes registers for storing the
a message words in the CW-2 group. Despite the significant
pruning of the registers, the register structure of the compact
message permutation architecture still ensures the storage of
sufficient necessary message words for correct functionality,
yielding the same results as the normal message permutation
scheme. In generic applications, the values of a, b, and c are
arbitrary and depend on the user’s purpose, as shown in Fig.
7 (b). In blockchain mining, the value of a is usually one
because only the message word of the nonce field belongs to
the CW-2 group, whereas the values of b and c are arbitrary,
as shown in Fig. 7 (c).

C. XOR OPTIMIZATION
This section analyzes the theory of XOR optimization and
the XOR optimization coefficient. Moreover, the hardware
architecture of the optimized permutation circuit is presented.

1) Basic theory of optimization
The XOR operation between message wordWi and the corre-
sponding constant is denoted by X(Wi), where 0 ≤ i ≤ 15.
In the normal message permutation scheme, the total number
of XOR gates (XORTotal) required for R pipeline stages is
calculated as shown in eq. (9).

XORTotal = R×
15∑
i=0

X(Wi) (9)

In the compact message permutation scheme, the results
of the XOR calculations between message words in the CW-
0 group and constants are predictable. Therefore, we replace
the XOR computations between these message words and
constants with hardwired values to reduce the utilization of
XOR resources. The number of optimizable XOR gates (OP-
XORCW-0) due to message words belonging to the CW-0
group is calculated as shown in eq. (10).

OP-XORCW-0 = R× [X(W0), X(W1), .., X(W15)]×QCW-0
(10)

Note that the positions of message words in the CW-0
group are represented by the vector Qctw, where Qctw is
[Q0,Q1,...,Q15]T .

Overall, the XOR optimization coefficient (OCXOR) of
the compact message permutation scheme compared to the

normal message permutation scheme is calculated as shown
in eq. (11).

OCXOR =
OP-REGCW-0

XORTotal
(11)

2) Hardware Architecture
Fig. 8 shows the permutation circuit architectures in the
normal and proposed message permutation schemes. Specif-
ically, Fig. 8 (a) illustrates the normal permutation circuit
for performing sixteen XOR computations between sixteen
message words and sixteen constants. With the full sixteen
XOR gates in each pipeline stage, the normal permutation
circuit is best suited for message inputs consisting of sixteen
message words all belonging to the CW-2 or CW-1 group.
On the other hand, when the message inputs have the same
length, message words in the CW-0 group are introduced by
the padding values. Accordingly, a compact permutation cir-
cuit is proposed to reduce the number of XOR gates needed
for computations on message words in the CW-0 group, as
shown in Fig. 8 (b). Specifically, the results of the XOR
calculations between message words in the CW-0 group and
constants are predictable in every pipeline stage. Therefore,
in the compact permutation circuit for each pipeline stage,
the XOR calculations between message words in the CW-
0 group and constants are eliminated and replaced by hard-
wired values to reduce XOR resource utilization.

IV. VERIFICATION AND EVALUATION
This section presents the verification and evaluation of the
proposed compact message permutation scheme for the fully
pipelined BLAKE-256/512 accelerator. Throughout this sec-
tion, for concise differentiation, the fully pipelined BLAKE-
256/512 accelerator with normal message permutation is re-
ferred to as the normal BLAKE-256/512 accelerator, and the
fully pipelined BLAKE-256/512 accelerator with compact
message permutation is referred to as the proposed BLAKE-
256/512 accelerator.

A. FPGA-BASED VERIFICATION OF COMPACT
MESSAGE PERMUTATION
This section presents the implementation and verification of
the proposed fully pipelined BLAKE-256/512 accelerator on
a Xilinx Alveo U280 FPGA at the system-on-chip (SoC)
level, as shown in Fig. 9. The experimental equipment con-
sists of two main devices: the Alveo FPGA and a host PC
with an Intel Xeon E5-2620v2 CPU @2.10 GHz with 94 GB
of RAM. The Alveo FPGA and host PC exchange data via
Joint Test Action Group (JTAG) and Universal Asynchronous
Receiver/Transmitter (UART) connectors. The Alveo FPGA
contains the following cores: a clock generator, a MicroB-
laze Processor (MP), a test framework IP, and a ChipScope
Integrated Logic Analyzer (ChipScope ILA). Concretely, the
clock generator provides a 100 MHz operating frequency for
all other cores. The MP sends messages and hash inputs from
the host PC to the test framework IP. The test framework
IP consists of two accelerators: the normal and proposed

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 9. Verification of the proposed fully pipelined BLAKE-256/512
accelerator with compact message permutation on a Xilinx Alveo U280 FPGA
at the SoC level.

