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ABSTRACT In model free adaptive control (MFAC), a virtual equivalent dynamic linearized model is built.

The linearization length constants (LLCs) of the virtual equivalent dynamic linearized model are selected by

the practitioner based on experience. In this paper, the optimal LLCs are investigated, and compactmodel free

adaptive control (CMFAC) is introduced for a class of unknown discrete-time nonlinear systems. Compared

with MFAC, the proposed CMFAC does not need to consider the values of LLCs, and the optimal LLCs

are decided by the desired tracking error of systems. Simulation experiments are taken, and the simulation

results indicate that the proposed control algorithm is effective and can achieve asymptotic tracking.

INDEX TERMS Adaptive algorithm, control design, discrete time systems.

I. INTRODUCTION

With the development of control theory, many concepts and

algorithms [1]–[16] have been proposed, such as model free

adaptive control (MFAC), iterative learning control (ILC),

fuzzy control, adaptive control, sliding mode control (SMC),

etc. Besides, some algorithms based on reinforcement learn-

ing [17], [18] have been investigated for control systems.

Nowadays the production technologies and processes become

more and more complex, and it is difficult to obtain an

accurate mechanism model of a physical system due to its

complexity. Besides, the information of systems may be

incomplete, imprecise or inadequate, even establishing a sim-

plified model of systems is also impossible. MFAC [19]–[24]

is a class of data-driven control (DDC) [25], which uses the

input and output (I/O) data of controlled systems and does not

need to consider mechanism models of systems.

The design of MFAC algorithm is directly based on

pseudo-partial-derivatives (PPD), and the values of PPD can

be derived on-line from the I/O information of systems

using parameter estimation algorithms, such as projection
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algorithm, recursive least squares, etc. MFAC has gained a

large amount of interests in the recent years, and MFAC

is used to deal with some unknown discrete-time nonlinear

systems. In MFAC, a virtual equivalent dynamic linearized

model is built by using a dynamic linearization technique,

and those linearization length constants (LLCs) of the virtual

equivalent dynamic linearized model should be set to reason-

able values.

Most researches of MFAC are focused on improving the

accuracy of control systems by obtaining accurate values of

PPD and using other methods [26]–[28]. Large LLCs make

the controller based on MFAC technique contain more infor-

mation, and large LLCs could improve the control perfor-

mances of systems. In [29], a simulation experiment was done

for demonstrating the influence on the control performances

with respect to the choice of LLCs, and simulation results

show that the control performances of systems cannot be

improved so much by increasing the values of LLCs when

LLCs are large enough. Besides, large LLCs may require

more calculation time. It is meaningful to investigate the

optimal LLCs of MFAC methods for unknown discrete-time

nonlinear systems, such as the position control system of a

manipulator end-actuator.
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The LLCs are selected by the practitioner based on experi-

ence, and the existing examples show that they could always

be chosen quite low. Up to now, we have not found any intro-

duction about optimal LLCs of MFAC methods for unknown

discrete-time nonlinear systems. Although, MFAC has been

widely used in control systems, some matters of MFAC need

to be further investigated [30], such as the optimal LLCs,

the relation between the change speed of PPD and system

stability, etc. In this paper, the optimal LLCs are investi-

gated, and inspired by broad learning system [31] and error

minimized extreme learning machine [32], compact model

free adaptive control (CMFAC) is introduced for the position

control system of a manipulator end-actuator. This paper

is structured as follows: the full form dynamic lineariza-

tion of plant (FFDLp) and MFAC are briefly introduced in

Section II. Then the proposed CMFAC is stated in Section III.

Section IV and V present the simulation results and

conclusion, respectively.

II. MODEL FREE ADAPTIVE CONTROL
Consider the single input single output (SISO) unknown

discrete-time nonlinear plant

y(k + 1) = f (y(k), . . . , y(k − Ly), u(k), . . . , u(k − Lu)) (1)

where f (·) represents an unknown nonlinear function, Ly is

the unknown order of output y(k), and Lu is the unknown

order of input u(k).

To make further study, the following assumptions are used.

Assumption 1: The system (1) is observable and control-

lable in following meaning, that is, to the expected bounded

system output signal y∗(k+1), there exist a bounded feasible

control input signal which drives the system output equal to

the expected output.

