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Abstract— A design methodology for a compact millimeter-
wave on-chip bandpass filter (BPF) is presented in this paper.
Unlike the previously published works in the literature, the pre-
sented method is based on quasi-lumped elements, which consists
of a resonator with enhanced self-coupling and metal–insulator–
metal capacitors. Thus, this approach provides inherently
compact designs comparing with the conventional distributed
elements-based ones. To fully understand the insight of the
approach, simplified LC-equivalent circuit models are developed.
To further demonstrate the feasibility of using this approach
in practice, the resonator and two compact BPFs are designed
using the presented models. All three designs are fabricated in a
standard 0.13-µm (Bi)-CMOS technology. The measured results
show that the resonator can generate a notch at 47 GHz with the
attenuation better than 28 dB due to the enhanced self-coupling.

The chip size, excluding the pads, is only 0.096 × 0.294 mm2.
In addition, using the resonator for BPF designs, the first BPF
has one transmission zero at 58 GHz with a peak attenuation
of 23 dB. The center frequency of this filter is 27 GHz with an
insertion loss of 2.5 dB, while the return loss is better than 10 dB
from 26 to 31 GHz. The second BPF has two transmission zeros,
and a minimum insertion loss of 3.5 dB is found at 29 GHz, while
the return loss is better than 10 dB from 26 GHz to 34 GHz.
Also, more than 20-dB stopband attenuation is achieved from dc
to 20.5 GHz and from 48 to 67 GHz. The chip sizes of these

two BPFs, excluding the pads, are only 0.076 × 0.296 mm2 and

0.096 × 0.296 mm2, respectively.

Index Terms— Bandpass filter (BPF), Bi-CMOS, microwave,
millimeter wave (mm wave), miniaturization, on-chip resonator,
RFIC, silicon–germanium (SiGe).

I. INTRODUCTION

THE rise of 5G begins an exciting new era in the world

of mobile connectivity. The so-called millimeter-wave

(mm-wave) technology is one of the key factors, which
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enables not only wireless transmission of gigabits per second

that are 20 times faster than the current 4G network, but

also low-latency communication that is the fundamental of

many emerging applications, such as autonomous vehicles.

Among different potential applications, the 28-/39-GHz cellu-

lar network [1], 60-GHz Wi-Gig [2], and 77-GHz automotive

radar [3] are likely to be widely deployed to support the

commercialization of the upcoming 5G in the very near future.

One of the major differences between the conventional

transceiver architecture that operates for sub-6 GHz and

the emerging mm-wave transceiver architecture is that either

subharmonic mixing or frequency multiplication technique

is usually used for local oscillator (LO) generation. Both

techniques utilize nonlinearity of active devices to produce an

mm-wave signal source for the purpose of up/down frequency

conversion. Because of nonlinearity is used, the unwanted har-

monics must be suppressed sufficiently; otherwise, the overall

performance of the mm-wave system could be deteriorated

severely. To generate the required LO source operating at

mm-wave region, frequency doubler and tripler are the most

popular building blocks [4], [5]. Although odd-order harmon-

ics can be inherently suppressed in theory for a “push–push”

frequency doubler, a bandpass filter (BPF) is still required

for rejecting the unwanted fourth-order harmonics as well as

further suppressing the fundamental and third-order harmon-

ics. If a frequency tripler is used in an LO chain, a BPF is

also necessary to suppress the fundamental, second-order, and

fourth-order harmonics. In addition, the concept of passive-

inspired designs has drawn extensive attention recently. It

has been widely used for the design of high-performance

building blocks, such as amplifiers, signal sources, and

switches [4]–[12]. Filter designs are no longer simply treated

for interference suppression, but also used for impedance

transformation and co-design with other active components.