BLAKE-256/512 accelerators. The ChipScope ILA is a cus-
tomizable logic analyzer core for monitoring the hash outputs
of the normal (denoted by HO1) and proposed (denoted by
HO2) BLAKE-256/512 accelerators. The compact message
permutation scheme in the proposed BLAKE-256/512 accel-
erator will be determined to be working properly if HO1 and
HO2 are the same. On the other hand, the host PC executes
Vivado, Vitis, and a "Data Generator" C program. Specif-
ically, the Xilinx Vitis tool runs an embedded C program
to transfer message and hash inputs to the test framework
IP via the MP. In addition, the Vivado tool loads the SoC-
based design into the Alveo FPGA. In this experiment, we
use Vivado and Vitis version 2019.2. Furthermore, the "Data
Generator" generates message and hash inputs for the two
accelerators.

We implemented and verified the proposed BLAKE-
256/512 accelerator for two types of applications: generic
applications and blockchain mining. For generic applica-
tions, message inputs with a given number of CW-1 or CW-
0 words were randomly generated by the "Data Generator"
program. For blockchain mining, message inputs were ex-
tracted from the block headers of two blockchain networks,
namely, the Decred network for BLAKE-256r14 verification
and the Dash network for BLAKE-512r16 verification. Based
on a certain number of CW-1 or CW-0 words, the compact
message permutation architecture for the proposed BLAKE-
256/512 accelerator was designed to reduce the hardware
resource utilization in terms of XORs and registers. For
100,000 different message inputs, all HO1 and HO2 values
were the same. This demonstrates that the proposed BLAKE-
256/512 accelerator works properly for both generic applica-
tions and blockchain mining.

B. THEORETICAL EVALUATION
To prove the effectiveness of the compact message permuta-
tion scheme, this section theoretically evaluates the register
and XOR optimization coefficients (OCREG and OCXOR)
based on different numbers of message words belonging to
the CW-1 or CW-0 group (denoted by CW-1|0 words). Since
the number of CW-1|0 words is highly dependent on the
particular application, we will examine all possible cases of
numbers of CW-1|0 words ranging from zero to fifteen.

Table 4 presents the OCREG and OCXOR results for
five BLAKE-256/512 functions, namely, BLAKE-256r8,

TABLE 4. Register and XOR gate optimization coefficients (OCREG and
OCXOR) based on different numbers of PUCWs.

CW-1|0 OCREG (%) OCXOR (%)

words BLAKE-
256r8

BLAKE-
256r10

BLAKE-
256r14

BLAKE-
512r14

BLAKE-
512r16

BLAKE-
256/512

0 0 0 0 0 0 0

1 5.4 5.6 5.8 6.8 5.9 6.3

2 10.7 11.3 11.6 11.6 11.7 12.5

3 16.1 16.9 17.4 17.4 17.6 18.8

4 21.4 22.5 23.2 23.2 23.4 25.0

5 26.8 28.1 29.0 29.0 29.3 31.3

6 32.1 33.8 34.8 34.8 35.2 37.5

7 37.5 39.4 40.6 40.6 41.0 43.8

8 42.9 45.0 46.4 46.4 46.9 50.0

9 48.2 50.6 52.2 52.2 52.7 56.3

10 53.6 56.3 58.0 58.0 58.6 62.5

11 58.9 61.9 63.8 63.8 64.5 68.8

12 64.3 67.5 69.6 69.6 70.3 75.0

13 69.6 73.1 75.4 75.4 76.2 81.3

14 75.0 78.8 81.3 81.3 82.0 87.5

15 80.4 84.4 87.1 87.1 87.9 93.8

BLAKE-256r10, BLAKE-256r14, BLAKE-512r14, and
BLAKE-512r16, based on numbers of CW-1|0 words ranging
from zero to fifteen. Note that OCREG and OCXOR are calcu-
lated using eq. (5) and eq. (11), respectively. Since eq. (11)
is affected only by the number of CW-0 words (considered
equal to the number of CW-1|0 words in Table 4) but not the
number of rounds (R), the OCXOR results are the same for
all five BLAKE-256/512 functions with different numbers of
rounds. Thus, the results for OCXOR in Table 4 represent all
five BLAKE-256/512 functions.

The OCREG results for the five BLAKE-256/512 functions
improve linearly as the number of CW-1|0 words increases.
At fifteen message words in the CW-1 or CW-0 group, the
OCREG results for the five BLAKE-256/512 functions peak at
greater than 80% optimization. Specifically, among the five
BLAKE-256/512 functions, BLAKE-512r16 has the highest
OCREG with 80.4% optimization at fifteen message words
in the CW-1 or CW-0 group, and BLAKE-512r16 has the
highest OCREG with 87.9% optimization.

The OCXOR results for the five BLAKE-256/512 functions
show linear improvement with an increasing number of CW-
1|0 words, reaching a peak of 93.8% at fifteen message words
in the CW-0 group.

In general, the OCREG and OCXOR values for the five
BLAKE-256/512 functions increase linearly as the num-
ber of CW-1|0 words increases. At fifteen message words
in the CW-1 or CW-0 group, as is usually encountered
in blockchain mining, the fully pipelined BLAKE-256/512
accelerator has the highest register and XOR optimization
coefficients.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 10. Normal vs. proposed fully pipelined BLAKE-256r14 accelerators in terms of (a) area, (b) power consumption, (c) area efficiency, (d) and energy
efficiency.