Assumption 2: f (·) is a smooth nonlinear function, and the

partial derivatives of f (·) with respect to u(k), . . . , u(k − Lu)

and y(k), . . . , y(k − Ly) are continuous.

Assumption 3: The system (1) is generalized Lipschitz,

that is, satisfying

|△y(k + 1)| ≤ Lb‖△θ (k)‖, (2)

and

△θ (k) = [△y(k), △u(k)] (3)

where

△y(k + 1) = y(k + 1) − y(k), (4)

△y(k) =
[

△y(k), . . . ,△y(k − Ly)
]

,

△u(k) = [△u(k), . . . ,△u(k − Lu)] , (5)

here Lb is a constant, and Lb > 0.

Assumption 4: η(y(k − 1), . . . , y(k − Ly − 1), u(k −

1), . . . , u(k−Lu−1)) is a vector-valued function, and define

η(y(k − 1), . . . , y(k − Ly − 1), u(k − 1), . . . , u(k − Lu − 1))

, f (y(k − 1), . . . , y(k −My − 1), y(k −My − 1),

· · · , y(k − Ly), u(k − 1), . . . , u(k −Mu − 1),

u(k −Mu − 1), . . . , u(k − Lu))

− f (y(k − 1), . . . , y(k −My − 1), y(k −My − 2),

· · · , y(k − Ly − 1), u(k − 1), . . . , u(k −Mu − 1),

u(k −Mu − 2), . . . , u(k − Lu − 1)) (6)

where Ly is the unknown order of output y(k), and Lu is the

unknown order of input u(k); My and Mu are LLCs of the

virtual equivalent dynamic linearized model. Suppose that

η(y(k − 1), . . . , y(k − Ly − 1), u(k − 1), . . . , u(k − Lu − 1))

is bounded.

For the nonlinear system (1), satisfying assumptions

(1)-(3), there must be χ(k).When ‖△θ (k)‖ 6= 0, Equation (1)

can be rewritten as

y(k + 1) = y(k) + △u(k)χu(k) + △y(k)χy(k)

= y(k) + △θ (k)χ (k) (7)

where

χ (k) =
[

χy(k),χu(k)
]T

=
[

χ1(k), . . . , χLu+Ly (k)
]T

, (8)

and Equation (7) is also called full form dynamic linearization

of system (1).

Proof: Using (1) and Cauchy differential mean value

theorem, we can get that

△y(k + 1)

= f (y(k), . . . , y(k − Ly), u(k), . . . , u(k − Lu))

− f (y(k − 1), . . . , y(k − Ly − 1), u(k − 1), . . . ,

u(k − Lu − 1))

=
∂f ∗

∂y(k)
△y(k) + · · · +

∂f ∗

∂y(k − Ly)
△y(k − Ly)

+
∂f ∗

∂u(k)
△u(k) + · · · +

∂f ∗

∂u(k − Lu)
△u(k − Lu). (9)

Define

χ(k) ,

[

∂f ∗

∂y(k)
, . . . ,

∂f ∗

∂y(k − Ly)
,

∂f ∗

∂u(k)
, . . . ,

∂f ∗

∂u(k−Lu)

]T

,

(10)

then we can get (7).

A. DESIGN OF MFAC

Lemma 1: If A, X and CA−1B+ X−1 are reversible, then

[A+BXC]−1=A−1 − A−1B
[

CA−1B+ X−1
]−1

CA−1 (11)

where A, B, X and C are matrices.

Consider the following cost function with an additional

penalty on the abrupt change of estimated parameter:

J (u(k)) =
∣

∣y∗(k + 1)−y(k + 1)
∣

∣

2
+λ |u(k)−u(k − 1)|2 (12)

where y∗(k+1), y(k+1) and u(k) indicate the desired output

signal, output signal and control signal, respectively, and λ is

a constant.
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Substituting (7) into (12), differentiating (12) with respect

to u(k) and setting it to zero yields

u(k) = u(k − 1) +
χLy+1(k)

λ + |χLy+1(k)|2

×(y∗(k + 1) − y(k) − △θ ′(k)χ ′(k)) (13)

where

△θ ′(k) = [△y(k), . . . ,△y(k − Ly),

△ u(k − 1), . . . ,△u(k − Lu)], (14)

and

χ ′(k)=
[

χ1(k), . . . ,χLy (k), χLy+2(k), . . . , χLy+Lu (k)
]T

. (15)

