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ABSTRACT 

 
ULSI systems are designed by electronic design 

automation (EDA) tools with performance figures-of-
merit (FOM) measured by SPICE circuit simulation, in 
which nonlinear transistors are modeled by the compact 
model (CM) with its nominal set of parameters 
extracted from a golden die of the given technology.  
Inevitable technology variations are represented by 
parameter statistical distributions, from which process 
corners and variations are checked by Monte Carlo 
simulations within the design margins. 

In this paper, we examine CM application to 
statistical and probabilistic technology variations based 
on the predictive and non-binnable model with minimal 
physically meaningful parameters.  To capture 
geometry variations physically, a binned model with too 
many empirical fitting parameters can never provide 
physically meaningful statistics.  Statistics and 
probability theories are applied to the mathematical 
CM for describing major transistor FOM and their 
bias, geometry, and process variations as well as 
functional parameter sensitivities.  Propagation of 
model statistics and variations to higher-level primitives 
(such as logic gates) and its application to probabilistic 
CMOS design paradigms is explored. 

Keywords: predictive compact model, probabilistic 
CMOS, process fluctuation, sensitivity analysis, 
statistical variation. 
 

1 INTRODUCTION 
 
As semiconductor technology continues to scale down 

following Moore’s Law, statistical parametric variations 
have become a main show stopper and a dominating factor 
in design/yield considerations before reaching fundamental 
physical and technological limits.  Traditionally, ULSI 
systems are designed by electronic design automation 
(EDA) tools with performance figures-of-merit (FOM) 
measured by SPICE circuit simulation, in which nonlinear 
transistors are modeled by the compact model (CM) with its 
nominal set of parameters extracted from a golden die of 
the given technology.  Inevitable technology variations are 
represented by parameter statistical distributions, from 
which process corners and variations are checked by Monte 

Carlo simulations within the design margins.  In such a 
design paradigm, the assumption is that the compact model 
faithfully captures the variations in all the dimensions of the 
identified parameter variations.  This requires the model to 
be as physical and having a small number of parameters as 
possible in order to have meaningful statistics. 

The “corner” models at the minimum/maximum values 
of the identified parameters from a CM represent the 
“worse/best”-case scenarios, although whether it is “worse” 
or “best” depends on the target parameters, and they usually 
give much larger design margins than realistically required.  
It is based on deterministic evaluations of the CM at its 
corner conditions that do not incorporate any probabilistic 
behaviors and parameter correlations. 

In this paper, we apply our Xsim compact model [1] to 
statistical characterization of the silicon-nanowire (SiNW) 
MOSFET to demonstrate its predictive capability in 
capturing device structural/bias variations deterministically 
and statistically.  The model has a small parameter set (~20) 
and has been fully calibrated with numerical devices as well 
as verified with experimental data.  Similar approaches can 
be applied to bulk/SOI technologies.  Transistor statistical 
characterization is a pre-requisite for accurate, meaningful 
circuit/gate-level statistical analysis.  Application of the 
statistical/probabilistic-CM approach to the probabilistic-
CMOS (PCMOS) [2] design paradigm is explored. 

 
2 TRANSISTOR STATISTICAL 

CHARACTERIZATION 
 
CM is essentially transistor analytical characterization, 

as opposed to TCAD, which is transistor numerical 
characterization, both aim to reproduce the electrical 
terminal characteristics of a real transistor, and both are 
deterministic in nature.  What is being modeled is an 
idealized device with known geometries (gate length, oxide 
and body thickness, etc.) at given applied terminal biases.  
Variations of the device structure can be studied by 
changing the device parameters around their nominally 
designed values.  For a good predictive CM or a well 
calibrated TCAD model, it should capture major variations 
as obtained from fabricated chips.  In the context of 
designing circuits in the presence of parametric variations 
due to process fluctuations, such a predictive or scalable 
model is a pre-requisite, from which corner or statistical 

NSTI-Nanotech 2009, www.nsti.org, ISBN 978-1-4398-1784-1 Vol. 3, 2009 612



 
 

models can be built with meaningful distributions and 
reliable target estimations. 