C. EXPERIMENTAL EVALUATION

Since the fully pipelined BLAKE-256/512 accelerator con-
cept is often oriented toward ASIC fabrication to maximize
performance and power consumption, this section proves the
effectiveness of the proposed compact message permutation
scheme based on an ASIC implementation. For this exper-
iment, the BLAKE-256r14 and BLAKE-512r16 functions
are selected for ASIC implementation because they are the
most commonly used BLAKE-256/512 functions at present.
The factors considered for evaluation include area, power,
area efficiency, and energy efficiency. In our experiment,
we used "Design Compiler version N-2017.09-SP1" and "IC
Compiler version Q-2019.12-SP4" for ASIC synthesis with
the Ptt_V0p75_T25 library for Renesas 65 nm silicon-on-
thin-buried-oxide (SOTB) technology.

1) BLAKE-256r14

The ASIC synthesis results show that the normal and pro-
posed BLAKE-256r14 accelerators both provide a through-
put of 28.67 Gbps at 56 MHz. Moreover, based on the ASIC
synthesis results, we present the area, power consumption,
area efficiency, and energy efficiency of the normal and
proposed BLAKE-512r14 accelerators for different numbers
of CW-1|0 words, as shown in Fig. 10. Because the normal
message permutation scheme is fixed for any number of
CW-1|0 words, the area, power, area efficiency, and energy
efficiency of the normal BLAKE-256r14 accelerator remain
at constant values of 454 kGE (thousand gate equivalent),
9.1 mW, 63.02 kbps/GE, and 3.15 Gbps/mW, respectively.

Meanwhile, the compact message permutation scheme of
the proposed BLAKE-256r14 accelerator specifies how to
develop an architecture that is suitable for processing mes-
sage inputs with each specific number of CW-1|0 words
so as to greatly reduce the necessary numbers of registers
and XORs. Therefore, with an increasing number of CW-
1|0 words, the area and power consumption of the pro-
posed BLAKE-256r14 accelerator are significantly reduced,
as shown in Fig. 10 (a) and (b), respectively. In particular,
the area and power consumption of the proposed BLAKE-
256r14 accelerator are optimized by 11.35% (403 vs. 454
kGE) and 21.10% (7.2 vs. 9.1 mW), respectively, compared
to the normal BLAKE-256r14 accelerator at fifteen message
words in the CW-1 or CW-0 group. Since the area and power
consumption of the proposed BLAKE-256r14 accelerator are
greatly reduced while the throughput remains unchanged,
the area efficiency and energy efficiency are significantly
increased, as shown in Fig. 10 (c) and (d), respectively. In par-
ticular, the area efficiency and energy efficiency of the pro-
posed BLAKE-256r14 accelerator are remarkably improved
by 13.12% (71.29 vs. 63.02 kbps/GE) and 27.09% (4.00
vs. 3.15 Gbps/mW), respectively, compared to the normal
BLAKE-256r14 accelerator at fifteen message words in the
CW-1 or CW-0 group.

2) BLAKE-512r16

The ASIC synthesis results show that the normal and pro-
posed BLAKE-512r16 accelerators both deliver a throughput
of 50.54 Gbps at 49 MHz. In addition, based on the ASIC

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 11. Normal vs. proposed fully pipelined BLAKE-512r16 accelerators in terms of (a) area, (b) power consumption, (c) area efficiency, (d) and energy
efficiency.

synthesis results, Fig. 11 shows the area, power consumption,
area efficiency, and energy efficiency of the normal and
proposed BLAKE-512r14 accelerators for different numbers
of CW-1|0 words. Since the normal message permutation
scheme is fixed for any number of CW-1|0 words, the area,
power consumption, area efficiency, and energy efficiency of
the normal BLAKE-512r16 accelerator remain constant at
1,198 kGE, 20.5 mW, 42.18 kbps/GE, and 2.47 Gbps/mW,
respectively. In contrast, the compact message permutation
scheme of the proposed BLAKE-512r16 accelerator allows a
suitable architecture to be designed for processing message
inputs with any specific number of CW-1|0 words so as to
greatly reduce the necessary numbers of registers and XORs.
It is evident that with an increasing number of CW-1|0 words,
the area and power consumption of the proposed BLAKE-
512r16 accelerator are markedly reduced, as shown in Fig. 11
(a) and (b), respectively. Concretely, the area and power
consumption of the proposed BLAKE-512r16 accelerator are
optimized by 9.86% (1,080 vs. 1,198 kGE) and 20.32%
(16.3 vs. 20.5 mW), respectively, compared to the normal
BLAKE-512r16 accelerator at fifteen message words in the
CW-1 or CW-0 group. In addition, because of the reductions
in area and power consumption, the area efficiency and en-
ergy efficiency of the proposed BLAKE-512r16 accelerator
are significantly improved, as shown in Fig. 11 (c) and
(d), respectively. Specifically, the area efficiency and energy
efficiency of the proposed BLAKE-512r16 accelerator are
improved by 10.9% (46.80 vs. 42.18 kbps/GE) and 25.50%
(3.10 vs. 2.47 Gbps/mW), respectively, compared to the

normal BLAKE-512r16 accelerator at fifteen message words
in the CW-1 or CW-0 group.

