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COMPACT NILMANIFOLDS WITH
NILPOTENT COMPLEX STRUCTURES:

DOLBEAULT COHOMOLOGY

LUIS A. CORDERO, MARISA FERNÁNDEZ, ALFRED GRAY, AND LUIS UGARTE

Abstract. We consider a special class of compact complex nilmanifolds,
which we call compact nilmanifolds with nilpotent complex structure. It is
shown that if Γ\G is a compact nilmanifold with nilpotent complex structure,
then the Dolbeault cohomology H∗,∗

∂̄
(Γ\G) is canonically isomorphic to the

∂̄–cohomology H∗,∗
∂̄

(gC) of the bigraded complex (Λ∗,∗(gC)∗, ∂̄) of complex

valued left invariant differential forms on the nilpotent Lie group G.

1. Introduction

During the last few years compact complex nilmanifolds have proved to be very
useful in producing a rich and wide variety of examples of compact complex man-
ifolds possessing “unusual” properties. For example, it has been proved that any
compact complex nilmanifold, not a torus, carries no positive definite Kähler met-
ric [BG], [CFG2], [Ha]; nevertheless, many of these manifolds carry symplectic
forms, or indefinite Kähler metrics with remarkable curvature properties [AFGM].
Also, examples of compact complex manifolds for which the Frölicher spectral se-
quence [F] associated to their complex structure does not collapse at the second
level have been constructed using compact complex nilmanifolds [CFG3], [CFG4],
[CFGU].

By compact complex nilmanifold we mean a complex manifold of the form Γ\G,
whereG is a (real) simply–connected connected nilpotent Lie group possessing a left
invariant integrable almost complex structure, and Γ is a lattice of G of maximal
rank; thus Γ\G inherits its complex structure from that of G by passing to the
quotient. For a compact complex nilmanifold Γ\G, of (complex) dimension n,
there is a (complex) basis {ωi ; 1 ≤ i ≤ n} of forms of type (1, 0), such that the
equations

dωi =
∑

j<k≤n
Aijk ωj ∧ ωk +

∑
j,k≤n

Bijk ωj ∧ ω̄k (1 ≤ i ≤ n),(1)
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hold. Here Aijk and Bijk are constants. Equations (1) can be very complicated.
But there are many examples of compact complex nilmanifolds for which the equa-
tions (1) reduce to

dωi =
∑
j<k<i

Aijk ωj ∧ ωk +
∑
j,k<i

Bijk ωj ∧ ω̄k (1 ≤ i ≤ n).(2)

In this paper we consider those compact complex nilmanifolds Γ\G that can be
defined by equations (2), and we call such a compact complex nilmanifold a compact
nilmanifold with nilpotent complex structure. If G is indeed a complex Lie group,
then Γ\G is a compact complex parallelizable nilmanifold in the sense of H.C.
Wang [Wa]. The compact complex parallelizable nilmanifolds are precisely those
compact nilmanifolds with nilpotent complex structure for which the coefficients
Bijk in (2) vanish.

It is well known that for any Lie group there is the ascending central series
{gl; l ≥ 0}, associated to the Lie algebra g of G, which characterizes the nilpotent
Lie groups. In order to distinguish the compact nilmanifolds Γ\G with nilpotent
complex structure, we define a new series {al; l ≥ 0} associated to a nilpotent Lie
group G with a left invariant integrable almost complex structure that is useful in
finding a condition equivalent to that given by the equations (2) (see Section 2,
Theorem 12 and Theorem 13).

One of the main tools in the proofs of the results we have mentioned is a well
known theorem, due to Nomizu [No], which asserts that the cohomology H∗(g) of
the complex Λ∗g∗ of left invariant differential forms on the nilpotent Lie group G (g
= Lie algebra of G) is isomorphic to the de Rham cohomology H∗(Γ\G,R). (No-
mizu established an additive isomorphism, but there actually exists a multiplicative
isomorphism.) However, no similar result seems to be known in the general case for
the Dolbeault cohomology H∗,∗

∂̄
(Γ\G) either of a compact complex nilmanifold or

of a compact nilmanifold with nilpotent complex structure. Sakane [Sa] proved a
theorem for the Dolbeault cohomology of a compact complex parallelizable nilman-
ifold Γ\G; but there exist many interesting compact nilmanifolds with a nilpotent
complex structure which are not complex parallelizable but only real parallelizable
(see Examples 2–4 in Section 5). Our purpose is to prove the following theorem.