We take a gate-all-around (GAA) SiNW MOSFET as 
the example to demonstrate the approach to transistor 
statistical characterization.  The conceptual device cross 
section is shown in Fig. 1, with three major structural 
parameters, gate length Lg, NW radius R, and oxide 
thickness Tox.  A corresponding numerical device is also 
simulated by Medici for CM calibration.  The device 
terminal dc characteristic is described by the CM as a 
function of its terminal biases Vgs and Vds, as well as device 
parameters: 

( ), ; , , ,ds gs ds g oxI f V V L R T= K . (1) 
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Figure 1: SiNW structure: three device parameters for variation: 

gate length (Lg), NW radius (R), and oxide thickness (Tox). 
 

2.1 Target–Variable Design Space and 
Model Calibration 

At the single-transistor level, for digital designs, the 
target figures-of-merit (FOM) can be the turn-on (drive) 
current, defined as 

( )1 ; , , ,
gs ds dd

on ds dd g oxV V V
I I f V L R T

= =
≡ = K  (2) 

and the turn-off (leakage) current, defined as 
( )20,

; , , ,
gs ds dd

off ds dd g oxV V V
I I f V L R T

= =
≡ = K  (3) 

where Vdd is the supply voltage, which becomes a parameter 
with possible variations.  For analog designs, FOM can be 
the transconductance 

( )3 ; , , ,
gs ds dd

ds
m dd g ox

gs V V V

dIg f V L R T
dV

= =

≡ = K  (4) 

and the drain conductance 

( )4 ; , , ,
gs ds dd

ds
d dd g ox

ds V V V

dIg f V L R T
dV

= =

≡ = K  (5) 

and its ratio gm/gd gives the intrinsic voltage gain.  Other 
target parameters of interest can be the threshold voltage, 
subthreshold swing, etc. 
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Figure 2: Xsim SiNW model playback (lines) compared with the same Medici devices (symbols) at the nominal NW radius R = 10 nm and 
oxide thickness Tox = 2 nm for various gate lengths Lg indicated in (a) linear region and in saturation region on (b) linear and (c) log scales. 
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 (a) (b) (c) 
Figure 3: (a) 3D surface plot of Ioff vs. Lg and R.  Ioff and Ion contour plots for (b) Lg vs. Vdd and (c) Lg vs. R.  Shaded regions indicate common 

parameter windows for satisfying both Ioff and Ion optimization. 
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Figure 4: 3D surface plot of Ion vs. Lg and Vdd. 

 
In this example, the Xsim model [1] has been calibrated 

to the 45-nm SiNW technology data from Medici with the 
nominal device parameters: Lg = 45 nm, R = 10 nm, Tox = 2 
nm.  The model includes all major short-channel effects [3, 
4] such as vertical/lateral-field mobility, velocity saturation/ 
overshoot, drain-induced barrier lowering (DIBL), series 
resistance, etc.  Playback of I−V characteristics for various 
Lg (from 5 μm down to 20 nm) using a single parameter set 
is shown in Fig. 2.  Model validation with the numerical 
data gives confidence in model prediction for geometry/bias 
variations and application to statistical analysis.  The same 
model (with ~20 parameters) has also been verified with 
measured SiNW devices of various sized. 

For two-target (Ioff and Ion) optimization in the variable 
(Lg, R, Tox, Vdd) design space, target–variable 3D surface 
plots and 2D contour plots can be easily generated.  Fig. 
3(a) shows one example 3D plot of Ioff as a function of Lg 
and R.  Figs. 3(b) and 3(c) are Ioff and Ion optimization 
contour plots for Lg vs. Vdd and Lg vs R, respectively, in 
which a parameter window (shaded region) can be 
identified for a given set of Ioff,max and Ion,min criteria. 

 
2.2 Corner Models 

Corner models are generated with ±12% variations 
around the nominal values of the three identified 
parameters.  Due to physical scalability of the CM, any 
model evaluation within the corners can be validated with a 
corresponding numerical device with reasonable accuracy.  
Fig. 4 shows an example of the Ion surface plot vs. two 
variables, Lg and Vdd.  Along each variable projection, the 
nonlinear target response (value) and its sensitivity 
(derivative) are well captured by the CM in the window of 
individual parameter corners, while the response to the 
combined variations gives 2n target corners where n is the 
number of variables.  Since these are deterministic 
evaluations of the CM, it is expected that the target will be 
bounded by the corner values from which best/worse-case 
scenarios can be determined. 