As far as on-chip filter designs are concerned, several

design tradeoffs need to be considered to satisfy different

design specifications, such as miniaturized physical size and

reduced insertion loss. Several prior works can be found in the

literature on this regard, which includes bandstop [13], low-

pass [14], [15], and BPFs [16]–[28] design in standard silicon-

based technologies. By miniaturizing physical dimensions of
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Fig. 1. 3-D view of the proposed resonator and the metal stack-up used for
implementation. (Note that ground shielding is removed for better visibility.)

passive components, not only the overall die size can be

reduced, but it is also useful for reducing conductor loss

of the metal strips. As a result, the overall insertion loss

can be optimized efficiently. For these reasons, several novel

approaches for the design of miniaturized devices have been

presented in the literature. Unlike using the conventional

distributed components approach for filter designs [16]–[20],

the quasi-lumped components approach has gained attention

recently [21]–[28]. The key idea of this emerging approach

is to enhance the so-called self-coupling by fully utilizing

provided metal stack-up. One of the possible solutions is to use

broadside-coupled structures [22]–[25]. However, this idea has

a limitation, which is that the vertical gap between each metal

layer cannot be changed in the design as they are predefined

physical parameters. As a result, the design flexibility is dra-

matically restricted. Because of this limitation, it is desirable

to design a planar structure that can be implemented using

single metal layer only to perform the required self-coupling

mechanism.

In this paper, a design methodology based on quasi-lumped

elements is proposed. By taking advantage of the inherent self-

coupling inside a spiral inductor, a resonator is designed to be

capable to generate a strong notch at a specific frequency.

Using this feature along with metal–insulator–metal (MIM)

capacitors, two compact on-chip BPFs are developed and

implemented in a standard (Bi)-CMOS 0.13-µm technology.

A good agreement between the simulations and measurements

has been achieved for all three designs. The rest of this paper

is organized in the following way. In Section II, the prin-

ciple of the designed resonator with enhanced self-coupling

is presented. Using this resonator as a baseline, two BPF

design examples are given in Section III and IV, respectively.

These are followed by the measured results in Section V, and

conclusions are drawn in Section VI.

II. DESIGN AND IMPLEMENTATION OF THE RESONATOR

WITH ENHANCED SELF-COUPLING

A. Overview of the Resonator

The 3-D view of the proposed resonator and the metal stack-

up used for its implementation is shown in Fig. 1. The metal

stack-up is from a standard 0.13-µm (Bi)-CMOS technology

that has seven metal layers with aluminum as the thick top

Fig. 2. 2-D view of the proposed resonator with enhanced self-coupling.

two metal layers. The additional MIM layer is placed between

TM1 and M5. In addition, the height of the silicon substrate

is 200 µm. The dielectric constant of SiO2 is 4.1, and the loss

tangent is 0.01.

The 2-D view of the resonator is given in Fig. 2. Unlike

previously published works, this resonator is based on a planar

structure which only requires a single metal layer for imple-

mentation. As can be seen, the resonator has a symmetrical

structure and consists of a symmetrically folded strip-line. The

physical dimensions of the resonator can be varied, depending

on which metal layer is selected for its implementation which

will be further discussed later.

B. Simplified LC-Equivalent Circuit Model of the Resonator

To understand the principle of the EM structure pre-

sented in Fig. 2, a simplified LC-equivalent circuit model is

given in Fig. 3. For simplicity, a half-circuit model is first

presented in Fig. 3(a). As illustrated, the folded meander line

can be split into two parts, which are colored in black and red,

respectively. In addition, the capacitors are used to model the

capacitive coupling between two parts through edge coupling.

To construct a simplified full-circuit model, the half-circuit

model can be further simplified to a combination of two

inductors L1 and L2 representing the black and red induc-

tors, and one capacitor C1 representing the mutual coupling.

In Fig. 3(b), the simplified full-circuit model is presented that

consists of two half-circuit models presented in Fig. 3(a).

The input admittance of the resonator can be expressed as

Yin = − j
1

ωL2
+

jωC1

1 − ω2 L1C1
. (1)

To determine the resonant frequency of the resonator, one can

solve the equation Yin = 0. In this case, the resonant frequency

is found to be located at

fo =
1

2π
×

�

1

(L1 + L2) C1
. (2)

The 3-D mapping of the relation between f0, L1, and C1

is provided in Fig. 4. It is straightforward to find out that
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Fig. 3. Simplified LC-equivalent circuits. (a) Half circuit. (b) Full circuit.

Fig. 4. Simulated resonant frequency using the circuit model presented
in Fig. 3.

the resonance f0 is inversely proportional to L1 and C1.

By changing the values of L1 and C1, the resonance can be

effectively controlled. Here, it is assumed that L1 is equal to

L2 for simplicity. If either of them is fixed, a similar variation

pattern can be found as well.