Main Theorem. Let Γ\G be a compact nilmanifold with a nilpotent complex struc-
ture, and let g be the Lie algebra of G. Then there is a canonical isomorphism

Hp,q

∂̄
(Γ\G) ∼= Hp,q

∂̄
(gC),

where H∗,∗
∂̄

(gC) denotes the cohomology ring of the differential bigraded algebra
Λ∗,∗(gC)∗, associated to the complexified Lie algebra gC, with respect to the operator
∂̄ in the canonical decomposition d = ∂ + ∂̄ of the Chevalley–Eilenberg differential
in Λ∗(gC)∗.

Sakane’s theorem follows as a corollary.
An interesting question remains open: does the Main Theorem hold for an arbi-

trary compact complex nilmanifold?
The paper is structured as follows. In Section 2, we find necessary conditions for

a compact nilmanifold to have a nilpotent complex structure (see Proposition 10).
Then in Section 3 we describe how a compact nilmanifold Γ\G with a nilpotent
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complex structure can be realized as the total space at the top of a tower of holo-
morphic principal bundles with complex tori as structure groups, each base mani-
fold in the tower being a compact nilmanifold with a nilpotent complex structure.
Moreover, it is shown that each bundle in this tower carries a canonical principal
connection. In Section 4, we use Borel’s spectral sequence [Hi] as the main tool for
the proof of a Hirsch Lemma which allows us to determine a minimal model (in
the sense of [NT]) for the Dolbeault cohomology of the total space of a holomor-
phic fibre bundle satisfying some suitable hypothesis. This Hirsch Lemma, together
with the construction of the tower in the preceding section, leads to a proof of our
Main Theorem. Section 5 is devoted to the discussion of examples illustrating the
constructions and results of the previous sections. Finally, in Section 6 we give
examples of compact complex nilmanifolds L6 and M10 with complex structures
not nilpotent (the example L6 is due to E. Abbena, S. Garbiero and S. Salamon).
Also, in Section 6, by using the results of Section 2, we prove that the compact
nilmanifold L6 admits no nilpotent complex structures.

Acknowledgment. The authors are grateful to Simon Salamon for several very use-
ful discussions, and in particular for calling our attention to the existence of the
compact complex nilmanifold L6.

2. Compact nilmanifolds with nilpotent complex structure

Let us start by distinguishing those compact complex nilmanifolds that admit a
nilpotent complex structure.

Let G be a real nilpotent Lie group. Instead of describing the Lie algebra g of
G in terms of its bracket, we shall use the exterior differential on the dual space
g∗. The two are equivalent because dα(X,Y ) = −α([X,Y ]), where α ∈ (gC)∗ and
X,Y ∈ gC.

Let us suppose that G has a left invariant almost complex structure, and choose
a complex basis {ω1, . . . , ωn}, 2n = dimG, for the complex forms on gC. Then
{ω1, ω̄1, . . . , ωn, ω̄n} is a real basis for g∗. Thus the structure equations sufficient
to determine the bracket in g are

dωi =
∑
j<k

Aijk ωj ∧ ωk +
∑
j,k

Bijk ωj ∧ ω̄k +
∑
j<k

Cijk ω̄j ∧ ω̄k.(3)

If we want g to be the Lie algebra of a nilpotent Lie group with a left invariant
integrable almost complex structure, it is necessary and sufficient that the coeffi-
cients Cijk in (3) vanish; that is, the structure equations for g are of the form (1).
(See for example [KN, vol. II, Theorem 2.8].)