Consider the following cost function

Q(χ ) =
1

2

N
∑

k=1

(△y(k + 1) − △θ (k)χ )2

+
1

2
(χ − χ̂ (0))TP−1

0 (χ − χ̂ (0)). (16)

Set

Y (k + 1) = [△y(1), △y(2), . . . ,△y(k + 1)]T , (17)

and

ψ(k) = [△θ (0), △θ (1), . . . ,△θ (k)]T . (18)

Then the cost function (16) can be rewritten as

Q(χ ) =
1

2
[Y (k + 1) − ψ(k)χ ]T [Y (k + 1) − ψ(k)χ ]

+
1

2
(χ − χ̂ (0))TP−1

0 (χ − χ̂ (0)). (19)

Define

P−1(k) , (ψT (k)ψ(k) + P−1
0 ) (20)

where

ψT (k) = [ψT (k − 1), △θT (k)]. (21)

Substituting (21) into (20), the following equation can be

obtained

P(k) =
[

P−1(k − 1) + △θT (k)△θ (k)
]−1

. (22)

Using Lemma 1, the update formula of P(k) is

P(k) = P(k − 1) −
P(k − 1)△θT (k)△θ (k)P(k − 1)

1 + △θ (k)P(k − 1)△θT (k)
. (23)

Differentiating (19) with respect to χ and setting it to zero

yields
[

ψT (k)ψ(k) + P−1
0

]

χ = P−1
0 χ̂(0)+ψT (k)Y (k + 1). (24)

Then we can get the estimated value of χ at time k + 1, and

χ̂ (k + 1) =
[

ψT (k)ψ(k) + P−1
0

]−1
[P−1

0 χ̂ (0)

+ψT (k)Y (k + 1)]

= P(k)[P−1
0 χ̂ (0) + ψT (k − 1)Y (k)

+△θT (k)△y(k + 1)]

= P(k)
[

P−1(k − 1)χ̂ (k) + △θT (k)△y(k + 1)
]

= P(k)
[

P−1(k) − △θT (k)△θ (k)
]

χ̂ (k)

+P(k)△θT (k)△y(k + 1)

= χ̂ (k) + P(k)△θT (k)(△y(k + 1)

−△θ (k)χ̂ (k)). (25)

Replace χ (k) with χ̂ (k), then we can get that the adaptive

control law of MFAC is

u(k) = u(k − 1) +
χ̂Ly+1(k)

λ + |χ̂Ly+1(k)|2
(y∗(k + 1) − y(k)

−△θ ′(k)χ̂ ′(k)) (26)

where

△θ ′(k) = [△y(k), . . . ,△y(k − Ly),

△u(k − 1), . . . ,△u(k − Lu)], (27)

and

χ̂
′(k)= [χ̂1(k), . . . , χ̂Ly (k), χ̂Ly+2(k),. . . , χ̂Ly+Lu (k)]

T . (28)

The updating algorithm of χ̂ (k + 1) and P(k) are

χ̂ (k + 1) = χ̂ (k) +
P(k − 1)△θT (k)

1 + △θ (k)P(k − 1)△θT (k)
×(△y(k + 1) − △θ (k)χ̂ (k)) (29)

and

P(k) = P(k − 1) −
P(k − 1)△θT (k)△θ (k)P(k − 1)

1 + △θ (k)P(k − 1)△θT (k)
. (30)

III. DESIGN OF CMFAC
The precondition of designing controllers is that Ly and Lu
are known, however in actual systems it is difficulty to get the

values of Ly and Lu. In some cases, the values of Ly and Lu
are changeable, and the values of Ly and Lu also may be very

big. In order to design MFAC, a compact full form dynamic

linearization (CFFDL) is investigated by some scholars. For

the unknown nonlinear system (1), satisfying assumptions

(1)-(4), Equation (1) can be rewritten as

△y(k + 1) = △θ̄ (k)χ̄ (k) (31)

where

△θ̄ (k)= [△y(k), . . . ,△y(k −My),△u(k), . . . ,△u(k −Mu)],

(32)

and

χ̄ (k) =
[

χ1(k), χ2(k), . . . , χMy+Mu (k)
]T

, (33)

and χ̄ (k) is called pseudo-partial-derivative vector.

