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Compact Modeling of Nonlinear Analog Circuits
Using System Identification Via Semidefinite

Programming and Incremental Stability Certification
Bradley N. Bond, Zohaib Mahmood, Yan Li, Ranko Sredojević, Alexandre Megretski,

Vladimir Stojanović, Yehuda Avniel, and Luca Daniel

Abstract—This paper presents a system identification tech-
nique for generating stable compact models of typical analog
circuit blocks in radio frequency systems. The identification
procedure is based on minimizing the model error over a given
training data set subject to an incremental stability constraint,
which is formulated as a semidefinite optimization problem.
Numerical results are presented for several analog circuits,
including a distributed power amplifier, as well as a MEM device.
It is also shown that our dynamical models can accurately predict
important circuit performance metrics, and may thus, be useful
for design optimization of analog systems.

Index Terms—Analog macromodeling, model reduction, non-
linear systems, semidefinite programming, system identification.

I. Introduction

A
UTOMATIC generation of accurate compact models for

nonlinear circuits (e.g., power amplifiers, or low-noise

amplifiers) could enable very efficient simulation, design and

optimization of complex integrated circuit systems. However,

the only tool currently available to analog designers and

system architects, is to manually generate analytical or semi-

empirical behavioral models. Such a critical procedure mostly

relies on the designers’ experience and intuition, together

with time consuming simulations. Circuit simulators (such as

SPICE and SPECTRE) automatically construct large dynam-

ical system models from schematics by combining conserva-

tion laws (e.g., Kirchhoff’s current law) with the constitutive

relations for each device in the system

q̇(x) = f (x, u). (1)

Here u is the input, x is the possibly huge state vector

containing, for instance, all of the node voltages and inductor

Manuscript received June 14, 2009; revised September 17, 2009 and Decem-
ber 9, 2009. Date of current version July 21, 2010. This work was supported in
part by the DARPA, under Grant N66001-09-1-2068, the Interconnect Focus
Center, one of five research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation and DARPA program, and
by the Center for Integrated Circuits and Systems at Massachusetts Institute
of Technology, Cambridge, MA. This paper was recommended by Associate
Editor G. Gielen.

The authors are with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: bnbond@mit.edu; zohaib@mit.edu; liyan@mit.edu;
rasha@mit.edu; ameg@mit.edu; vlada@mit.edu; avniel@mit.edu;
luca@mit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2049155

currents in the circuit, and q(x) and f (x, u) are the nonlinear

vector functions defined by the circuit schematic and device

models. Simulation of a complex analog system, such as a

radio frequency (RF) receiver chain, is therefore computation-

ally extremely expensive, as it may require solving thousands

of coupled nonlinear ordinary differential equations (ODEs).

Hence, during the recent years, a great effort has been dedi-

cated by researchers to develop techniques for generating auto-

matically accurate compact models of nonlinear system blocks.

The majority of existing compact modeling techniques in-

volve “reducing” the large nonlinear systems produced by cir-

cuit schematics, or parasitic extractors. Some techniques have

been proven on weakly nonlinear systems [1]–[5], while others

can handle strongly nonlinear systems [6]–[13]. All these

approaches typically employ a linear state-space projection,

x = V x̂ (where V is a “tall and skinny” change of basis matrix)

and introduce low-complexity approximations q̂(x̂) and f̂ (x̂, u)

in order to obtain a low-order system of nonlinear ODEs

˙̂q(x̂) = f̂ (x̂, u).

However, one shortcoming of such techniques is the

extreme difficulty in preserving stability in the reduced

model. Additionally, such model reduction approaches require

knowledge of the original model expressions q(x) and f (x, u)

from (1). This requires access to not only the schematic of

the circuit, which is typically readily available, but also the

exceedingly complicated transistor models, which are not

always easily accessible.

In this paper, we present an alternative approach to achieve

the same final goal, i.e., the automatic generation of accurate

compact models, without “reducing” a given large system,

but rather using a system identification approach to model

reduction. The term system identification (SYSID) refers to

the task of finding a stable dynamical model of low complexity

that delivers the best match for a collection of dynamical

input–output (or input-state-output) data. In classical control

applications, the data is usually available in the form of actual

physical measurements, and SYSID provides adequate models

for systems for which no reliable first principles equations

are available, either due to parameter uncertainty or system

complexity. In integrated circuit applications, SYSID is the

only viable option in generating compact models of circuits

blocks when only input–output physical measurements are

0278-0070/$26.00 c© 2010 IEEE
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available. In addition, although it is true that in many cases

circuit schematics of the original system are actually available,

SYSID often still remains the most practical solution to

compact modeling.

Within the control community, SYSID for linear-time-

invariant (LTI) system is well understood and mature [14]. One

can argue that also some of the approaches developed by the

Electronic Design Automation community for LTI model order

reduction could be interpreted as SYSID approaches, such as

those based on transfer function fitting via least squares or

optimization techniques [15]–[18].

Conversely, SYSID for nonlinear systems is still a problem

that needs to be addressed on a case by case basis [19], [20].

Among the most general and used approaches in behavioral

modeling one finds the Volterra series method [21]–[23]. In

some more specific approaches, one assumes an internal struc-

ture (e.g., a Wiener [24], [25], or Wiener–Hammerstein [14],

[19], [26], [27] or Wiener–Hammerstein with feedback struc-

ture [28]), and proceeds in identifying the coefficients for such

structures [29], [30]. As a general observation, a significant

difficulty in implementing any kind of SYSID based approach

is caused by lack of efficient SYSID tools for generic nonlinear

systems.

In this paper, we propose a new SYSID method for

compact modeling of nonlinear circuit blocks and micro-

electromechanical (MEM) components. Our approach is based

on optimizing system coefficients to match given data while

simultaneously enforcing stability. What distinguishes our

SYSID method from existing “reduction” approaches is the

ability to explicitly preserve the properties of nonlinear sys-

tems, such as stability, while controlling model accuracy. The

efficiency issues encountered by past SYSID techniques are

addressed in our approach by adopting recently developed

semidefinite programming techniques for nonlinear system

analysis [31]. Additionally, we have provided MATLAB code

implementing our approach [32] to aid the reader in imple-

menting our technique.

The remainder of the paper is organized as follows. In

Section II, we summarize related background. In Section III,

we develop the theoretical framework for our proposed SYSID

approach to compact modeling of nonlinear systems and

formulate the identification problem as a semidefinite program.

In Section IV, we present one approach to solve efficiently

the previously derived optimization problem by selecting a

polynomial basis and rational model formulation, resulting in

a sum of squares (SOS) problem. In Section V, we describe

in detail how to implement the proposed procedure using

freely available software. Finally, in Section VI we show the

effectiveness of the proposed approach in modeling practical

circuit blocks, such as low-noise amplifiers, power amplifiers,

and MEM devices. The proposed approach is also compared

to several existing SYSID techniques.