Let G be a simply–connected connected s–step nilpotent Lie group with Lie
algebra g. The ascending central series of g is defined as follows. Let gl, l ≥ 0, be
defined inductively by

g0 = 0, gl = {X ∈ g | [X, g] ⊆ gl−1}, l ≥ 1;

then each gl is an ideal in g, g1 is the center of g, g1 6= 0, gs = g, gl ⊆ gl+1, and
dim gl < dim gl+1 for 0 ≤ l ≤ s− 1. The increasing sequence

g0 = 0 ↪→ g1 ↪→ g2 ↪→ · · · ↪→ gs−1 ↪→ gs = g

is called the ascending central series of the Lie algebra g.
Let us now suppose that G carries a left invariant integrable almost complex

structure J . Then g is a complex vector space, but in general not a complex Lie
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algebra. Moreover, each term gl is an ideal of g, so gl is a real subspace of g, but not
necessarily a complex subspace of g. (In fact, in Section 5, we shall give examples
of (real) Lie algebras, each of which has the structure of complex vector space,
for which the terms gl of the ascending central series do not admit a structure of
complex vector subspace of g; see Examples 3 and 4.)

In order to distinguish and study a compact nilmanifold with a nilpotent complex
structure, we introduce the following ascending series {al} associated to the Lie
algebra g.

Definition 1. The ascending series {al; l ≥ 0} (compatible with the integrable al-
most complex structure J of G) of g is defined inductively by

a0 = 0, al = {X ∈ g | [X, g] ⊆ al−1 and [JX, g] ⊆ al−1}, l ≥ 1.(4)

It is easy to verify that al is an ideal of g, a complex subspace of g and al ⊆ al+1,
for each l ≥ 0; moreover, al ⊆ gl for each l ≥ 0.

Lemma 2. If al = al+1 for some l ≥ 0, then ar = al for all r ≥ l.

Proof. Since al = al+1, it follows from (4) that

al+2 = {X ∈ g | [X, g] ⊆ al+1 and [JX, g] ⊆ al+1}
= {X ∈ g | [X, g] ⊆ al and [JX, g] ⊆ al}
= al+1.

Thus, ar = al+1 = al for all r ≥ l.

From Lemma 2 we guess the possible existence of a series {al; l ≥ 0} for which
g 6= al = al+1 for some l ≥ 0; in fact, in Section 6, we give examples for which
al = 0 for all l ≥ 0. In the present section we find a condition equivalent to having
at = g for some t ≥ 1 and dim al < dim al+1 for 0 ≤ l ≤ t− 1 (see Theorem 12).

First, we state some general properties of the series {al; l ≥ 0} in relation with
the series {gl; l ≥ 0}.

Lemma 3. Let g be the Lie algebra of a simply-connected connected s-step nilpotent
Lie group with a left invariant integrable almost complex structure J . Let {al; l ≥ 0}
be the ascending series defined by (4).

(i) If there is l ≥ 0 such that al = gl, then J(gl) = gl.
(ii) If al−1 = gl−1, for some l > 0, then al = gl if and only if J(gl) = gl.
(iii) If al−1 = gl−1 then al is the largest subspace of gl which is invariant under

J .

Proof. Since J(al) = al for l ≥ 0, we obtain (i) and (ii) directly from the definitions
of the series {al; l ≥ 0} and {gl; l ≥ 0}. To prove (iii), let us consider a subspace
V of gl invariant under J and satisfying al ⊆ V ⊆ gl. Since J(V ) = V ⊆ gl, we
obtain that [v, g] ⊆ gl−1 and [J(v), g] ⊆ gl−1 for v ∈ V . But al−1 = gl−1 implies
that v ∈ al; therefore, al = V .

Remark 4. We note that, from Lemma 3, if J(gl) 6⊂ gl, for some l > 0, then the
inclusion al ⊂ gl is strict. Moreover, Lemma 3 also implies that if as−1 = gs−1,
then as = gs = g.

Since a0 = g0 = 0, we obtain the following corollary from (ii) and (iii) of
Lemma 3:
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Corollary 5. Under the conditions of Lemma 3 we have:
(i) The term a1 is the largest subspace of the center g1 of g which is invariant

under J .
(ii) If all the terms gl in the ascending central series {gl; l ≥ 0} of g are invariant

under J , then al = gl for each l ≥ 0. In particular, as = gs = g.