Overall, with an increasing number of CW-1|0 words, the
proposed BLAKE-256r14/BLAKE-512r16 accelerator is sig-
nificantly superior to the normal BLAKE-256r14/BLAKE-
512r16 accelerator in terms of area, power consumption, area
efficiency, and energy efficiency. This shows that the compact
message permutation scheme helps considerably optimize
the area, power consumption, area efficiency, and energy
efficiency of a fully pipelined BLAKE-256/512 accelerator
in an ASIC implementation.

D. PERFORMANCE EVALUATION: OUR PROPOSAL VS.
OTHER FPGA-BASED WORKS

This section presents a performance comparison between
the proposed BLAKE-256/512 accelerator and other FPGA-
based BLAKE-256/512 designs. Because the characteristics
of message words in the CW-1 or CW-0 group are most
clearly evident in the blockchain mining process, this evalu-
ation is conducted based on blockchain mining applications.
Accordingly, two blockchains are selected, Decred and Dash,
whose mining processes use BLAKE-256r14 and BLAKE-
512r16, respectively.

For fair comparison with existing BLAKE-256/512 de-
signs such as [10]–[13], [16], [23], [24], we synthesized
the proposed BLAKE-256r14 and BLAKE-512r16 acceler-
ators on Xilinx Virtex-5 and Virtex-6 FPGA boards. We
also synthesized corresponding normal BLAKE-256r14 and
BLAKE-512r16 accelerators to clarify the effectiveness of

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 5. Comparison between the proposed design and other FPGA-based works.

FPGA device Algorithm Reference Frequency
(MHz)

#Cycles/Hash Slices Throughput
(Mbps)

Area efficiency
(Mbps/slice)

Virtex-5

BLAKE-256r14

[12], FPT 2010 372 1,164* 56 163.6 2.92

[16], FLP 2010 118 56* 1,118 1,078.9 0.96

[24], SSD 2015 79 16 691 2,528 3.66

Normal fully pipelined 72 1 12,087 36,864 3.05

Proposed fully pipelined 72 1 9,621 36,864 3.83

BLAKE-512r16

[12], FPT 2010 358 1324** 108 276.9 2.56

[16], FLP 2010 91 64** 1,718 1,456 0.85

Normal fully pipelined 61 1 27,167 62,464 2.30

Proposed fully pipelined 61 1 22,542 62,464 2.77

Virtex-6

BLAKE-256r14

[10], CARDIS 2011 274 1,182 117 118.7 1.01

[11], TSCC 2012 268 308 166 445.5 2.68

[13], TCAS-I 2014 349 1,184 50 150.9 3.02

Normal fully pipelined 76 1 12,137 38,912 3.21

Proposed fully pipelined 76 1 9,839 38,912 3.95

BLAKE-512r16

[13], TCAS-I 2014 329 1,344 91 250.7 2.75

[23], Trans Comput 2014 133 34 2,153 4,005.6 1.86

Normal fully pipelined 67 1 27,904 68,608 2.46

Proposed fully pipelined 66 1 22,542 67,584 3.00
* : BLAKE-256r10 is normalized to BLAKE256r14 by adding more 4 rounds.
** : BLAKE-512r14 is normalized to BLAKE-512r16 by adding more 2 rounds.

the proposed compact message permutation scheme com-
pared to normal message permutation. The factors consid-
ered for comparison here include area, throughput, and area
efficiency.

Throughput, measured in megabits per second (Mbps), is
calculated using eq. (12), where BlockSize is equal to 512 for
BLAKE-256r14 and 1024 for BLAKE-512r16s.

Throughput =
BlockSize× Frequency

#Cycles/Hash
(12)

Then, the trade-off between throughput and area (referred
to as area efficiency) is calculated as shown in eq. (13).

Area efficiency =
Throughput

Area
(13)

Table 5 shows the area, throughput, and area efficiency of
the proposed work and related works on the Virtex-5 and
Virtex-6 FPGA boards. Note that the BLAKE-256/512 de-
signs presented in [12], [16] are for the BLAKE-256r10 and
BLAKE-512r14 functions, which are normalized to BLAKE-
256r14 and BLAKE-512r16 for fair comparison with the
other designs by adding 4 and 2 more rounds, respectively.