II. Background

A. Stability of Dynamical Systems

A difficult, yet crucial, aspect of model reduction is the

preservation of stability in the reduced model. Most real

physical systems behave in a stable manner, and it is therefore

extremely important to preserve such behavior in reduced

models. For example, stability might require that bounded

inputs produce bounded outputs, or that the system does not

generate energy.

One strong notion of stability is “incremental stability,”

which guarantees that perturbations to solutions decay to zero.

As a result, incremental stability is an extremely important

property for the purpose of simulation. Consider a nonlinear

discrete time system implicitly defined as follows:

F (v[t], v[t − 1], . . . , v[t − m], u[t], . . . , u[t − k]) = 0

G(y[t], v[t]) = 0 (2)

where v[t] ∈ RN is a vector of internal variables, y[t] ∈ RNy

is the output, u[t] ∈ RNu is the input, F ∈ RN is a dynamical

relation between the internal variables and the input, and G ∈

R
Ny is a static relationship between the internal variables and

the output.

Definition 1: System (2) is well-posed if given any ar-

bitrary variables v1, . . . , vm ∈ RN and u0, . . . , uk ∈ RNu ,

there exist unique solutions v0 ∈ R
N and y ∈ R

Ny to

F (v0, v1, . . . , vm, u0, . . . , uk) = 0 and G(y, v0) = 0.

Definition 2: System (2) is incrementally stable if it is well-

posed and, given any two sets of initial conditions v̄[t0 −

1], . . . , v̄[t0 − m] and v̂[t0 − 1], . . . , v̂[t0 − m], the resulting

two solutions to (2) in response to the same input u satisfy

∞
∑

t=t0

‖ȳ[t] − ŷ[t]‖2 < ∞ (3)

for all initial conditions and inputs.

Note that incremental stability implies traditional weaker

notions of stability.

For the remainder of the paper, we shall use the following

compact notation:

V = [v0, . . . , vm], U = [u0, . . . , uk] (4)

where v0, . . . , vm and u0, . . . , uk are arbitrary variables, not

necessarily inputs and outputs satisfying (2)

V+ = [v0, . . . , vm−1], V− = [v1, . . . , vm] (5)

where V+ contains the first m components of V and V−

contains the last m components of V

V [t] = [v[t], . . . , v[t − m]], U[t] = [u[t], . . . , u[t − k]] (6)

where v[t] is the internal state of the identified model (2)

in response to past inputs U[t] and initial conditions v[t −

1], . . . , v[t − m], i.e., F (V [t], U[t]) = 0, and

Ṽ [t] = [ṽ[t], . . . , ṽ[t − m]], Ũ[t] = [ũ[t], . . . , ũ[t − k]] (7)

where ṽ[t] are training data state samples in response to

training inputs ũ[t]. Similarly, y shall represent an arbitrary

variable, y[t] is the solution to G(y[t], v[t]) = 0, and ỹ[t] is a

given training data output sample.

In general, stability (and more generally, dissipativity) can

be proven through the use of storage functions [33].
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Definition 3: System (2) is dissipative with respect to the

supply rate σ(u, v, y) if there exists a storage function h(v) ≥ 0

such that

h(V+) ≤ h(V−) + σ(U, V, y) (8)

for all V, U, y satisfying (2).

Constraint (8) is referred to as a dissipation constraint, and

different supply rates σ are used to prove different notions

of stability. It has been shown in [31] that (2) (assuming

G = y − v0, i.e., an input–output system) is incrementally

stable if the following dissipation constraint is satisfied:

(v0 − v̂0)T
(

F (V, U) − F (V̂ , U)
)

− |v0 − v̂0|
2

+h(V−, V̂−) − h(V+, V̂+) ≥ 0 (9)

for all V, U, and all V̂ = [v̂0, . . . , v̂m], where h is a nonnegative

storage function such that h(V+, V+) = 0. Note that when V, U

and V̂ , U satisfy (2), dissipation constraint (9) simplifies to

constraint (8) with σ = −|v0 − v̂0|, which in turn implies (3).

Incremental stability can also be interpreted as the result

of contraction behavior of the state-space [34]. Contraction

analysis examines the stability of the differential system

F (V, U) + Fv(V, U)� = 0

G(y, v0) + Gv(y, v0)δ0 + Gy(y, v0)ξ = 0 (10)

where

� =

⎡

⎢

⎣

δ0

...

δm

⎤

⎥

⎦
�[t] =

⎡

⎢

⎣

δ[t]
...

δ[t − m]

⎤

⎥

⎦

Fv =

[

∂F

∂v0

, . . . ,
∂F

∂vm

]

Gv =
∂G

∂v0

Gy =
∂G

∂y

with δ0 ∈ RN and ξ ∈ RNy . The system is said to be contract-

ing if the increments � and ξ converge to zero exponentially.

According to Theorem 3 in [34], if system (10) is well-posed

and stable in the differential variable �, i.e., � converges

exponentially to zero, for all y, v0, . . . , vm, and u0, . . . , uk

satisfying F (v0, . . . , vm, u0, . . . , uk) = 0 and G(y, v0) = 0,

then system (2) is incrementally stable. It is often easier

to prove stability by examining the differential system (10)

instead of the original system (2).

B. Robust Nonlinear Identification

In standard SYSID techniques for both discrete and contin-

uous time systems, data is exclusively available in the form of

a finite length vector of input-state-output (ũ[t], ṽ[t], ỹ[t]), or

just input–output, sampled pairs. Such data can be generated

either by physical measurements of a fabricated integrated

circuit, or by simulation of an available circuit schematic. The

objective of a SYSID algorithm is to generate automatically

from training data, a dynamical system description, such

as (2), such that the predicted output of the identified model

minimizes the “output error,” and it is “easy” to compute

each new output sample when given previously computed past

values of the input and output samples.

Definition 4: Given a sequence of inputs ũ[0], . . . , ũ[T ],

the corresponding states ṽ[0], . . . , ṽ[T ], and outputs

ỹ[0], . . . , ỹ[T ], the output error of an identified model

is defined as

E(F, G,X ) =
∑

t

|y[t] − ỹ[t]|2 (11)

where y[t] are solutions to the identified model in response to

training data inputs and initial conditions ṽ[t−1], . . . , ṽ[t−m],

and X represents the training data set containing all given

ũ[t], ṽ[t], ỹ[t] pairs.

In general, minimization of the true output error is com-

putationally extremely difficult as it is a highly nonconvex

problem. Most approaches suggested by the classical literature

in system identification [14] instead attempt to minimize the

overall “equation error.”