Suppose that Γ\G is a compact complex parallelizable nilmanifold in the sense
of Wang [Wa]; then g is a complex Lie algebra, each gl is a complex Lie subalgebra
of g, and from Lemma 3 we get J(gl) = gl and al = gl for all l ≥ 0. Therefore, the
series {al} and {gl} are the same for compact complex parallelizable nilmanifolds.

There are examples of nilpotent (non-complex) Lie algebras g for which al = gl

for each l ≥ 0 (see Section 5, Example 2). However, there are also examples of
nilpotent Lie algebras g for which dim al < dim gl for some l > 0 (see Section 5,
Examples 3 and 4).

Let us recall that the descending central series {gk; k ≥ 0} of g is defined induc-
tively by

g
0 = g, g

k = [gk−1, g], k ≥ 1.(5)

It is known [Va, page 191] that g is an s-step nilpotent Lie algebra if and only if
gs = 0 and gs−1 6= 0. Moreover, in this case the sequence {gk; k ≥ 0} is a sequence
of ideals of g such that dim gk > dim gk+1, for 0 ≤ k ≤ s− 1. We next state some
general properties for the series {al; l ≥ 0} with respect to the series {gk; k ≥ 0}.

Lemma 6. Under the conditions of Lemma 3, let {al; l ≥ 0} be the ascending series
associated to g defined by (4). Then:

(i) If gk ⊂ al and J(gk−1) = gk−1 for some k ≥ 0 and some l ≥ 0, then
gk−1 ⊂ al+1.

(ii) If [g, g] ⊂ al for some l ≥ 0, then al+1 = g.

Proof. Let X ∈ gk−1. Then [X, g] ⊂ [gk−1, g] = gk. Moreover, since J(gk−1) =
gk−1, JX ∈ gk−1. Therefore, from (5) it follows that [JX, g] ⊂ [gk−1, g] = gk. Now,
since gk ⊂ al by hypothesis, we obtain the following inclusions: [X, g] ⊂ gk ⊂ al

and [JX, g] ⊂ gk ⊂ al. This implies, using (4), that X ∈ al+1. Therefore, X ∈ al+1

for each X ∈ gk−1, which proves (i).
To prove (ii), we notice that [g, g] = g1 and J(g0) = g0, because g0 = g. Then,

using (i) for k = 1, we obtain that [g, g] ⊂ al implies g = g0 ⊂ al+1.

Corollary 7. If all the terms gk in the descending central series {gk; k ≥ 0} of g

are invariant under J , then as = gs = g.

Proof. Since g is s-step nilpotent, gs = a0 = 0. Using Lemma 6 (i) for k = s and
l = 0, we obtain gs−1 ⊂ a1 because J(gs−1) = gs−1. Since J(gs−2) = gs−2, using
again Lemma 6 (i) with k = s− 1 and l = 1, we obtain gs−2 ⊂ a2, and continuing
in this way we arrive at g2 ⊂ as−2. Since J(g1) = g1, using Lemma 6 (i) with k = 2
and l = s − 2, we obtain g1 = [g, g] ⊂ as−1. Finally, from Lemma 6 (ii) it follows
that as = g.

Definition 8. Let G be a simply–connected connected s–step nilpotent Lie group
with Lie algebra g. Let us suppose that J is a left invariant integrable almost
complex structure on G.

(i) We shall say that J is a nilpotent (left invariant) complex structure if at = g

for some t > 0.
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(ii) Furthermore, if J is a nilpotent (left invariant) complex structure on G, and
Γ is a lattice of G of maximal rank, we shall say that the compact nilmanifold
Γ\G (with the complex structure defined from J by passing to the quotient) has a
nilpotent complex structure.

In order to formulate the existence of a nilpotent complex structure on the
compact nilmanifold Γ\G in terms of the structure equations of G, we need the
following:

Lemma 9. Let G be a simply-connected connected s-step nilpotent Lie group with
Lie algebra g. Suppose that G carries a left invariant integrable almost complex
structure J , for which there is a (complex) basis {ωi ; 1 ≤ i ≤ n} of forms of type
(1, 0) that satisfy equations (2). Let {Zi, Z̄i ; 1 ≤ i ≤ n} be the basis of g dual to
the basis {ωi, ω̄i ; 1 ≤ i ≤ n} of g∗. For each 1 ≤ i ≤ n, let us denote Xi = Re(Zi)
and Yi = Im(Zi). Then, for 1 ≤ l ≤ n, the term al in the series {al; l ≥ 0} has at
least the following generators: Xn−l+1, Yn−l+1, . . . , Xn, Yn.