C. Implementation of the Resonator

In order to verify the principle of the resonator as well

as the simulated results using the ideal lumped components,

two design examples are given in this section. The proposed

resonator is implemented first using the topmost metal layer,

namely, TM2. The detailed physical dimensions of the res-

onator for this case are summarized in Table I. As previously

analyzed, three physical parameters, Lc, Wg, and W f , can be

used to adjust the frequency response of the resonator. Thus, a

parametric study is presented in this section to investigate their

impact on the resonator design. By fixing the values of Wg

and W f , the value of Lc is swept from 172 to 272 µm with a

TABLE I

PHYSICAL DIMENSIONS OF THE RESONATOR

IMPLEMENTED IN TM2 LAYER

step of 50 µm. As illustrated in Fig. 5(a), the resonance can

be shifted from 46 to 72 GHz. It indicates that the generated

transmission notch is relatively reliable and can be controlled

efficiently across a broad bandwidth. Thus, by tuning the

length of the resonator, a coarse tuning can be performed.

On the other hand, as illustrated in Fig. 5(b) and (c), by fixing

the value of Wg and Lc, the optimized value for W f can be

determined. Likewise, if the values of Lc and W f are fixed,

the value of Wg can be used for fine-tuning. Consequently,

the resonator can be implemented in a very flexible way.

III. DESIGN AND IMPLEMENTATION OF THE FIRST BPF

To prove that the presented resonator is useful in practice,

in this Section, an on-chip BPF design example is given, which

uses a combination of the resonator with MIM capacitors.

A. Simplified LC-Equivalent Circuit Model of the First BPF

Using the previously presented resonator as a baseline,

a BPF can be designed by introducing an L-type capacitive

feeding network to the resonator [28], [29]. To understand the

impact on the center frequency as well as the bandwidth of the

filter due to using different feeding capacitances, a simplified

LC-equivalent circuit model is given first as shown in Fig. 6.

It is observed that the equivalent circuit model consists of

two parts: one is the resonator with enhanced self-coupling,

which has been shown in Fig. 3; another part is the L-type

feeding network that has a series capacitance C2 and a shunt

capacitance C3. Both capacitors could affect the resonance

and the bandwidth of the BPF simultaneously. Therefore,

it is critical to choose appropriate values for them based on

predetermined specifications.

To design a BPF, two aspects need to be focused, which

are resonance and bandwidth. For the resonance, the position

of the resonance pole can be found by solving the following

equation:

Yin = 0

where

Yin(ω) =
jωC2 + jωC3 − j 1

ωL2
+ jωC1

1−ω2 L1C1

jωC2 ·
�

jωC3 − j 1
ωL2

+ jωC1

1−ω2 L1C1

� . (3)

Equivalently, the resonance can be solved by

jωC2 + jωC3 − j
1

ωL2
+

jωC1

1 − ω2 L1C1
= 0. (4)
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Fig. 5. EM simulated |S21| of the inductor implemented in TM2. (a) W f and
Wg are fixed as 2 and 4 µm, respectively. (b) Wg and Lc are fixed as 4 and
268 µm, respectively. (c) W f and Lc are fixed as 2 and 268 µm, respectively.

The resonances are found to be located at

f1 =
1

2π
×

�

s −
√

s2 − 4t

2t
(5)

f
0
1 =

1

2π
×

�

s +
√

s2 − 4t

2t
(6)

where

s = C1 L1 + (C1 + C2 + C3)L2 (7)

t = L1 L2C1(C2 + C3). (8)

Fig. 6. Simplified LC-equivalent circuit model of the first BPF.

Fig. 7. 3-D mapping of the resonant frequency f1 against L1 and L2.

As shown, the two resonances f1 and f
0
1 are generated.

For the BPF design, f1 is used to form the passband while

f
0
1 is a spurious harmonic located at the upper-stopband,

which should be suppressed. Though the resonances are related

to C1, C2, C3,L1, and L2, the values of C1, L1, and L2

are determined first by (2), since the resonator can produce

a transmission zero at f0. The resonance of the BPF f1

can be controlled by L1, L2, and C1. The relation among

f1, L1, L2can be described in a 3-D mapping figure, which

is shown in Fig. 7. As can be seen that L2 affects the position

of f1 while L1 almost has no impact on f1. Fig. 8 shows the

3-D mapping relation among f1, L2 and C1. Considering (2),

the position of the transmission zero and the value of C1 can

be decided first, and then the value of (L1 + L2) is decided.