Definition 5: The equation error is defined as the sum of

squared mismatches obtained from evaluating the identified

model (2) over the training data samples (ũ[t], ṽ[t], ỹ[t]) ∈ X

Ẽ(F, G,X ) =
∑

t

|F (Ṽ [t], Ũ[t])|2 + |G(ỹ[t], ṽ[t])|2. (12)

It is, however, misleading to assume that a small equation

error implies a small output error. It is possible to identify

unstable models whose system equations are satisfied

accurately by the given data, resulting in small equation error,

but produce unstable outputs during simulation, resulting in

large output error. It has been shown in [31] that if system (2)

satisfies (9), then the equation error for the resulting system

provides an upper bound for the model output error over the

training data set. Minimization of this upper bound subject to

incremental stability constraint can be cast as a semidefinite

program, however, this approach typically produces overly

conservative upper bounds for the output error due to the

strong constraints imposed by (9).

III. SYSID Formulation

In this section, we present the theoretical development

for our modeling framework that identifies systems of the

form (2). In the event that state data v[t] is not available,

we may identify input–output models by selecting v[t] = y[t]

and defining G(y, v0) = y − v0.

A. Incremental Stability and Robustness

Minimization of the exact output error by enforcing dissipa-

tion constraint (9) is a computationally difficult problem and

typically yields overly conservative fits. This is because en-

forcing incremental stability via constraint (9) imposes strong

restrictions on the class of admissible models. Therefore we

consider instead a different method for imposing incremental

stability that leads to a bound on a reasonable alternative

measure of output error, referred to as the “linearized output

error.” First, we define linearizations of (2) around y, V, U as

F̄ (V, U, �) = F (V, U) + Fv(V, U)�

Ḡ(y, v0, δ0, ξ) = G(y, v0) + Gv(y, v0)δ0 + Gy(y, v0)ξ

for Fv, Gv, Gy, �, and ξ as defined in Section II-A.
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Definition 6: The linearized output error of identified

model (2) is defined as

S(F, G,X ) =
∑

t

|ξ[t]|2

where ξ[t] are solutions to

F̄ (Ṽ [t], Ũ[t], �[t]) = 0, Ḡ(ỹ[t], ṽ[t], δ[t], ξ[t]) = 0 (13)

in response to the zero initial condition δ[t−1], . . . , δ[t−m] =

0 when evaluated on the training data.

Intuitively, this quantity is the result of the following pro-

cedure: linearize the identified model around every point in

the training data set, compute the response of each linearized

model after one time step in response to the corresponding

training data input sample, and sum up the resulting output

quantities over all time. In the case of linear systems, the true

output error is exactly equal to the linearized output error.

In order to prove incremental stability of system (2), it is

sufficient to show that linearizations of (2), as defined in (10),

around all possible U, V, y satisfying (2) are stable, as was

proposed in [34]. This can be proven with the following

dissipation inequality:

h(V+, �+) ≤ h(V−, �−) − |ξ|2 − ǫ|�|2 + 2δT
0 Fv(V, U)�

+2ξT (Gv(y, v0)δ0 + Gy(y, v0)ξ) ∀ y, V, U, �, ξ (14)

where h is a storage function, defined as

h(V+, �+) = �T
+ H(V+)�+

h(V−, �−) = �T
−H(V−)�− (15)

and ǫ > 0. Since (10) is linear in �, it is sufficient to consider

storage functions that are quadratic in � [34]. Note that for

U, V, y, �, ξ satisfying (2) and (10), constraint (14) simplifies

to (8) with supply rate σ = −|ξ|2−ǫ|�|2. Inequality (14) can be

thought of as a linearized version of inequality (9), and is less

restrictive because although a stable system satisfying (9) also

satisfies (14), there are many stable systems satisfying (14)

that do not satisfy (9).

Definition 7: The robust equation error, r̂, of system (2)

over training data set X is defined as

r̂(F, G, H,X ) =
∑

t

r(ỹ[t], Ṽ [t], Ũ[t])

where

r(y, V, U) = max�,ξ{h(V+, �+) − h(V−, �−)

−2δT
0 F̄ (V, U, �) − 2ξT Ḡ(y, v0, δ0, ξ) + |ξ|2}. (16)

The robust equation error serves as an upper bound for the

linearized output error.

Theorem 1: If there exists a positive semidefinite function

H : Rm �→ Rm×m, positive scalars ǫ, ǫ1, ǫ2 > 0 such that

ǫ1I < H < ǫ2I and (14) is satisfied for all ỹ, Ṽ , Ũ ∈ X , and

for all possible �, ξ, then system (2) is locally incrementally

stable and the linearized output error on the training set is

bounded from above by the robust equation error

S(F, G,X ) ≤ r̂(F, G, H,X ).

If, in addition, H is continuously differentiable and (14)

is satisfied for all y, V, U, then system (2) is also globally

incrementally stable.

Proof: Incremental stability is implied by (14) using a

standard proof following the principles of [34]. It follows

from (16) that

|ξ|2 ≤ r(y, V, U) + 2δT
0 F̄ (V, U, �)

+2ξT Ḡ(y, v0, δ0, ξ) + h(V−, �−) − h(V+, �+) (17)

is satisfied for all y, V, U, �, ξ. To obtain the linearized

output error, we sum (17) over all training data samples

ỹ[t], Ṽ [t], Ũ[t] and incremental variables �[t], ξ[t] satisfy-

ing (13), resulting in

S(X, F, G) =
∑

t

|ξ[t]|2 (18)

≤
∑

t[r(ỹ[t], Ṽ [t], Ũ[t]) + h(Ṽ−[t], �−[t]) − h(Ṽ+[t], �+[t])]

≤
∑

t r(ỹ[t], Ṽ [t], Ũ[t]) = r̂(F, G, H,X ).

Here, we have also used the fact that

T
∑

t=0

[

h(Ṽ−[t]) − h(Ṽ+[t])
]

= −h(Ṽ+[T ]) ≤ 0

by definition of h and by the zero initial condition of �. Note

that finiteness of r̂ is guaranteed by (14).

In summary, for a given model F, G, if there exists a

storage function h as defined in (15) that satisfies (14), then

system (2) is incrementally stable. Furthermore, for such

F, G, h, the robust equation error serves as an upper bound

for the linearized output error over the training data set, as

shown in (18).

B. Identification Procedure

The proposed system identification algorithm is based on

minimization (with respect to F , G, H , and r) of the linearized

output error upper bound, r, over the training data set X

subject to a dissipation constraint

minr,F,G,H

∑

t

rt subject to (19)

rt + 2δT
0 F̄t(�) + 2ξT Ḡt(δ0, ξ) − |ξ|2

+ht−1(�−) − ht(�+) ≥ 0 ∀ t, �, ξ

where rt = r(ỹ[t], Ṽ [t], Ũ[t]), F̄t(�) = F̄ (Ṽ [t], Ũ[t], �),

Ḡt = Ḡ(ỹ[t], ṽ[t], δ0, ξ), ht−1(�−) = h(Ṽ−, �−), and ht(�+) =

h(Ṽ−, �−). In this formulation, we simultaneously enforce ac-

curacy by minimizing the linearized output error upper bound

at the training data samples, and also enforce local incremental

stability at each training sample through the constraint.