On the Virtex-5 FPGA board, the proposed BLAKE-
256r14 accelerator occupies 9,621 slices and reaches 36,864
Mbps at a maximum frequency of 72 MHz. Accordingly,
the throughput of the proposed BLAKE-256r14 accelerator
is 225.3 times (36,864 vs. 163.6), 34.2 times (36,864 vs.
1,078.9), and 14.6 times (36,864 vs. 1,078.9) higher than
those of the designs in [12], [16], and [24], respectively. In
addition, the proposed BLAKE-256r14 accelerator reaches

an area efficiency of 3.83 Mbps/slice, which is 1.3 times
(3.83 vs. 2.92), 4 times (3.83 vs. 0.96), 1.05 times (3.83
vs. 3.66), and 1.3 times (3.83 vs. 3.05) better than those of
the designs in [12], [16], and [24] and the normal BLAKE-
256r14 accelerator, respectively. In the synthesis results for
BLAKE-512r16, the proposed BLAKE-512r16 accelerator
utilizes 22,542 slices and delivers 62,464 Mbps at a maxi-
mum frequency of 61 MHz. The throughput of the proposed
BLAKE-512r16 accelerator is 225.6 times (62,464 vs. 276.9)
and 42.9 times (62,464 vs. 1,456) greater than those of the
designs in [12] and [16], respectively. Moreover, the area
efficiency of the proposed BLAKE-512r16 accelerator is 2.77
Mbps/slice, which is 1.08 times (2.77 vs. 2.56), 3.3 times
(2.77 vs. 0.85), and 1.2 times (2.77 vs. 2.3) greater than those
of the architectures in [16] and [12] and the normal BLAKE-
512r16 accelerator, respectively.

On the Virtex-6 FPGA board, the proposed BLAKE-
256r14 accelerator utilizes 9,621 slices and provides 38,912
Mbps at a maximum frequency of 76 MHz. This throughput
is 327.8 times (38,912 vs. 118.7), 87.3 times (38,912 vs.
445.5), and 257.9 times (38,912 vs. 150.9) higher than those
of the architectures in [10], [11], and [13], respectively.
Furthermore, the proposed fully pipelined BLAKE-256r14
accelerator achieves an area efficiency of 3.95 Mbps/slice,
which is 3.9 times (3.95 vs. 1.01), 1.5 times (3.95 vs. 2.68),
1.3 times (3.95 vs. 3.02), and 1.2 times (3.95 vs. 3.21)
better than those of the designs in [10], [11], and [13] and
the normal BLAKE-256r14 accelerator, respectively. In the
synthesis results for BLAKE-512r16, the proposed BLAKE-

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 6. Comparison between the proposed fully pipelined BLAKE-256r14 accelerator and state-of-the-art CPU and GPU platforms.

Platform Technology
Power (W) Frequency Hash rate Energy efficiency

Measured TDP (MHz) (Mhash/s) (Mhash/s/W)

CPU: Intel i9-10940X ASIC, 14 nm 150 165 3,300 18 0.1

GPU: GTX 1080 Ti, 11 GB ASIC, 16 nm 227 280 1,481 592 2.6

GPU: Tesla V100, 16 GB ASIC, 12 nm 120 250 1,245 972 8.1

GPU: RTX 3090, 24 GB ASIC, 8 nm 337 350 1,395 1,370 4.1

FPGA: Alveo U280
Normal fully pipelined

FPGA, 16 nm
1.23

225
100 100 81.3

Proposed fully pipelined 1.02 100 100 98.0

512r16 accelerator utilizes 22,542 slices and delivers 67,584
Mbps at a maximum frequency of 66 MHz. Accordingly,
the throughput of the proposed BLAKE-512r16 accelerator
is 22.5 times (67,584 vs. 250.7) and 269.6 times (67,584 vs.
4,005.6) higher than those of the designs in [23] and [13],
respectively. Additionally, the area efficiency of the proposed
BLAKE-512r16 accelerator is 3 Mbps/slice, which is 1.6
times (3.0 vs. 2.75), 1.09 times (3.0 vs. 1.86), and 1.2 times
(3.0 vs. 2.46) greater than those of designs in [23] and [13]
and the normal BLAKE-512r16 accelerator, respectively.

Overall, the proposed BLAKE-256r14/512r16 accelerator
is significantly superior to other related FPGA-based designs
in both throughput and area efficiency. In addition, the area
efficiency of the proposed BLAKE-256r14/512r16 accelera-
tor is greatly improved compared to that of the normal fully
pipelined BLAKE-256r14/512r16 accelerator. This indicates
that the compact message permutation scheme dramatically
improves the area efficiency for fully pipelined BLAKE-
256r14/512r16 accelerators on FPGAs.

E. PERFORMANCE EVALUATION: OUR PROPOSAL VS.
STATE-OF-THE-ART CPUS AND GPUS
Although FPGA-based designs can be used to implement
BLAKE-2564r14/512r16 for blockchain mining, the poor
throughput of related FPGA-based designs can make the
mining process inefficient or infeasible. Therefore, the pro-
posed fully pipelined BLAKE-256r14/512r16 accelerator
should also be compared with high-performance platforms
such as CPUs and GPUs, which are commonly used for
blockchain mining. Accordingly, this section compares the
proposed BLAKE-256r14/512r16 accelerator with the most
powerful CPU and GPUs currently used in blockchain min-
ing, such as the Intel i9-10940X CPU, the GTX 1080 Ti GPU,
the RTX 3090 GPU, and the Tesla V100 GPU.