Proof. Due to the fact that each dωi is a linear combination of wedge products of
ωj’s and their conjugates with j < i, it follows in particular that [U,Zn] = [U, Z̄n] =
0 for every U ∈ g. Therefore, Zn, Z̄n ∈ a1. This implies that Xn = Re(Zn) and
Yn = Im(Zn) = −JXn both belong to a1, which proves the assertion for l = 1.

Suppose now that Xn−l+1, Yn−l+1, . . . , Xn, Yn are generators of al with 1 < l <
n; then we shall show that Xn−l, Yn−l, Xn−l+1, Yn−l+1, . . . , Xn, Yn are generators of
al+1. For that, it suffices to prove that Zn−l, Z̄n−l ∈ al+1. But, from equations (2)
we get

[Zj , Zn−l] = −
n∑

i=n−l+1

Aijn−lZi, 1 ≤ j ≤ n− l− 1,

[Zj , Z̄n−l] =
n∑

i=n−l+1

(−Bijn−lZi + B̄in−ljZ̄i), 1 ≤ j ≤ n− l,

and these identities imply that Zn−l, Z̄n−l ∈ al+1, which completes the proof.

It must be remarked that, under the conditions of Lemma 9, there exists always
an integer t with 1 ≤ t ≤ n such that at = g; in fact, at least an = g always. Hence,
and as a consequence of Lemma 2 and Lemma 9, we obtain the possible values for
t such that dim at−1 < dim at and at = g.

Proposition 10. In the conditions of Lemma 9, we have:
(i) Let al be a term in the series {al; l ≥ 0} such that al 6= g. Then

dim al+1 ≥ 2 + dim al.

(ii) Let {gl; l ≥ 0} be the ascending central series of g. Then, for 0 ≤ l ≤ s,
dim gl ≥ dim al ≥ 2l.

(iii) There exists a unique integer t with s ≤ t ≤ n such that dim at−1 < dim at

and at = g.

Proof. Suppose al 6= g. Then, from Lemma 2, it follows that al 6= al+1 ⊆ an = g.
Now, (i) is a direct consequence of Lemma 9, which also implies that dim al ≥ 2l,
and, since al ⊆ gl, we conclude (ii). In order to prove (iii) it suffices to show
that s ≤ t. But this inequality is a direct consequence of (ii) and the inclusions
as ⊆ gs = g = at.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPACT NILMANIFOLDS WITH NILPOTENT COMPLEX STRUCTURES 5411

In Section 5 we describe examples of nilpotent Lie algebras illustrating the variety
of possibilities inherent in Proposition 10 (iii). Example 2 satisfies s = t = n = 2;
Example 1 satisfies s = t < n; in Example 3 it is s = 2 < 3 = t = n, and in
Example 4 it is s = 3 < 4 = t < 5 = n.

Note that in all these examples the sequence {al} always stops at the term at

with t = s or s + 1; however, we have neither found a general proof of this fact,
nor examples of s-step nilpotent Lie algebras for which the sequence {al} stops at
a term at with t ≥ s+ 2.

Proposition 11. Under the conditions of Lemma 9, we have

dim[g, g] ≤ 2n− 3.

Proof. From equations (2) we deduce in particular that
dω1 = 0 and dω2 = B211 ω1 ∧ ω̄1.(6)

Therefore, Z1, Z̄1 6∈ [g, g]. Moreover, if B211 = 0, then Z2, Z̄2 6∈ [g, g]. Otherwise, if
B211 6= 0, then, using (6), we get that

[Z1, Z̄1] = −B211Z2 + B̄211Z̄2 +
n∑
k=3

(−Bk11Zk + B̄k11Z̄k);

that is, Im(B211Z2) can be in [g, g] but Re(B211Z2) 6∈ [g, g]. In any case, dim [g, g] ≤
2n− 3.