By construction, the robustness constraint is jointly convex

with respect to the unknown functions F, G, H, r, and is

a quadratic form in the incremental variables �, ξ. If the

unknown functions are chosen among linear combinations of

a finite set of basis functions �

F =
∑

j∈Nf

αF
j φF

j (V, U), G =
∑

j∈Ng

αG
j φG

j (y, v0) (20)
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H =
∑

j∈Nh

αH
j φH

j (V ), r =
∑

j∈Nr

αr
jφ

r
j(y, V, U)

where φF , φG, φH , φr ∈ �, then αF , αG, αH , αr become

the free variables and the optimization problem becomes a

semidefinite program (SDP). Additional details on semidefinite

programming are given in Section V-A.

In order to obtain global incremental stability, it is necessary

to additionally enforce constraint (14) globally for all y, V, U

and to ensure that the storage function H is smooth with

respect to all arguments. In this case, the complexity of the

optimization problem depends heavily on the choice of basis

functions φ for the unknown functions F, G, H, r. The basis

must be chosen carefully to ensure that the inequalities in

problem (19) can be easily verified numerically, and that fea-

sible solutions exist. In Section IV, we describe one possible

choice for the basis functions � that results in an optimization

problem that can be efficiently solved.

C. Extension to Continuous Time Models

In this paper, we focus mainly on generating discrete time

(DT) models for many typical circuit blocks in the signaling

path that are also usable in high-level system simulation and

design, using for instance Cadence analog mixed signal or

Verilog A. In addition, it is possible to extend the previously

developed dissipation-based identification approach to gener-

ate continuous time (CT) systems for greater compatibility

with lower level circuit simulators. In this case, there are

however, additional constraints on the choice of F to ensure

that the system is uniquely solvable. For instance, F should

not possess nonlinear dependence on derivatives of the input,

otherwise the system may not be well-posed. Additionally,

there are strong constraints on the relationship between the

function F and the storage function H in order to guarantee

existence of solutions to the optimization problem. To avoid

excessive technicalities, we consider here only CT systems

described in state-space form

F (v̇(t), v(t), u(t)) = 0, G (y(t), v(t)) = 0 (21)

along with constant positive semi-definite (PSD) storage func-

tion matrices H(v) = H . As in the DT case, we define a robust

dissipation inequality

∂h(�)

∂t
≤ 2δT Fv(v, u)� + 2ξT Gy(y, v)ξ

+2ξT Gv(y, v)δ − |ξ|2 − |δ|2 (22)

where h(�) = �T H�, such that system (21) is incremen-

tally stable and the linearized output error is bounded from

above by the robust equation error if there exists a storage

function matrix H such that (22) holds for all y, v, u, �, ξ.

Constraint (22) can then be used to formulate an optimization

problem similar to (19). Results for CT modeling using this

approach are presented in Section VI-B.

D. Identification of MIMO Models

The previously derived identification procedure is capable

of identifying models with multiple inputs, multiple states,

and multiple outputs. Multiport models can also be used to

capture loading effects. If one of the ports is connected to

a load, then varying the load will produce different input–

output data for that port, which can then be used for training

the model in order to capture loading effects. Our resulting

multiport model can then be described for instance in Verilog-

A and connected with other circuit blocks inside a commercial

simulator. In Section VI, we present results for systems with

multiple inputs (Section VI-E), multiple states (Section VI-B),

and multiple outputs (Section VI-D).

E. Extension to Parameterized Models

Our approach can easily be extended to identify models pa-

rameterized by, for instance, device parameters or geometrical

parameters. This is achieved by selecting the basis functions

for F, G, H, r to possess dependence on design parameters Z,

e.g., φF = φF (V, U, Z), where Z = [z1, . . . , zp] is a vector

of parameters. Conceptually this is equivalent to treating the

parameters as constant inputs with no memory. Results using

this parametrization approach are presented in Section VI-C.

IV. Identification of Rational Models in a

Polynomial Basis

In this section, we present one possible choice of basis func-

tions for representing the nonlinear functions in optimization

problem (19).

A. Polynomial Basis

The complexity of optimization problem (19) with global

stability constraint (14) depends on the choice of basis func-

tions for the nonlinear function, robustness measure, and

storage function. One possible choice resulting in a convenient

formulation is a polynomial basis.

If we constrain F, G, H, r to be polynomial functions of the

internal variables and inputs, i.e., define φ from Section III-B

as

φ(y[t], V [t], U[t]) =
∏

i,j,k

v[t − τi]
piu[t − τj]pjy[t]pk (23)

then we can formulate optimization problem (19) as a SOS

problem. Proving global positivity of a multivariate poly-

nomial is in general a hard problem (i.e., computationally

challenging), however, SOS provides an efficient convex re-

laxation for such problem. Guaranteeing global positivity in

the stability constraints is transformed to the task of solving

for a PSD symmetric matrix S = ST ≻ 0 such that global

stability constraint (14) is expressed as

h(V−, �−) − h(V+, �+) + 2δT
0 Fv(V, U)� + 2ξT Gv(y, v0)δ0

+ 2ξT Gy(y, v0)ξ − |ξ|2 = �T S� ∀ y, V, U, �, ξ.

Here, � is a vector of basis functions ψ such that all basis

functions φ can be represented by the product �T S�. That

is, for every φi there exist ψj and ψk such that φi ∝ ψjψk.

Conceptually, the vector � must contain the monomial terms

present in the ‘square root’ of the dissipation constraint,
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and for nonlinear systems these entries can be automatically

selected from the Newton Polytope of the robustness con-

straint. See [35]–[37] for details on SOS programming and

the Newton Polytope, and see [38] or [32] for our software

implementation.

It is important to note that although we are using a

polynomial basis, we are not identifying polynomial models.

Specifically, the implicit representation of the nonlinear sys-

tem (2) allows us to identify, for instance, rational models

as described in the following section. In this way, we can

represent highly nonlinear models in a much more compact

form than is possible using traditional polynomial models such

as Volterra expansions.

B. Rational Model Description

In general, the identified implicit nonlinear model (2) can be

extremely expensive to simulate. To ensure that the resulting

DT model can be simulated in an efficient manner, we consider

only models that are linear in the unknowns v[t]. For example,

consider the model

F (V [t], U[t]) = Q(V−[t], U[t])v[t] − p(V−[t], U[t]) = 0

G(y[t], v[t]) = gq(v[t])y[t] − gp(v[t]) = 0 (24)

where Q ∈ RN×N is a matrix of nonlinear functions, p ∈ RN is

a vector of nonlinear functions, and V−[t] = [v[t−1], . . . , v[t−

m]]. Although F is defined implicitly, the system is linear in

the unknowns, making the simulation of this discrete time sys-

tem equivalent to linear system solves when all previous values

of the state, v[t−1], . . . , v[t−m], and input, u[t], . . . , u[t−k],

are known

v[t] = Q(V−[t], U[t])−1p(V−[t], U[t]).