Currently, only BLAKE-256r14 is used as an independent
function for blockchain mining in several cryptocurrencies,
e.g., Decred and HyperCash, while BLAKE-512r16 is often
used as one of multiple hash functions in a hashing sequence,
e.g., X11 in Dash mining. To clarify the effectiveness of the
compact message permutation scheme, we evaluate only the
proposed BLAKE-2564r14 accelerator with CPUs and GPUs
used in blockchain mining, especially in Decred mining.
Specifically, the proposed BLAKE-256r14 accelerator is im-

plemented at the SoC level on the Alveo U280 FPGA board.
It occupies 21,759 look-up tables (LUTs) and 8,910 flip-flops
(FFs), delivers a throughput of 100 Mhash/s (megahashes per
second) at a 100 MHz operating frequency, and consumes
1.02 W. Furthermore, we have also implemented the normal
BLAKE-256r14 accelerator at the SoC level for comparison
with the proposed BLAKE-256r14 accelerator. The normal
BLAKE-256r14 accelerator utilizes 22,673 LUTs and 15,919
FFs, produces a throughput of 100 Mhash/s at a 100 MHz
operating frequency, and consumes 1.23 W. Note that the
normal and proposed BLAKE-256r14 accelerators both have
a single core and utilize only approximately 2% of the FPGA
resources. Theoretically, we could expand both the normal
and proposed BLAKE-256r14 accelerators to 46 cores to
achieve a hash rate of 4,600 Mhash/s. However, the present
evaluation focuses only on the energy efficiency of the single-
core versions of the normal and proposed BLAKE-256r14
accelerators. Meanwhile, to achieve the maximum perfor-
mance of the CPU and GPUs, we use the cpuminer and
ccminer open-source mining software tools to execute the
BLAKE-256r14 computation.

Table 6 presents the power consumption, hash rate, and
energy efficiency results for the proposed BLAKE-256r14
accelerator and the CPU/GPUs. Concretely, the power con-
sumption of the proposed BLAKE-256r14 accelerator is sig-
nificantly lower than that of the CPU and GPUs. Notably,
GPUs offer better performance than either the proposed
BLAKE-256r14 accelerator or the CPU. For example, the
fastest GPU device, the RTX 3090, is 13.7 times (1,370 vs.
100) faster than the proposed BLAKE-256r14 accelerator.
However, thanks to its exceptionally low power consump-
tion, the proposed BLAKE-256r14 accelerator achieves sig-
nificantly better energy efficiency than any CPU or GPU.
Specifically, the energy efficiency of the proposed BLAKE-
256r14 accelerator is 980 times (98.0 vs 0.1), 37.5 times
(98.0 vs 2.6), 23.9 times (98.0 vs 4.1), and 12.1 times (98.0
vs 8.1) higher than those of the i9 CPU, the GTX 1080 GPU,
the RTX 3090 GPU, and the Tesla V100 GPU, respectively.
Moreover, the energy efficiency of the proposed BLAKE-
256r14 accelerator is 1.2 times (98.0 vs 81.3) higher than that
of the normal BLAKE-256r14 accelerator, which shows that
the compact message permutation scheme significantly im-

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

proves the energy efficiency of the fully pipelined BLAKE-
256r14 accelerator.

V. CONCLUSION
The development of a low-power and high-performance
BLAKE accelerator has recently received extensive interest
because the BLAKE algorithm is widely applied in many ap-
plications, ranging from the Internet of Things (IoT) to cryp-
tocurrency. However, the performance of existing BLAKE-
256/512 hardware is often low, making such devices difficult
to apply for high-speed applications such as blockchain min-
ing. Therefore, we have introduced the first fully pipelined
BLAKE-256/512 accelerator to simultaneously achieve high
performance and hardware efficiency. In addition, based on
the word change rates in consecutive message inputs, we have
proposed a compact message permutation scheme that incor-
porates two new optimization techniques to reduce the num-
bers of registers and XOR gates needed in a fully pipelined
BLAKE-256/512 accelerator. An ASIC-based experiment
shows that this compact message permutation scheme helps
significantly reduce the area and power consumption of a
fully pipelined BLAKE-256/512 accelerator. We have veri-
fied the performance of the fully pipelined BLAKE-256/512
accelerator with compact message permutation on a real
hardware platform (an Alveo U280 FPGA). When applied
for blockchain mining, the fully pipelined BLAKE-256r14
accelerator with compact message permutation implemented
on an Alveo U280 FPGA achieves improvements in energy
efficiency by factors of 980 and 23.9 compared with the
fastest current CPU (the Intel i9-10940X) and GPU (the RTX
3090), respectively, that are used for this application. More-
over, experiments on several Xilinx FPGA boards prove that
the proposed fully pipelined BLAKE-256/512 accelerator
with compact message permutation is significantly superior
to related FPGA-based works in both throughput and area
efficiency.