Proof: Equation (1) gives

△y(k + 1) = f (y(k), . . . , y(k − Ly), u(k), . . . , u(k − Lu))

−f (y(k − 1),. . . , y(k − Ly − 1), u(k−1), . . . ,

u(k − Lu − 1))
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= f (y(k), . . . , y(k −My), y(k −My − 1),

. . . , y(k − Ly), u(k), . . . , u(k −Mu),

u(k −Mu − 1), . . . , u(k−Lu))

− f (y(k−1), . . . , y(k−My − 1),y(k−My −1),

. . . , y(k − Ly), u(k − 1), . . . , u(k −Mu − 1),

u(k −Mu − 1), . . . ,u(k−Lu))

+f (y(k−1), . . . ,y(k −My−1), y(k −My−1),

. . . , y(k−Ly), u(k − 1), . . . ,u(k−Mu− 1),

u(k −Mu − 1), . . . ,u(k − Lu))

− f (y(k−1), . . . , y(k−Ly − 1), u(k − 1), . . . ,

u(k − Lu − 1))

=
∂f ∗

∂y(k)
△y(k) + · · · +

∂f ∗

∂y(k −My)
△y(k −My)

+
∂f ∗

∂u(k)
△u(k)+ · · · +

∂f ∗

∂u(k−Mu)
△u(k−Mu)

+η(y(k − 1), . . . , y(k − Ly − 1),

u(k − 1), . . . , u(k − Lu − 1)). (34)

Because η(y(k − 1), . . . , y(k − Ly − 1), u(k − 1), . . . ,

u(k − Lu − 1)) is bounded, there must be χ̄∗(k), and

η(y(k − 1), . . . , y(k − Ly − 1), u(k − 1), . . . , u(k − Lu − 1))

= △θ̄ (k)(χ̄∗(k))T . (35)

Then

χ̄ (k) = [
∂f ∗

∂y(k)
, . . . ,

∂f ∗

∂y(k −My)
,

∂f ∗

∂u(k)
, . . . ,

×
∂f ∗

∂u(k −Mu)
]T + (χ̄∗(k))T , (36)

hence (31) can be obtained.

My and Mu are called LLCs of the virtual equivalent

dynamic linearized model (31), and the LLCs My and Mu

could be set to be values of Ly and Lu, respectively, if the

order Ly and Lu are known a priori . Otherwise, the LLCs

My and Mu should be set to be reasonable values according

to complexity of plants. The LLCs My and Mu are selected

by the practitioner based on experience, and the existing

examples show that they could always be chosen quite low.

The control performances of systems cannot be improved so

much by increasing the values of LLCs when LLCs are large

enough. Besides, large LLCs may require more calculation

time. In this paper, CMFAC is introduced, and the optimal

LLCsMy andMu are decided by the desired tracking error of

systems. In order to get rid of the trouble that the proposed

CMFAC need initial data of systems and accelerate the speed

for system identification, the variable forgetting factor a(k) is

used in the proposed CMFAC. Fig. 1 shows the process of the

proposed CMFAC. The proposed CMFAC can be divided into

three phases, the first phase is the initialization of systems,

the second phase is the updating of CMFAC, and the third

phase is the adjustment of the LLCs My and Mu.

FIGURE 1. The process of the proposed CMFAC: (a) the simplified process
of the proposed CMFAC, (b) the detailed process of the proposed CMFAC.

In order to simplify the calculation of the proposed

CMFAC, Equation (31) can be rewritten as

△y(k + 1) = △θ1(k)χ1(k) (37)

where

△θ1(k) = [△y(k), △u3(k) · · · , △y(k −My), △u3(k −Mu)],

(38)

χ1(k) =
[

χ1
1 (k), χ

1
2 (k), . . . , χ

1
My+Mu

(k)
]T

, (39)
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u3(k) is the control signal of CMFAC, and u3(k) is defined in

below.