The presence of the nonlinear matrix function Q(V−, U) is ex-

tremely important, as it allows the model to capture nonlinear

effects that are significantly stronger than those that would

be captured by considering the case where Q = I, without

significantly increasing the complexity of the optimization

problem and of simulation.

C. Existence of Solutions

Given a nonlinear function F , the existence of solutions

to (27) depends on the ability of the storage function h

to certify stability for that particular nonlinear function. For

models without feedback, such as the Volterra model

yt = p(ut, ut−1, . . . , ut−k) (25)

a storage function is not required to prove stability, and

solutions always exist. One implication of this is that Volterra

models are a strict subset of the stable models identifiable

by our approach. When feedback is present in the model,

for certain functions F , storage functions are available to

prove stability. For example, for a linear system, it is always

possible to certify stability with a constant matrix H . As a

result, if the polynomial basis contains linear terms, then there

always exists a globally stable solution described by a linear

function F and constant matrix H . Additionally, since the

storage function and stability of the resulting model do not

depend strictly on the inputs u to the system, a constant matrix

H can certify stability for a system that is linear in v and

highly nonlinear in u. Thus, it is always possible to identify

models highly nonlinear in the input even if high degrees of

nonlinearity in the state cannot be achieved due to stability

constraints.

D. Reduction of States Through Projection

In the event where data is available for a large number of

internal states (i.e., N is large), it is not practical to fit a model

with N states because it is both computationally expensive to

identify the model, and simulation of the large model may

be slow. However, it is possible to identify a low-order space

in which the system states are well-approximated, and fit by

projection to a set of reduced vectors, v̂[t] ∈ RN̂ , where

N̂ < N.

For example, given a collection of training samples, X =

[ṽ[t1], ṽ[t2], . . . , ṽ[tT ]] ∈ RN×T , it is possible to identify a low-

order basis  ∈ RN×N̂ such that X ≈ X̂, where X̂ = T X

is a projection of the training data onto the reduced space.

The projection matrix  can be computed using any standard

projection technique, such as POD [39], [40] using training

data X. The system identification is then performed using the

reduced-order training data set X̂, resulting in a model with

N̂ states.

This approach is similar to traditional model reduction

techniques utilizing projection in the sense that we approx-

imate the solution in a low-dimensional space spanned by .

However, the key difference of our approach is that instead

of constructing the reduced model by projecting the system

equations explicitly, we instead identify the reduced equations

through an optimization procedure to optimally fit the given

training data. Numerical results obtained from this projection

approach are presented in Section VI-B.

E. Reduction of Polynomial Basis Through Fitting

In addition to the number of state variables, the cost

of identifying and simulating the models also depends on

the number of delays (memory) of the system. To decrease

this cost without reducing the polynomial order of the de-

sired function, it is useful to consider only important poly-

nomial basis terms for identification. Let �̃[0,n] denote a

nominal set of basis functions comprised of variables u, v

with up to n delays. Important basis terms φ̂ may be se-

lected as linear combinations of the nominal basis compo-

nents

φ̂i =
∑

j

βj,iφ̃j, φ̃j ∈ �̃[0,n]. (26)

The coefficients βj,i can be identified by fitting a lin-

ear model with memory n to the training data with basis

�̃.

For example, suppose the nominal basis functions are se-

lected to be input samples, i.e., �̃[0,k] = [u[t], . . . , u[t − k]].

The training data (ỹ[t], ũ[t]) can be used to identify a linear
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Fig. 1. Block diagram illustrating one approach to implementing the reduced
basis selection technique.

model with memory k̂ and output w[t] ≈ y[t]

w[t] =

k̂
∑

j=0

bju[t − j].

This identified linear model now defines a linear transfor-

mation of the nominal basis vectors to the reduced basis

vector if we define βj,1 = bj for the new basis vector set

�̂[0,k̂] = [w[t], . . . , w[t − k̂]] for some k̂ < k. This new basis

vector can then be used for identification of a nonlinear model

with low memory. Conceptually, this is equivalent to treating

w[t] as an additional input to a new nonlinear model

Q(V−[t], W[t], U[t])v[t] = p(V−[t], W[t], U[t])

as depicted in Fig. 1.

Since the identification of linear systems is cheap, even

when m and k are large, this approach can be very useful for

reducing the complexity of the final nonlinear model by auto-

matically selecting important combinations of basis vectors.

Numerical examples using this reduced basis identification

approach are presented in Section VI-E.

V. Implementation

The optimization problem (19) derived in Section III, along

with global stability constraint (14), can be expressed generi-

cally as the following

min
r,F,G,H

∑

t

rt subject to (27)

rt + 2δT
0 F̄t(�) + 2ξT Ḡt(δ0, ξ) − |ξ|2

+ht−1(�−) − ht(�+) ≥ 0 ∀ t, �, ξ (27a)

h(V−, �−) − h(V+, �+) + 2δT
0 Fv(V, U)� − |ξ|2

+2ξT Gv(y, v0)δ0 + 2ξT Gy(y, v0)ξ ≥ 0 ∀ y, V, U, �, ξ. (27b)

In this section, we describe how to formulate (27) as a SDP

when using a polynomial basis and how to solve the resulting

SDP.

A. Implementation as a Semidefinite Program

The benefit of formulating (27) as an SDP is that it can

be solved efficiently using readily available software routines.

Roughly speaking, a semidefinite program is one whose objec-

tive function is linear, and whose constraints can be expressed

as requiring matrices to be PSD.

Algorithm 1 Implementation as SDP using SPOT

1: Given symbolic functions F, G, H, r defined as in (20) and

training data set χ

2: Initialize optimization problem pr

pr=mssprog

3: Assign free variables

pr.free={αF , αG, αH , αR}

4: for t=1:T do

5: Compute Mt = M(Ũ[t], Ṽ [t], ỹ[t]) as defined in (28)

6: Assign local robustness constraint (27a)

pr.PSD=Mt

7: end for

8: Assign global stability constraint (27b)

pr.SOS= (27b)

9: Call solver to minimize
∑

t rt subject to given constraints

pr.min=
∑

t rt

10: Output is coefficients {αF , αG, αH , αR}

By construction, constraint (27a) is a quadratic form in the

variable ζ = [1, �T , ξT ]T , and can therefore be expressed as

r(y, V, U) + 2δT
0 F̄ (V, U, �) + 2ξT Ḡ(y, v0, δ0, ξ)

−|ξ|2 + h(V−, �−) − h(V+, �+) = ζT M(U, V, y)ζ (28)

for some symmetric matrix M. Thus, global positivity of (28)

is satisfied if the matrix M is PSD. In (27), we are not requiring

M(U, V, y) to be PSD for all U, V, y, but rather only when

evaluated at the given training data samples. That is, Mt =

M(Ũ[t], Ṽ [t], ỹ[t]) is PSD for all t.