Despite its advantages in performance and hardware effi-
ciency, the fully pipelined BLAKE-256/512 accelerator still
lacks the flexibility to be configured for computing many
BLAKE functions. In our future research, we will develop
a BLAKE accelerator with high performance and flexibility
that can support the hash functions of new BLAKE genera-
tions, such as BLAKE2 and BLAKE3.

ACKNOWLEDGMENTS
This work was supported by the Japan Science and Tech-
nology Agency (JST) under a Strategic Basic Research Pro-
grams PRESTO (Precursory Research for Embryonic Sci-
ence and Technology), Grant number JPMJPR20M6.

REFERENCES
[1] J. Zhai, C. M. Park, and G.-N. Wang, “Hash-based rfid security protocol

using randomly key-changed identification procedure,” in Computational
Science and Its Applications - ICCSA 2006, M. L. Gavrilova, O. Gervasi,
V. Kumar, C. J. K. Tan, D. Taniar, A. Laganá, Y. Mun, and H. Choo, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 296–305.

[2] Y. Zhang, P. Wang, X. Zhang, X. Weng, and Z. Yu, “A pufs-based hardware
authentication blake algorithm in 65 nm cmos,” International Journal of
Electronics, vol. 103, no. 6, pp. 1056–1066, 2016.

[3] I. H. Abdulqadder, S. Zhou, D. Zou, I. T. Aziz, and S. M. A. Akber,
“Bloc-sec: Blockchain-based lightweight security architecture for 5g/b5g
enabled sdn/nfv cloud of iot,” in 2020 IEEE 20th International Conference
on Communication Technology (ICCT), 2020, pp. 499–507.

[4] F. Fernandes, R. Gupta, S. Sivanantham, and K. Sivasankaran, “Imple-
mentation of blake 256 hash function for password encryption and parallel
crc,” in 2015 Online International Conference on Green Engineering and
Technologies (IC-GET), 2015, pp. 1–4.

[5] P. Li, J. Meng, and Z. Sun, “A new jpeg encryption scheme using adaptive
block size,” in Advances in Intelligent Information Hiding and Multimedia
Signal Processing, J.-S. Pan, J. Li, O.-E. Namsrai, Z. Meng, and M. Savić,
Eds. Singapore: Springer Singapore, 2021, pp. 140–147.

[6] M. Iavich, G. Iashvili, S. Gnatyuk, A. Tolbatov, and L. Mirtskhulava,
“Efficient and secure digital signature scheme for post quantum epoch,”
in Information and Software Technologies, A. Lopata, D. Gudonienė, and
R. Butkienė, Eds. Cham: Springer International Publishing, 2021, pp.
185–193.

[7] Decred-secure. adaptable. sustainable. Accessed: Dec. 22, 2021. [Online].
Available: https://www.decred.org

[8] H. Cho, “Asic-resistance of multi-hash proof-of-work mechanisms for
blockchain consensus protocols,” IEEE Access, vol. 6, pp. 66 210–66 222,
2018.

[9] J. Li and R. Karri, “Compact hardware architectures for blake and lake
hash functions,” in Proceedings of 2010 IEEE International Symposium
on Circuits and Systems. IEEE, 2010, pp. 2107–2110.

[10] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M.
de Dormale, and F.-X. Standaert, “Compact fpga implementations of the
five sha-3 finalists,” in International Conference on Smart Card Research
and Advanced Applications. Springer, 2011, pp. 217–233.

[11] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and S. Gu-
rung, “Lightweight implementations of sha-3 finalists on fpgas,” in The
Third SHA-3 Candidate Conference, no. 60, 2012, pp. 1–17.

[12] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations
of blake-32 and blake-64 on fpga,” in 2010 International Conference on
Field-Programmable Technology, 2010, pp. 170–177.

[13] N. At, J.-L. Beuchat, E. Okamoto, s. San, and T. Yamazaki, “Compact
hardware implementations of chacha, blake, threefish, and skein on fpga,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 2, pp. 485–498, 2014.

[14] Y. Zhang, J. Han, X. Weng, Z. He, and X. Zeng, “Design approach and
implementation of application specific instruction set processor for sha-
3 blake algorithm,” IEICE transactions on electronics, vol. 95, no. 8, pp.
1415–1426, 2012.

[15] V. F. Pereira, E. D. Moreno, W. R. A. Dias, and D. O. D. dos Santos,
“Specific processor in fpga for blake algorithm,” in 2013 IEEE 4th Latin
American Symposium on Circuits and Systems (LASCAS), 2013, pp. 1–5.

[16] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. P. Marnane, “Fpga implementations of the round two sha-3 candidates,”
in 2010 International Conference on Field Programmable Logic and Ap-
plications, 2010, pp. 400–407.