Then, according to Fig. 8, one can determine the values of

L1 and L2 according to the requirement of f1.

The external quality factor and bandwidth of the filter are

mainly controlled by C2 and C3. For the coupling condition,

the external quality factor of the BPF is determined by the

susceptance slope parameter of the BPF, which is calculated by

Qex =
2b

Yo

(9)

where

b =
ωo

2
×

∂Im[Yin]
∂ω

�

�

�

�

ω=ωo

. (10)

Here, b is the susceptance slope parameter of the resonator and

Yin is the input admittance of the BPF considering the effect

of C2 and C3. Replacing b in (9) and using (10), the Qex can
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Fig. 8. 3-D mapping of the resonant frequency f1 against C1 and L2.

be expressed as

Qex =
ωo

2Yo

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C3+
1

ω2
o L2

+
C1




1+ω2
o L1C1

�




1 − ω2
o L1C1

�2
+

2ωoC2
2

Y 2
o

�

1+
�

ωoC2
Yo

�2
2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

(11)

Meanwhile, the external quality factor of the BPF is closely

related to the fractional bandwidth (FBW), which can be

expressed as

Qex =
√

g0g1

FBW
(12)

where g0 and g1 refer to the basic values of the traditional

lowpass filter. As can be seen from (11) and (12), the FBW

and Qex are related to C1, C2, C3,L1, and L2 simultaneously.

Since C1, L1, and L2 are subjected to the selection of the

transmission zero f0 and the resonant pole f1, these three

variables are predetermined and thus cannot be changed for

the BPF design. In this case, only C2 and C3 are used to

control the external coupling as well as the bandwidth of the

filter. The cascaded capacitor C2 and shunted capacitor C3 at

the input–output port can be calculated using the following

equation:

C2 =
J01

ωo

�

1 − (J01/Yo)
2

(13)

C3 =
C2

(ωoC2/Yo)2
(14)

where

J01 =

�

Yob × FBW

g0g1
. (15)

When C1, L1, and L2 are chosen, the susceptance slope

parameter b is fixed as well. Then, the values of C2 and

C3 can be decided based on (13) and (14) with given design

targets for g0, g1, FBW, and Qex. The calculated S-parameters

of the resonator and the BPF are given in Fig. 9, while the

Fig. 9. Calculated S-parameters of the resonator and the first BPF design
example using this resonator.

TABLE II

PHYSICAL DIMENSIONS OF THE FIRST BPF

associated values are selected as C1 = 40 fF, C2 = 120 fF,

C3 = 200 fF, and L1 = L2 = 125 pH. It is seen that the

transmission zero f0 and that of the BPF are located at the

same position. This is because the transmission zero is created

by the resonator and its position is purely determined by (2).

This indicates that the transmission zero can be adopted in

the filter design to enhance the upper-stopband suppression of

the BPF. Moreover, the resonant pole f1 is located at a lower

frequency than f0, which forms the passband of the filter. The

bandwidth and the external quality factor can be controlled

by tuning the values of C2 and C3 which will not affect the

transmission zero. In this case, a BPF can be built based on

the previously presented resonator with an appropriate external

coupling factor provided by the capacitors.

B. Implementation of the First BPF

To prove that the provided analysis is correct, the first BPF

is designed and implemented. The physical dimensions of the

filter are summarized in Table II. As previously discussed,

once the physical dimensions of the resonator are fixed,

the selection of feeding network becomes a vital task for BPF

design. To verify the impact on the frequency responses due to

using a different combination of C2 and C3, the EM simulator

is used in conjunction with swept capacitance values. The

simulated results are given in Fig. 10. As shown in Fig. 10(a),

the capacitance C2 is fixed, and the capacitance C3 is swept

from 0.1 to 0.2 pF with a step of 50 fF. A similar procedure

is repeated with C3 being fixed and C2 being swept, while

the results are given in Fig. 10(b). As illustrated, both feeding

capacitances have a similar impact on the frequency response

of the BPF, including the center frequency, insertion loss,

return loss, and harmonic suppression. In practice, the selec-

tion of the shunt capacitance is more critical because it can be
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Fig. 10. Simulated S-parameters of the first BPF with different feeding
capacitances. (a) C3 is fixed as 0.1 pF. (b) C2 is fixed as 0.2 pF.

significantly affected by the grounded parasitic capacitance.