On the other hand, the global stability constraint (27b) must

be satisfied for all possible U, V, y. This can be achieved

using the SOS relaxation described in Section IV-A, which

transforms constraint (27b) into a single semidefinite matrix

constraint. While it is easy to construct the M(U, V, y) matrix

explicitly, and possible to construct S from Section IV-A by

hand, these tasks can be performed automatically by the freely

available software systems polynomial optimization toolbox

(SPOT) [38], when given symbolic constraints in the form

of (27a) and (27b).

In Algorithm 1, we outline how optimization problem (27)

can be defined and solved in MATLAB using the freely

available software SPOT [38] and SeDuMi [41]. SPOT is a

‘parser’, which takes as input a high-level symbolic description

of the optimization problem and reformulates it in such a

manner that it can be solved by an optimization ‘solver’

(in this case, SeDuMi). For additional details and a sample

implementation of this approach, see [32] and [38].

B. Complete Algorithm

Our entire identification process is summarized in Algo-

rithm 2. The first step in identifying a model in the form

of (24) is to select the number of states (N), the number of

state delays (m), the number of input delays (k), the maximum

polynomial degree for Q (ρQ), the maximum polynomial

degree for p (ρp), and the maximum polynomial degree for

storage function matrix H (ρH ). These parameters generally

depend on the behavior of the system being modeled, and can
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Algorithm 2 SOS Identification of Robust Compact Models

1: Generate training data sample set X = {Ũ[t], Ṽ [t], ỹ[t]}

from simulation or measurement of the original system

2: Select the model parameters m, k, N, ρQ, ρp, ρH as de-

fined in Section V-B

3: if State data is available and N is large then

4: Use SVD to identify low-order basis for states,

 ∈ RN×N̂ , N̂ < N, as described in Section IV-D

5: Project data samples: ṽ[t] ← T ṽ[t]

6: end if

7: Select nominal set of basis functions �̃[0,k]

8: if Large delay between input and output then

9: Identify linear model defining coefficients βj,i of new

basis functions φ̂ defined in (26)

10: � ← [�̃[0,k̂], �̂[0,k̂]] for k̂ < k.

11: else

12: � ← �̃[0,k]

13: end if

14: Use Algorithm 1 to solve (27) for coefficients αi

15: Define F, G, H, r, as in (20), resulting in the model

Q(V−[t], U[t])v[t] = p(V−[t], U[t])

gq(v[t])y[t] = gp(v[t])

certified stable by Theorem 1 for matrix function H , and

with
∑

t rt serving as a measure of the model’s accuracy

on the training data.

be selected either by intuition (based on the system’s expected

behavior) or through experiment. One approach that we have

found to be effective is described below in Section V-C.

For CT models, it is often possible to obtain derivatives of

states and outputs directly from the simulator, as they are

typically required internally for simulation. For systems with a

large delay between input and output, the reduced basis

technique described in Section IV-E should be used at step 2

to reduce the required number of basis functions. Typically

we have found that selecting �̃ as containing the past 15−20

input samples can produce good results for such systems. The

basis set � for the final model can then be selected at step 2

as a small number of delayed samples of the true input u and

the delayed input w, as well as delays of the state and output.

Finally, when considering only local stability for the identified

model, it is only necessary to enforce the first constraint (27a)

in optimization problem (27).

C. Selecting the Model Parameters

For a given set of parameters N, m, k, ρQ, ρp, ρH , as defined

in Section V-B, let ϒ = {N, m, k, ρQ, ρp} denote the set of all

possible models with these parameters, and let H denote the

set of all storage functions of maximum polynomial degree

ρH . The goal of the identification procedure is to find a stable

model in ϒ that accurately fits the training data χ and is

certified stable by a storage function in H.

It is difficult to accurately determine ϒ and H a priori, but

we have found the following procedure to be quite effective.

First, we select a set ϒ and attempt to fit a model with no

stability constraints. This can be achieved, for instance, by

using a least-squares solve to minimize equation error (which

is computationally cheap). Varying ϒ through experiment, it

is possible to identify a model that accurately fits χ.

Next, it is necessary to determine whether there exists a

stable model in ϒ that is certifiable by H. To determine this,

we select ρH and solve (27) using Algorithm 2 while first

enforcing only local stability constraint (27a) in Algorithm 1.

If no accurate locally stable model is found, then ρH should be

increased. If, for large ρH , no accurate stable model is found,

then ϒ should be increased (i.e., increase any of N, m, k, ρ).

Once an accurate locally stable model is found, then (27)

should be solved using Algorithm 2, this time also enforcing

global stability constraint (27b). If no accurate globally stable

model is found, then ρH and ϒ should be increased, as

described above. If stability constraint (27b) is not enforced,

then the robust equation error is not guaranteed to be an upper

bound for the linearized output error, meaning that simulation

of the resulting model, even over the training data set, could

lead to inaccurate results.

D. Constructing Basis Functions

For a given set of parameters N, m, k, ρQ, ρp, ρH , the basis

functions for F, G and H can be constructed as defined in (23),

where pi + pj + pk ≤ ρ, τi < m, and τj < k. In general, ρQ

should be an even integer to ensure that matrix function Q is

always invertible. For the robustness measure r, we typically

use a piecewise-constant function, resulting in one unknown

parameter for each training data point.

VI. Examples

A. Testing Procedure

Our approach was tested on several nonlinear systems,

including a CT model, a DT parameterized model, and a DT

single-input multiple-output (SIMO) model. For each example,

training data was generated from simulations of the full system

in response to a series of periodic inputs, using SPECTRE

circuit simulator for the circuit examples and a MATLAB

simulator for the MEM system (MEMS) example. The training

inputs must be carefully chosen in order to excite all possible

behavior of interest in the system, while avoiding driving

the system to regions of the space that will not be excited

by typical inputs of interest. Attempting to model dynamics

not encountered by testing inputs could greatly increase the

complexity of the identified model. In order to maximize

robustness while minimizing complexity, in our experience,

the best approach is to train with inputs having the same form

(e.g., sum of sinusoids) as the inputs to be used for testing.

In this case, the amplitudes, frequencies, and phases of the

training inputs may be varied over a wide range containing

all possible values to be used for testing. For all examples,

the models are identified in a polynomial basis with a rational

description as described in Section IV.

All of the model generation and simulation times reported

were obtained using a desktop PC with a dual core 3.33 GHz

processor and 4 GB of RAM. The SOS problem (27) was

solved using the SPOT [38], which uses SeDuMi [41].
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Fig. 2. Micromachined switch MEM device [7].

Fig. 3. Output of order 400 original system (solid line) and our order 4
model (stars) tested on a periodic input of amplitude and frequency different
from the training inputs.

B. MEM Device

In our first example, we identify a CT model of a MEMS

device to show that our preliminary CT approach from Sec-

tion III-C and projection approach from Section IV-D are

feasible. The MEMS device [7], shown in Fig. 2, is described

by a pair of nonlinear PDEs that can be discretized along the

surface of the device to obtain a system of nonlinear ODEs.

A detailed analysis of the example can be found in [42].