[17] B. Jungk and J. Apfelbeck, “Area-efficient fpga implementations of the
sha-3 finalists,” in 2011 International Conference on Reconfigurable Com-
puting and FPGAs, 2011, pp. 235–241.

[18] L. Henzen, J.-P. Aumasson, W. Meier, and R. C.-W. Phan, “Vlsi charac-
terization of the cryptographic hash function blake,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 19, no. 10, pp. 1746–
1754, 2011.

[19] M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, n. Kocabas,
J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta,
N. Homma, and T. Aoki, “Fair and consistent hardware evaluation of
fourteen round two sha-3 candidates,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 5, pp. 827–840, 2012.

[20] Z. Liu, X. Dong, Y. Zhao, and D. Li, “Hardware implementation of sha-
3 candidate based on blake-32,” in 2012 5th International Conference on
BioMedical Engineering and Informatics, 2012, pp. 1317–1320.

[21] F. Kahri, B. Bouallegue, M. Machhout, and R. Tourki, “An fpga imple-
mentation of the sha-3: The blake hash function,” in 10th International
Multi-Conferences on Systems, Signals Devices 2013 (SSD13), 2013, pp.
1–5.

[22] M. Srivastav, X. Guo, S. Huang, D. Ganta, M. B. Henry, L. Nazhandali,
and P. Schaumont, “Design and benchmarking of an asic with five sha-3

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

finalist candidates,” Microprocessors and Microsystems, vol. 37, no. 2, pp.
246–257, 2013.

[23] S. Ghosh and I. Verbauwhede, “Blake-512-based 128-bit cca2 secure
timing attack resistant mceliece cryptoprocessor,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1124–1133, 2014.

[24] F. Kahri, H. Mestiri, B. Bouallegue, and M. Machhout, “Efficient fpga
hardware implementation of secure hash function sha-256/blake-256,”
in 2015 IEEE 12th International Multi-Conference on Systems, Signals
Devices (SSD15), 2015, pp. 1–5.

[25] J. Sugier, “Implementation efficiency of BLAKE and other contemporary
hash algorithms in popular FPGA devices,” in Dependability Engineering
and Complex Systems. Springer International Publishing, 2016, pp. 457–
467.

[26] ——, “Spartan fpga devices in implementations of aes, blake and k eccak
cryptographic functions,” in International Conference on Dependability
and Complex Systems. Springer, 2018, pp. 461–470.

[27] M. M. Kermani, S. Bayat-Sarmadi, A.-B. Ackie, and R. Azarderakhsh,
“High-performance fault diagnosis schemes for efficient hash algorithm
blake,” in 2019 IEEE 10th Latin American Symposium on Circuits Sys-
tems (LASCAS), 2019, pp. 201–204.

[28] Block header specifications. Accessed: Dec. 22, 2021. [Online]. Available:
https://devdocs.decred.org/developer-guides/block-header-specifications/

[29] E. Biham and O. Dunkelman, “A framework for iterative hash functions—
haifa,” Computer Science Department, Technion, Tech. Rep., 2007.

[30] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3 proposal
blake,” Submission to NIST, vol. 92, 2008.

[31] J.-P. Aumasson, W. Meier, and R. C.-W. Phan, “The hash function family
lake,” in International Workshop on Fast Software Encryption. Springer,
2008, pp. 36–53.

[32] D. J. Bernstein et al., “Chacha, a variant of salsa20,” in Workshop record
of SASC, vol. 8, 2008, pp. 3–5.

[33] H. E. Michail, G. S. Athanasiou, V. I. Kelefouras, G. Theodoridis,
T. Stouraitis, and C. E. Goutis, “Area-throughput trade-offs for sha-1
and sha-256 hash functionsâĂŹ pipelined designs,” Journal of Circuits,
Systems and Computers, vol. 25, no. 04, p. 1650032, 2016.

[34] L. Li, S. Lin, S. Shen, K. Wu, X. Li, and Y. Chen, “High-throughput
and area-efficient fully-pipelined hashing cores using bram in fpga,”
Microprocessors and Microsystems, vol. 67, pp. 82–92, 2019.

[35] T. N. T. T. Duong, Le Vu Trung and L. D. Khai, “A fast approach for
bitcoin blockchain cryptocurrency mining system,” Integration, vol. 74,
pp. 107–114, 2020.

[36] H. L. Pham, T. H. Tran, T. D. Phan, V. T. Duong Le, D. K. Lam,
and Y. Nakashima, “Double sha-256 hardware architecture with compact
message expander for bitcoin mining,” IEEE Access, vol. 8, pp. 139 634–
139 646, 2020.

[37] Y. Zhang, Z. He, M. Wan, M. Zhan, M. Zhang, K. Peng, M. Song, and
H. Gu, “A new message expansion structure for full pipeline sha-2,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp.
1553–1566, 2021.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3181410

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