A. INITIALIZATION PHASE

1) Initialize systems: set y(5) = y(4) = y(3) = y(2) =

y(1) = 0, u3(5) = u3(4) = u3(3) = u3(2) = u3(1) = 0,

My(6) = My(5) = My(4) = My(3) = My(2) =

My(1) = 1, and Mu(6) = Mu(5) = Mu(4) = Mu(3) =

Mu(2) = Mu(1) = 1.

2) Set Mn(5) = My(5) + Mu(5), PI = 1000, En = 0.01,

and I = 0.

3) Set λ = 0.01, a0 = 0.99, a(5) = 0.95, Vkk = 30,

Ln = 20, VE = 20,

P(5) = PI × IMn(5), (40)

and

χ̂
1(6) = [0.01, 0.01]T (41)

where IMn(5) denotes Mn(5) ×Mn(5) identify matrix.

B. THE UPDATING OF CMFAC

1) Set: I ⇐ I + 1.

2) Calculate u3(k)

u3(k) = u3(k − 1)+
χ̂1
2 (k)

λ + |χ̂1
2 (k)|

2
(y∗(k + 1) − y(k)

−△θ11(k)χ̂11(k)) (42)

△θ11(k) =

{

M if mod(Mn(k), 2) = 1
N if mod(Mn(k), 2) = 0

(43)

where

M = [△y(k), △y(k − 1), △u3(k − 1), . . . ,

△y(k −My) ] , (44)

N = [△y(k), △y(k − 1), △u3(k − 1), . . . ,

△u3(k −Mu) ] , (45)

χ̂
11(k) =

[

χ̂1
1 (k), χ̂

1
3 (k), . . . , χ̂

1
My+Mu−1(k)

]T
. (46)

3) Calculate Er (k),

Er (k) = V/VE (47)

where

V =

k−1
∑

i=k−VE

(y∗(i) − y(i)).

4) Update χ̂1(k + 1) and P(k)

χ̂
1(k + 1) = χ̂

1(k)

+
P(k − 1)(△θ1(k))T

a(k − 1) + △θ1(k)P(k − 1)(△θ1(k))T

×(△y(k + 1) − △θ1(k)χ̂1(k)), (48)

and

P(k) =
1

a(k − 1)
[P(k − 1)

−
P(k − 1)(△θ1(k))T△θ1(k)P(k−1)

a(k−1)+△θ1(k)P(k − 1)(△θ1(k))T
]. (49)

5) Update the forgetting factor a(k)

a(k) = a0a(k − 1) + 1 − a0. (50)

6) When the tracking error does not meet the requirements

of systems, the LLCMy or the LLCMu will be adjusted.

The core of the proposed CMFAC is the adjustment of

the LLCsMy andMu. if Er (k) ≥ En∧Mn(k) ≤ Ln∧I ≥

Vkk then execute II; or I.

I ) k ⇐ k + 1, My(k + 1) = My(k),Mu(k + 1) =

Mu(k),Mn(k + 1) = My(k + 1)+Mu(k + 1), and go to

Subsection III-B.

II ) Go to Subsection III-C.

C. THE ADJUSTMENT OF THE LLCS MY AND Mu

1) When the LLC My or the LLC Mu are increased,

it is equivalent to add a new column to △θ1(k).

if mod(Mn(k), 2) = 1 then execute ii; or i.

i)

△δ = △y(k −My − 1), (51)

and

Mu(k + 1) = Mu(k)

My(k + 1) = My(k) + 1. (52)

ii )

△δ = △u3(k −Mu − 1), (53)

and

Mu(k + 1) = Mu(k) + 1

My(k + 1) = My(k). (54)

2)

△θ1(k + 1) =
[

△θ1(k) | △δ

]

. (55)

3) The pseudo inverse of the new (△θ1(k + 1))+ is

(△θ1(k + 1))+ =

[

(△θ1(k))+ − db

b

]

(56)

where

d = (△θ1(k))+△δ, (57)

b =

{

c−1 ifc 6= 0

(1 + dT d)−1dT (△θ1(k))+ ifc = 0,
(58)

and

c = △δ − △θ1(k)d. (59)

Again, calculate χ̆1(k + 1)

χ̆1(k + 1) =

[

χ̂
1(k + 1) − db△y(k + 2)

b△y(k + 2)

]

. (60)

In actual systems, the value of △y(k + 2) can not be

obtained at time k . In this paper, we replace △y(k + 2)
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with a historical data△δ of Y (k+1), Equation (60) can

be rewritten as

χ̆1(k + 1) =

[

χ̂
1(k + 1) − db△δ

b△δ

]

, (61)

then the new χ̂1(k + 1) is

χ̂
1(k + 1) = χ̆1(k + 1). (62)

4) Initialize P(k),

Mn(k + 1) = My(k + 1) +Mu(k + 1), (63)

and

P(k) = PI × IMn(k+1) (64)

where IMn(k+1) denotesMn(k+1)×Mn(k+1) identify

matrix.