For this example, the training data was generated from

inputs of the form

u(t) = [A1 sin(ω1t) + A2 sin(ω2t) + A3 sin(ω3t)]
2 (29)

where Ai vary between 4 Volts and 7 Volts, and fi = 2π
ωi

vary

between 1.5 kHz and 240 kHz. From this data, we identified a

4th order nonlinear CT model suitable for usage in any ODE

integrator and in particular a low-level circuit simulator

Q2(v, u)v̇ = p7(v, u), y = CT v

where v ∈ R4, Q2 ∈ R4×4 is a matrix of second order

polynomials, p7 ∈ R4 is a vector of seventh order polyno-

mials, and C ∈ R4 is a constant vector, all identified using

the projection technique described in Section IV-D and the

reduced basis technique from Section IV-E, resulting in only

52 parameters in the reduced model. For this model, the

identification procedure took less than two minutes.

The identified model was tested on an input of the form (29)

with Ai and fi different from the training set, and the resulting

output is compared to the output of the full nonlinear system

in Fig. 3. To make the comparison fair, both full and reduced

models were simulated using the same MATLAB built in ODE

solver. Simulation of the full 400th order nonlinear system for

this example required approximately 400 s to integrate for

5000 time points, while the reduced model was simulated in

Fig. 4. Schematic of operational amplifier.

response to the same input for the same number of time steps

in just 10 s, resulting in a speedup of about 40 times.

C. Operational Amplifier

In our second example, we identify a parameterized model,

using the approach described in Section III-E, for a two-

stage operational amplifier. The opamp, shown in Fig. 4, is

designed with a 90 nm predictive model and nominal reference

current as 10µ, has an open-loop DC gain of 260, and unity-

gain bandwidth 125 MHz. For the parameterized model, the

reference current is considered as a circuit parameter and

varies from 7µA to 19µA.

Training data was generated using inputs of the form

u(t) = inp-inn =

5
∑

i=1

Ai sin(2πfit + φi) (30)

where Ai are chosen randomly, but large enough to saturate

the opamp, fi are randomly sampled between DC to unity-

gain frequency, and φi are randomly sampled in [0o, 360o].

The resulting model was a parameterized input–output model

of the form

y[t] =
p(y[t − 1], u[t], u[t − 1], z)

q(y[t − 1], u[t], u[t − 1])
(31)

where p is cubic in u, y and quadratic in z, q is a fourth order

polynomial of u, y, and the model contains 97 terms.

The identified model was tested on 140 randomly generated

inputs of the form (30) with parameter values randomly

selected between 7µA and 19µA. Fig. 5 plots the model output

and output error, defined as

e[t] =
|y[t] − ỹ[t]|

maxt |Ỹ |
× 100 (32)

for one of these testing signals, while Fig. 6 plots the maxi-

mum error over the entire signal for each testing set, defined

as

em = max
t

e[t] (33)

where y[t] is the output of our model at time t, ỹ[t] is the

output of SPECTRE at time t, and Ỹ is the full waveform of

SPECTRE outputs over one period.
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Fig. 5. Time-domain output and error, as defined in (32), for our identified
model in response to a random input of the form (30) and random parameter
value between 7µA and 19µA.

Fig. 6. Maximum output error, as defined in (33), of our model tested on
140 random input signals (30) and parameter values ranging from 7µA to
19µA.

Fig. 7. Schematic of LNA [44].

D. Low-Noise Amplifier

In our third example, we identify a SIMO model of a

single ended low-noise amplifier (LNA) designed in 0.5µm

complementary metal-oxide semiconductor (CMOS) technol-

ogy [44], shown in Fig. 7. The designed LNA has a gain of

approximately 13 dB centered around 1.5 GHz.

For this example, we wish to capture the nonlinear behavior

of both the amplifier output Vout and the supply current in

response to a modulated input signal with an added jamming

Fig. 8. Time domain outputs, over a small portion of the period, of the
original LNA circuit (solid line) and the compact model identified by our
procedure (dots) in response to an input signal different from the training
signals.

signal. The overall input to the system is

VIN = Aj cos(2πfjt) +
∑

n=0,1,3,5

A cos(2πnf0t) cos(2πfct) (34)

with carrier frequency fc = 1.5 GHz, sideband frequency f0 =

5 MHz, and jamming frequency fj = 1 GHz. The system was

trained by varying the amplitude A between 15 mV and 85 mV,

and the jamming amplitude between 0 mV and 250 mV.

The identified model in this example is a DT multiple-input

multiple-output model, usable for instance by a Verilog-A or

higher level simulator, described by the rational model

Q2(y[t − 1], U[t])y[t] = p3(y[t − 1], U[t]) (35)

where U[t] = [u[t], u[t − 1], u[t − 2]], Q2 ∈ R2×2 is a

matrix of second order polynomials, p3 ∈ R2×1 is a vector

of third order polynomials, y ∈ R
2×1, and u ∈ R

2×1.

The rational nonlinearity is sufficient to capture the highly

nonlinear behavior resulting from the large jamming signal,

and the total number of parameters describing the identified

model is 102. The entire identification procedure took less

than two minutes, and the resulting model can be simulated

in MATLAB for 15 000 time steps in under 3 s.

To test the model, it was simulated over a full period with

six pairs of amplitudes, A and Aj , differing from the training

data amplitudes, producing outputs with approximately 4%

maximum error from the outputs of the original circuit. Fig. 8

compares the two time domain outputs, over a small portion

of the period, of the model identified by our procedure (dots)

with the outputs of the full original circuit (solid lines) in

response to an input with A = 50 mV and Aj = 150 mV.

E. Distributed Power Amplifier

The final example considered is a distributed power ampli-

fier designed in 90 nm CMOS technology, with a distributed
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Fig. 9. Transformer-based power amplifier with distributed architecture [43].

architecture and transformer-based power combiner as pro-

posed in [43]. The amplifier delivers 24 dBm power with a gain

of 6 dB at 5.8 GHz. A simplified schematic of the amplifier is

shown in Fig. 9. Transistors are biased to operate in differential

Class-B configuration to improve efficiency, however, at the

cost of linearity. Nonlinearities also arise because of parasitic

inductance introduced by supply and ground bond wires.

Power combining is achieved by using 1 : 1 transformers,

as shown in Fig. 9. Losses in primary and secondary inductors

are modeled by using quality factor of 12.5 and coupling coef-

ficient of 0.7, based on which optimum values of inductances

were selected as Lp= Ls= 157 nH [43]. Similarly, the following

parameters were selected based on optimized performance of

the amplifier at 5.8 GHz [43]: Vdd= 1.0V, W/L of transistors

= 1.2 mm/90 nm, CIN = 2.6 pF, COUT = 610 fF, RL = 50�,

LVdd = LGND = 1 nH, CB = 20 pF, Rg = 18�.