Thus, a sufficient margin needs to be taken into consideration.

In this design, C2 = 0.16 pF and C3 = 50 fF are used.

In order to ensure not only a miniaturized design but also high

accuracy in terms of the frequency responses, both capacitors

used for the L-type feeding network are implemented using

MIM structures. The 3-D view of the designed BPF and

the implementation of a MIM capacitor is given in Fig. 11.

As shown, the TM1 and M5 are used to implement the top

and bottom plates of the MIM capacitor, respectively.

IV. DESIGN AND IMPLEMENTATION OF THE SECOND BPF

Although it has proved that the presented design method-

ology can be used for BPF design in Section III, the realized

filter is a first-order filter and only has one transmission zero

at high frequency. To improve the selectivity of the passband,

it is desired to design higher order filters which have another

transmission zero at a lower frequency to improved the band

selectivity. To that end, the second design example is presented

in this section with an additional transmission zero at the low

frequency. This transmission zero can be introduced by loading

a series-LC network in the middle point of the folded strip-

line. The schematic is given in Fig. 12. The resonant condition

of the transmission zero ω2 can be written as

jω2Cs − j
1

ω2 Ls

= 0. (16)

Fig. 11. 3-D view of the first BPF with highlighted MIM capacitors.

Fig. 12. Simplified LC-equivalent circuit model of the second BPF.

Therefore, the position of the TZ f2 can be solved as

f2 =
1

2π
×

�

1

LsCs

. (17)

The relations between f2 and the series-LC network Ls

and Cs are presented in Fig. 13. It is possible to design the

transmission zero at any desired position, and the required

value of Ls and Cs for the corresponding f2 can be found

from Fig. 13.

It is observed both from (14) and Fig. 13 that f2 will

move to lower frequencies when Ls or Cs decreases. For

f2, the value of Ls is relatively small and limited within

a small range, which is because Ls refers to the parasitic

inductance. The capacitance Cs is obtained using on-chip MIM

capacitor. Since Ls is almost unchanged, it is possible to

select appropriate value of MIM capacitor Cs to determine

the position of f2. It is noted that the f2 is different from

the expression of fo, where the capacitance C1 is relatively

small and L1 is dominant. The comparisons of the calculated

results between the BPFs with and without the low-frequency

transmission zero is given in Fig. 14. Comparing with the

results presented in Fig. 9, the transmission zero f0 at higher

frequency is located at exactly the same position, which is due

to the reason that the resonant conditions of f0 are the same for
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Fig. 13. 3-D mapping of the resonant frequency f2 against Cs and Ls .

Fig. 14. Comparison of the calculated S-parameters of two designed BPFs
with and without low-frequency transmission zero.

TABLE III

PHYSICAL DIMENSIONS OF THE SECOND BPF

both cases. Meanwhile, it is noted that the resonance pole of

the BPF f1 is slightly shifted to a lower frequency, because f1

is also affected by the series-LC network. To further investigate

the impact on frequency reponses due to the selection of C2

and Cs , EM simulation is used. The simulated results are given

in Fig. 15. As illustrated, both capacitances are critical for the

BPF design. The value of C2 is important for the stopband

attenuation at the low freuqency, while the the value of Cs can

be used to control the location of low-frequency transmission

zero. To achieve an optimized performance, in this design,

Cs = 0.79 pF and C2 = 0.08 pF are used. In addition,

the detailed physical dimensions of the folded strip-line for

this case are summarized in Table III and the 3-D view of this

BPF is given in Fig. 16.

Fig. 15. Frequency responses of the second BPF. (a) Cs = 0.78 pF and C2
is swept from 60 fF to 100 fF with a step of 20 fF. (b) C2 = 80 fF and Cs

is swept from 0.5 pF to 0.9 pF with a step of 0.2 pF.

Fig. 16. 3-D view of the second BPF with highlighted MIM capacitors.

V. MEASUREMENT RESULTS AND DISCUSSION

To evaluate the performance of the implemented resoantor

as well as two BPFs, all three designs are fabricated in a stan-

dard 0.13-µm (Bi)-CMOS technology. Excluding the testing

ground–signal–ground (G-S-G) pads, the chip sizes of the two

BPFs are only 0.076 × 0.296 mm2 and 0.096 × 0.296 mm2,

respectively. The size of the resonator is 0.096 × 0.294 mm2.