5) Set I = 1, and go to the updating of MFAC III-B.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In order to indicate the effectiveness of the proposed CMFAC

algorithm, three simulation experiments are done. The first

simulation experiment is done for the purpose of testing the

effectiveness of the proposed CMFAC algorithm in obtain-

ing the optimal LLCs. In the first simulation experiment,

Ly = 4, and Lu = 3. In the second simulation experiment,

the proposed CMFAC algorithm is considered for the position

control system of a manipulator end-actuator. In the third

simulation experiment, the proposed CMFAC is compared

with the MFAC based on RLS [30, Equation.5.49] for a

unknown discrete-time nonlinear system. In order to show

the effectiveness of algorithms, the integral square error (ISE)

index of predicted output (65) is introduced

eISE =

2000
∑

j=1

(y∗(j) − y(j))2. (65)

A. THE FIRST EXPERIMENT

In the first simulation experiment, the following discrete-time

system is considered

y(k + 1) = −3y(k) + 2y(k − 1) − y(k − 2) + 1.5y(k − 3)

+2.1u(k) − 2u(k − 1) + 1.2u(k − 2). (66)

In order to simplify the calculation of the proposed

CMFAC, the system (66) is rewritten as

△y(k + 1) = −3△y(k) + 2.1△u(k) + 2△y(k − 1)

−2△u(k − 1) − △y(k − 2) + 1.2△u(k − 2)

+1.5△y(k − 3). (67)

The desired reference signal is

y∗(k + 1) = 2sin(0.5πkTs) + 1.5cos(πkTs) (68)

where Ts denotes sampling time, and Ts = 0.01.

The control law is designed as (42).

FIGURE 2. The tracking curves of simulation experiment 1.

FIGURE 3. The tracking error of simulation experiment 1.

FIGURE 4. The LLCs of the proposed CMFAC.

Fig. 2-Fig. 5 denote the first simulation experimental

results. Fig. 2 plots the tracking curves. In Fig. 3, the curve

denotes tracking error change trend. Fig. 4 plots the change

curves of the LLCs My and Mu. When k = 1, we set My =

Mu = 1. The LLCs My, Mu of the proposed CMFAC can

be adjusted automatically, and finally My = Ly = 4, and

Mu = Lu = 3. Fig. 4 indicates that the proposed CMFAC
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FIGURE 5. The PPD of simulation experiment 1.

TABLE 1. The values of PPD.

is effective in obtaining the optimal LLCs. Fig. 5 plots the

changing curves of the values of PPD. The comparison results

of the actual values of PPD and the estimated values of PPD

are show in Table 1. The comparison results of Table 1 and

the change curves of Fig. 4 and Fig. 5 show that the proposed

CMFAC also is effective in estimating the values of PPD.

B. THE SECOND EXPERIMENT

Most industrial manipulators have six degrees of freedom,

and a cooperative robot is implemented by six joints (J1 to J6),

respectively. The six joints (J1 to J6 ) all have servomotor and

decelerator. In this paper, the J6 joint is discussed. In the sec-

ond simulation experiment, the proposed CMFAC is consid-

ered for the position control system of a manipulator end-

actuator, besides, a control algorithm based on mechanism

model is used for the contrast simulation experiment. The

position control system of a manipulator end-actuator can be

written as

y(k + 1)=−2y(k)+0.8y(k−1)+0.5u(k)+g(y(k))+τ (k+1)

(69)

where g(y(k)) indicates the unmodeled dynamic characteris-

tic, τ (k + 1) is random noise, and

g(y(k)) = 0.5cos(0.5πk)y(k − 1). (70)

The system (69) can be rewritten as

y(k + 1) = y(k) + χ1
1 (k)△y(k) + χ1

2 (k)△u(k)

+χ1
3 (k)△y(k − 1) + d(k). (71)

FIGURE 6. The tracking curves of simulation experiment 2.

where d(k) = g(y(k))− g(y(k − 1))+ τ (k + 1)− τ (k) is the

disturbance signal.