Next, with the following two theorems, we shall characterize which compact
nilmanifolds admit a nilpotent complex structure.

Theorem 12. Let G be a simply–connected connected s–step nilpotent Lie group,
of dimension 2n, with Lie algebra g. Suppose that G carries a left invariant in-
tegrable almost complex structure J , and let {al ; l ≥ 0} be the ascending series
of g compatible with J . Then, there is a (complex) basis {ωi ; 1 ≤ i ≤ n} of left
invariant forms of type (1, 0) such that equations (2) are the structure equations of
G if and only if J is nilpotent (in the sense of Definition 8 (i)) on G.

Proof. Let us suppose that equations (2) are satisfied for some (complex) basis
{ωi ; 1 ≤ i ≤ n}. From Proposition 10 we know that there exists a unique t
satisfying dim at−1 < dim at and at = g; moreover dim al < dim al+1 for 0 ≤ l ≤
t− 1.

Conversely, let us suppose that al = g for some l > 0. From Lemma 2 we can take
t as the smallest integer such that at = g, dim at−1 < dim at and dim al < dim al+1

for 0 ≤ l ≤ t − 1. Thus, we have the series a0 = {0} ⊂ a1 ⊂ a2 ⊂ · · · ⊂ at−1 ⊂
at = g. This series induces the following sequence of (quotient) Lie algebras and
homomorphisms:

g −→ g/a1 −→ · · · −→ g/al−1
πl−→ g/al −→ · · · −→ g/at−1 −→ 0,(7)

where each πl is surjective and kerπl = al/al−1.
Let al be a term in the series {al; l ≥ 0} such that al 6= g. Since g is a nilpotent

Lie algebra and al an ideal in g, the quotient Lie algebra g/al is also nilpotent.
Let Gl be the simply-connected connected nilpotent Lie group defined by the Lie
algebra g/al. Since J(al) = al, there exists on Gl the left invariant almost complex
structure Jl induced by J and given by

Jl(X̃) = J̃X,(8)
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for X̃ ∈ g/al. (Here, we denote by X̃ the element in g/al defined by X ∈ g.)
This structure Jl is integrable on Gl because the Nijenhuis tensor NJl of Jl satisfies
NJl(X̃, Ỹ ) = ÑJ(̃X,̃Y ); thus, NJl = 0.

Now, in order to construct a basis {ωi ; 1 ≤ i ≤ n} satisfying equations (2),
we start an iterative procedure from the Lie algebra g/at−1 of the sequence (7).
Definition 1 implies that [g/at−1, g/at−1] = 0, that is, g/at−1 is Abelian. Moreover,
if we set dim at−1 = 2nt−1, then dim(g/at−1) = 2(n − nt−1). Therefore, we can
consider a basis {X1, X̄1, . . . , Xn−nt−1 , X̄n−nt−1} for g/at−1 such that

[Xi, Xj ] = [Xi, X̄j] = [X̄i, X̄j] = 0(9)

in g/at−1 and for any 1 ≤ i, j ≤ n − nt−1. Let {ω1, ω̄1, . . . , ωn−nt−1 , ω̄n−nt−1} be
the real basis for (g/at−1)∗ dual to the basis {X1, X̄1, . . . , Xn−nt−1 , X̄n−nt−1}. In
terms of {ωi, ω̄i; 1 ≤ i ≤ n− nt−1}, the identities (9) become

dωi = 0, 1 ≤ i ≤ n− nt−1.(10)

Now, consider the Lie algebra g/at−2 in the sequence (7). Then, we extend the
basis {X1, X̄1, . . . , Xn−nt−1 , X̄n−nt−1} of g/at−1 to a basis {X1, X̄1, . . . , Xn−nt−1 ,

X̄n−nt−1 , . . . , Xn−nt−2 , X̄n−nt−2} of g/at−2 in such way that {Xn−nt−1+1, X̄n−nt−1+1,

. . . , Xn−nt−2 , X̄n−nt−2} is a basis for at−1/at−2; in fact,

g/at−1
∼= (g/at−2)/(at−1/at−2).