For this example, training data samples were generated in

response to periodic inputs of the form

VIN = VDC +
∑

n=0,1,3,5

A cos(2πnf0t) cos(2πfct) (36)

with carrier frequency fc = 5.8 GHz, f0 ∈ {25, 50} MHz, and

amplitude A ∈ {30, 90} mV. The simulation was performed

with SPECTRE, whose model for the power amplifier con-

tained 284 equations, 95 internal variables, and 8 transistors

modeled with 90 nm predictive technology models.

The identification procedure, using the reduced basis tech-

nique from Section IV-E, identified a DT input–output model

y[t] =
p3 (y[t − 1], u[t], u[t − 1], w[t], w[t − 1])

q4 (u[t], u[t − 1], w[t], w[t − 1])
(37)

where

w[t] =

19
∑

j=0

bju[t − j]

is a linear transformation of the input u[t] with coefficients

bj determined by first fitting a linear system as described in

Section IV-E. Here p3 indicates a third order polynomial, q4

represents a fourth order polynomial, and the total number

of parameters in the model is 106. The entire identification

procedure took approximately 12 minutes.

The identified model was able to reproduce the training data

with less than 4% maximum error in the time-domain, and was

able to be simulated for 10, 000 time steps in under 2 s. When

tested with nontraining inputs of the form (36) with parameters

Fig. 10. (a) Time domain output of the original circuit (solid line) and
the compact model identified by our procedure (dots) in response to a
testing input with amplitude and frequency different from the training inputs.
(b) Output error et , as defined in (32), of our model over the full signal from
(a).

A ∈ {10, 30, 60, 90} mV and f0 ∈ {10, 25, 40, 50} MHz, our

model reproduces the outputs of the original circuit with an

average error of less than 1% for each testing input. Fig. 10

compares the output of the identified model with the output

of the original power amplifier circuit in response to a testing

input with A = 60 mV and f0 = 10 MHz, both differing from

the training data set. For clarity, the top plot in Fig. 10 shows

a small portion of the output signals, while the bottom plot

shows the model output error, as defined in (32), over a full

period of the signal. To show that our model, trained only with

with sinusoids of fixed amplitude, is capable of capturing the

circuit behavior in response to also different classes of inputs,

Fig. 11 plots the constellation diagram for the output from our

model in response to a 16-quadrature amplitude modulation

(QAM) input signal, which is a nonsmooth input.

A Volterra model with approximately the same number

of parameters identified with our procedure for this example

produced over three times the average error on the training

data set compared to model (37). With our current testing

setup, it was not possible to obtain a pure Volterra model that

is as accurate as model (35) due to memory constraints in

our computer (4 GB). This is a result of the large number of

parameters that would be required in the Volterra model of

high order and with many delays.

In addition to matching input–output behavior, it is impor-

tant that our identified models can also accurately predict the

performance curves of the circuits being modeled. The top plot

in Fig. 12 plots output power versus input power (compression

curve) at 5.8 GHz for the original circuit (solid line) and our

identified model (circles), while the bottom plot show the drain

efficiency (defined as the ratio of output RF power to input

DC power) versus output power for the original circuit (solid

line) and our identified model (circles), also at 5.8 GHz. This

model was identified by training with sinusoids at 5.8 GHz
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Fig. 11. Constellation diagram for output of the power amplifier model
(trained using only amplitude-modulated sinusoids) in response to a 16-QAM
input signal.

Fig. 12. (a) Compression curve, plotting input power versus output power, at
5.8 GHz for the original circuit (solid line) and our compact model (circles).
(b) Drain efficiency versus output power at 5.8 GHz for the original circuit
(solid line) and our compact model (circles).

with amplitudes A ∈ [100, 400, 800, 1200] mV, and was tested

at 12 amplitudes evenly spaced between 100 mV and 1200 mV.

We want to emphasize that these performance curves were

obtained from simulation of our identified dynamical models,

and not by simply fitting performance curves.

F. Comparison to Existing SYSID Techniques

Finally, we compare our proposed approach to several exist-

ing SYSID techniques from literature. Traditional identifica-

tion techniques suffer from several shortcomings. Some tech-

niques, such as the Hammerstein–Wiener (H–W) model [14] (a

cascade connection of an LTI system between two memoryless

nonlinearities), forces a specific block-structure on the model

which restricts the types of systems that can be accurately

modeled. Volterra models, as defined in (25), do not force

a specific block structure, but require many parameters to

represent complex systems due to a lack of feedback and

polynomial nonlinearities. More general nonlinear models,

Fig. 13. Outputs of our compact model (circles), a Hammerstein–Wiener
(H–W) model (pluses), and a NLARX model (stars) all generated from the
four training inputs used in Section VI-E, compared to the output of the
original circuit (solid line) in response to a training input with f0 = 10 MHz
and A = 60 mV.

such as nonlinear autoregressive model with exogenous inputs

(NLARX) [14], have the more general structure

y[t] = f (y[t − 1], . . . , y[t − m], u[t], . . . , u[t − k])

which is similar to the DT models identified by our proposed

procedure, and do incorporate feedback, but they typically do

not explicitly enforce stability during identification. For both

the H–W and NLARX models, the nonlinearities are typically

identified as a linear combination of nonlinear basis functions.

The same training data sets from Section VI-E were used to

identify models of the distributed power amplifier in the form

of a H–W model and a NLARX model. These models were

generated using the MATLAB system identification toolbox,

which uses techniques described in [14]. In general, both types

of models were found to be less accurate than our proposed

approach, with the H–W models producing average errors

between 5% and 10%, and the NLARX models producing

average errors between 3% and 5%, compared to average

errors of 1% from model (37) identified by our technique.

Additionally, the NLARX models were often unstable, and as

a result, the testing inputs often produced unbounded outputs.

Fig. 13 plots the output response of our compact model

(circles), a H–W model (pluses), and a NLARX model (stars),

all generated from the four training inputs from Section VI-E,

compared to the output of the original circuit (solid line) in

response to one testing input with frequency and amplitude

different from the training data. For this example, all three

identified models contain approximately the same number of

parameters, and the nonlinearities in both the HW and NLARX

models were described by sigmoidnet functions.

VII. Conclusion

In this paper, a specialized system identification technique

has been developed and has been shown to be an effective

alternative technique to model reduction of typical nonlinear

analog circuit blocks, such as low-noise amplifiers and power

amplifiers. The proposed identification technique requires only
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input–output data, eliminating the need for extensive knowl-

edge of the internal system description required by existing

nonlinear model reduction techniques, but is also capable of

utilizing internal state data when it is available. Furthermore,

it has been shown that the identification of stable nonlinear

models described by rational functions can be cast as a sum-

of-squares program, which is a specific case of semidefinite

programming. By enforcing incremental stability as a con-

straint of the identification procedure, we are able to obtain

a certificate of robustness for the model, which quantifies the

model accuracy on a given set of training data. Our approach

has been shown to compare favorably to existing identification

techniques that either impose restrictive structure on the model

description, or are incapable of guaranteeing stability when

feedback is present.
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