The desired reference signal of the second simulation

experiment is same with the desired reference signal of the

first simulation experiment.

The control law of the proposed CMFAC is designed

as (42).

The control law of the control algorithm based on

mechanism model is

u1(k) = (y∗(k + 1) + 2y(k) − 0.8y(k − 1))/(0.5). (72)

The parameters of the proposed CMFAC are showed

in Subsection III-A, we can get the main results depicted

in Fig. 6-Fig. 9. y(k) and y1(k) are the output of the controlled

system based on the proposed CMFAC and the output of the

controlled system based on mechanism model, respectively,

and eRROR(k) and e1RROR(k) are the tracking errors of the

proposed CMFAC and the control algorithm based on mech-

anism model, respectively. Fig. 6 plots the tracking curves.

In Fig. 7, the curves denote tracking error change trends.

Fig. 8 and Fig. 9 show the change curves of LLCs and the

values of PPD, respectively. Due to the unmodeled dynamic

characteristic g(y(k)) and τ (k + 1), the control accuracy of

the control algorithm based on mechanism model becomes

bad, besides, we can get that the values of χ̂1
1 (k), χ̂

1
2 (k) and

χ̂1
3 (k) are changeable, and the tracking error of the proposed

CMFAC is smaller than the tracking error of the control

algorithm based on mechanism model.

C. THE THIRD EXPERIMENT

In this simulation experiment, the proposed CMFAC is com-

pared with the MFAC based on RLS [30, Equation 5.49] for

the following system

y(k + 1) =
1.5y(k)y(k − 1)

1 + y2(k) + y2(k − 1)
+ u(k)

+ 0.35sin(y(k) + y(k − 1)). (73)

The parameters of the proposed CMFAC are showed in

Subsection III-A. Fig. 10 plots the change curves of tracking
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FIGURE 7. The tracking errors of simulation experiment 2.

FIGURE 8. The LLCs of the proposed CMFAC.

FIGURE 9. The PPD of simulation experiment 2.

errors, and eRROR(k) and e2RROR(k) are the tracking errors

of the proposed CMFAC and the MFAC based on RLS [30,

Equation 5.49], respectively.When k = 1, we set the LLCs of

the proposed CMFAC areMy = 1Mu = 1.When the tracking

error of systems does not meet requirement, the LLCs of the

proposed CMFAC can be adjusted automatically. However

the LLCs of the MFAC based on RLS are fixed values.

FIGURE 10. The tracking errors of simulation experiment 3.

FIGURE 11. The LLCs of the proposed CMFAC.

Fig. 11 plots the change curves of the LLCs in the proposed

CMFAC. In Table 2, the ISE indexes of the proposed CMFAC

and the MFAC based on RLS are compared, and Table 2

shows the ISE index of the proposed CMFAC is smaller than

the ISE index of the MFAC based on RLS. Table 2 and the

tracking errors of Fig. 10 show that the proposed CMFAC

has a better tracking effect than the MFAC based on RLS

for the system (73), and the proposed CMFAC is effective in

improving system performances by using reasonable LLCs.

TABLE 2. The ISE indexes of those two algorithms.

V. CONCLUSION

DDC uses the I/O data of the controlled systems to realize

the adaptive control of a system, and it can deal with some

unknown nonlinear systems. MFAC is a class of DDC, and

MFAC builds a virtual equivalent dynamic linearized model

by using a dynamic linearization technique for unknown

nonlinear systems. In this paper, the optimal LLCs are

investigated. Inspired by broad learning system and error
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minimized extreme learning machine, CMFAC is introduced.

The advantage of the proposed CMFAC is that we do not

need to consider the LLCs, and the optimal LLCs are decided

by the desired tracking error of systems. In order to indicate

the effectiveness of the proposed CMFAC algorithm, three

simulation experiments are done, and the simulation results

show that the proposed CMFAC is effectives in obtaining the

optimal LLCs and improving system performances by using

reasonable LLCs.
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