The measurements are conducted using on-wafer G-S-G
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Fig. 17. Measured S-parameters. (a) Resonator. (b) First BPF.
(c) Second BPF.

probing from 1 GHz up to 67 GHz with the help of a vector

network analyzer E8361A and N5260-60003 from Keysight

and 100-µm pitch (GSG) Waveguide Infinity Probes from

FormFactor, Inc. The on-wafer calibration was made by using

a conventional short–load–open–thru to move the reference

planes from the connectors of the equipment to the tips of

Fig. 18. EM simulation result of a fourth-order BPF using the presented
resonators.

the RF probes. For comparison, both the EM simulated and

measured |S21| and |S11| of the resonator as well as BPFs are

plotted in Fig. 17(a)–(c), respectively.

As illustrated in Fig. 17(a), the simulated self-resonant

frequency appears at 47 GHz with 25-dB attenuation while the

measured one has a notch at 46 GHz with 28-dB attenuation.

Thus, a reasonable agreement between the EM simulated and

measured results of the resonator is obtained. Moreover, as can

be seen in Fig. 17(b), the first BPF has one transmission zero

at 58 GHz with a peak attenuation of 23 dB. The center fre-

quency of this filter is 27 GHz with an insertion loss of 2.5 dB,

while the |S11| is better than 10 dB from 26 to 31 GHz. As

demonstrated in Fig. 17(c), the second BPF has two transmis-

sion zeros, and a minimum insertion loss of 3.5 dB is found

at 29 GHz. The |S11| is better than 10 dB from 26 to 34 GHz.

Also, more than 20-dB stopband attenuation is achieved from

dc to 20.5 GHz and from 48 to 67 GHz. The discrepancy

between the simulated and measured results and some ripples

that appeared in the measured results above 50 GHz are caused

by the G-S-G pads and testing environment, which are not

included in the EM simulation. The performance summaries of

the presented BPFs as well as the other state-of-the-art designs

are given in Table IV. Due to the lossy silicon substrate and

ohmic loss, silicon-based BPFs have inherently high insertion

loss comparing with their counterparts implemented in other

technologies, such as GaAs. However, the presented designs,

both the first- and second-order ones, have demonstrated an

improved performance in terms of insertion loss, which can

be found in the comparison table.

To further demonstrate that the presented approach is

also feasible for implementation of a high-order BPF filter,

a fourth-order BPF is also designed and the EM simulated

results are given in Fig. 18. This BPF is implemented by

cascading two of the previously presented second-order filters

with additional interstage matching capacitance. It is clearly

seen that a flat passband is formed with excellent cutoff

selectivity and out-of-band rejection. The insertion loss is

around 5.2 dB, and the in-band return loss is below the level

of −17 dB. Moreover, due to the high order of the filter,

the upper-stopband harmonic f
0
1, which is located at 78 GHz,

is suppressed to −30 dB. Fig. 18 indicates that the proposed
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TABLE IV

PERFORMANCE COMPARISONS WITH THE OTHER STATE-OF-THE-ART DESIGNS

method can be used to implement high-order BPFs with better

out-of-band rejections and in-band performance. The higher

the filter order implemented, the higher the insertion loss must

be accommodated. Thus, there is a design tradeoff between

stopband suppression and in-band insertion loss.

VI. CONCLUSION

In this paper, a novel design methodology based on quasi-

lumped elements is presented for miniaturized on-chip BPFs

operating in mm-wave region. One resonator with enhanced

self-coupling and two BPF design examples using this resoan-

tor are given to satisfy different design specifications. To qual-

itatively demonstrate the principle of the presented designs,

simplified LC-equivalent circuit models are given to investigate

their transmission characteristics. Based on the investigation,

the dimensions of both designs are optimized in a quantitative

way using an EM simulator. To further prove that the presented

designs are feasible in practice, all three designs are fabricated

in a standard 0.13-µm (Bi)-CMOS technology. A reason-

able agreement between the EM simulated and measured

results is obtained. According to the overall performances of

both designed BPFs, it can be concluded that the proposed

methodology is particularly suitable for miniaturized design in

silicon-based technologies. In addition, it can be codesigned

with other building blocks where harmonics need to be tuned

or suppressed, such as power amplifiers and frequency multi-

pliers.
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