 
2.3 Statistical Models 
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Figure 5: Individual parameter Gaussian distribution for (a) Lg, (b) 
R, and (c) Tox with mean at nominal value and 3σ = 12% while the 

other two parameters being held at the nominal values; symbols 
indicate nominal (circle) and corner values (±12%). 
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 (a) (b) 
Figure 6: Monte Carlo results for (a) Ioff and (b) Ion variations due 

to Lg variation alone; symbols for the corner model. 
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Figure 7: Monte Carlo results for (a) Ioff and (b) Ion variations due 

to R variation alone; symbols for the corner model. 
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Figure 8: Monte Carlo results for (a) Ioff and (b) Ion variations due 

to Tox variation alone; symbols for the corner model. 
 
For transistor statistical characterization using the CM, 

individual parameters (Lg, R, Tox) are given a Gaussian 
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distribution with the mean (at nominal value) and 3σ 
variations (±12%), and random sampling is performed by 
the Monte Carlo method for a total of N = 1,000 samples.  
Fig. 5 illustrates the three individual parameter Gaussian 
distributions, together with the nominal/corner values. 

Although each run is still the same (deterministic) CM 
evaluation, due to the nature of random sampling, the 
targets also follow some form of a Gaussian distribution, 
and some may be “distorted” due to the nonlinear model.  
This is shown in Figs. 6 to 8 for the Ioff and Ion distributions 
due to one Gaussian random variable while holding the 
other two parameters at their nominal values.  The corner-
model values are also indicated by the symbols, which 
validate the sampled response from Monte Carlo runs. 

With three combined random variations, parameter 
correlations are automatically captured and the joint 
probability distributions of Ioff and Ion are shown in Figs. 
9(a) and 9(b), respectively.  There are eight corners for each 
target and the best/worse-case for Ioff and Ion are found, as 
indicated in the plots, which tally with the physical 
understanding.  The joint distributions fall well within the 
corner-model predictions, and are found to have narrower 
spread than the best/worse-case corners due to 
compensating effects. 
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Figure 9: Monte Carlo results for (a) Ioff and (b) Ion variations due 
to combined Lg, R, Tox variations; symbols for the best/worse-case 

among the 8 corner models. 
 

3 APPLICATION TO PROBABILISTIC-
CMOS PARADIGM 

 
The methodology presented in the previous section for 

transistors can be readily extended to intrinsic logic gates, 
in which gate-level FOM, such as delays, static/dynamic 
power, noise margin, etc., can be similarly characterized.  
Treating CM parameters as distributions or random 
variables and finding the FOM’s distributions by Monte 
Carlo sampling or their moments from probability theory 
provides the notion of a “statistical/probabilistic compact 
model” (stat/prob-CM).  This can be applied to the 
“Probabilistic-CMOS” (PCMOS) [2] design paradigm that 
exploits randomness in futuristic devices by taking 
advantage of probabilistic behaviors into chip designs.  By 
allowing uncertainties in certain parts of the functional 

blocks for trading off power savings, algorithms with 
probabilistic Boolean theories have demonstrated feasibility 
and promising potential for PCMOS in sustaining future 
technology scaling. 

One example of such an application is in the voltage or 
geometry (over)-scaling to trade off power consumption 
with probability of error in logic gates/blocks.  In such a 
new design paradigm, it is essential to link a physically-
based predictive CM to the probability distributions of gate-
level FOM captured through statistical analysis. 

 
4 SUMMARY AND CONCLUSIONS 

 
In summary, a CM approach to transistor statistical 

characterization has been demonstrated with the Xsim 
SiNW model, validated by numerical data and the well 
predicted corner models.  The approach can be generalized 
with more parameters and targets and can be extended to 
bulk/SOI CMOS.  Similar approaches can be applied to 
basic circuit/gate building blocks, in which high-level FOM 
can be statistically characterized and modeled by the 
statistical/probabilistic compact model.  Similar to the role 
CM has played in designing and optimizing system 
performance and correlating to technology variations, the 
systematic study centered on the stat/prob-CM paradigm 
provides a first step towards bridging the physical cause of 
random variations in real wafers to the performance of the 
circuits/systems being designed, in a new paradigm of 
technology/circuit co-design. 
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