But at−1/at−2 is contained in the center of g/at−2, because [at−1/at−2, g/at−2] = 0,
and so we have

[Xi, Xk] = [X̄i, Xk] = [Xk, Xp] = [X̄k, Xp] = [X̄k, X̄p] = 0(11)

in g/at−2 for 1 ≤ i ≤ n − nt−1, and for n − nt−1 + 1 ≤ k, p ≤ n − nt−2; but in
g/at−2 it happens that

[Xi, Xj] ∈ at−1/at−2 for 1 ≤ i, j ≤ n− nt−1.(12)

Let {ω1, ω̄1, . . . , ωn−nt−2 , ω̄n−nt−2} be the real basis for (g/at−2)∗ dual to the
basis {X1, X̄1, . . . , Xn−nt−2 , X̄n−nt−2} for g/at−2. Now, because the almost complex
structure Jt−2 defined by (8) is integrable, conditions (11) and (12) imply

dωi = 0 (1 ≤ i ≤ n− nt−1),

dωk =
∑

1≤i<j≤n−nt−1

Akij ωi ∧ ωj +
∑

1≤i,j≤n−nt−1

Bkij ωi ∧ ω̄j

(n− nt−1 + 1 ≤ k ≤ n− nt−2).

(13)

Equations (13) are of the same type as equations (2). Continuing with this proce-
dure t− 2 times on each step of the sequence (7), taking into account that al+1/al
is contained in the center of g/al and that Jl given by (8) is integrable, we obtain
a real basis {ωi, ω̄i ; 1 ≤ i ≤ n} for g∗ such that equations (2) are satisfied.

A well known result of Mal′cev [Ma] implies that a simply–connected connected
nilpotent Lie group G has compact quotients of the form Γ\G, Γ being a lattice in
G, provided there exists a basis of left invariant 1–forms such that the coefficients in
the structure equations are rational numbers. Now, from this result and Theorem 12
we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPACT NILMANIFOLDS WITH NILPOTENT COMPLEX STRUCTURES 5413

Theorem 13. The structure equations (2) define a simply–connected connected
nilpotent Lie group G with nilpotent (left invariant) complex structure; hence, there
exist compact nilmanifolds Γ\G with nilpotent complex structures in the sense of
Definition 8 (ii). Conversely, the structure equations for the Lie algebra g of a
nilpotent Lie group G with a nilpotent (left invariant) complex structure have the
form (2).

Remark 14. We note that Theorem 13 implies that Corollary 7 in [CFG4] must
be corrected accordingly; that is, it applies only to nilpotent Lie groups G with
nilpotent (left invariant) complex structure.

Next, we show a necessary topological condition for a compact nilmanifold to
have a nilpotent complex structure.

Proposition 15. Let M = Γ\G be a compact nilmanifold with a nilpotent complex
structure. Then, the first Betti number of M satisfies b1(M) ≥ 3.

Proof. By Nomizu’s theorem [No] we have that H1(Γ\G) ∼= H1(g), where H1(Γ\G)
is the first de Rham cohomology group of Γ\G, and g denotes the Lie algebra of G.
Since dimH1(g) = dim(g/[g, g]), from Proposition 11 we have that dimH1(Γ\G) =
dimH1(g) ≥ 2n− (2n− 3) = 3; that is, b1(Γ\G) ≥ 3.

3. Compact nilmanifolds with nilpotent complex structure

and holomorphic principal fibre bundles

In this section we describe how a compact nilmanifold with a nilpotent complex
structure can be realized as the total space at the top in a tower of holomorphic
principal bundles whose structure groups are all complex tori. We shall prove also
that each bundle in this tower carries a canonical (compatible) principal connection.

Let G be a simply-connected connected nilpotent Lie group with a nilpotent
(left invariant) complex structure, g its Lie algebra, {al; l ≥ 0} the ascending series
compatible with the complex structure of G, and (7) the induced sequence of Lie
algebras and homomorphisms.

Let {ω1, ω̄1, . . . , ωn, ω̄n} be a real basis of g∗ satisfying the structure equa-
tions (2), and let {X1, X̄1, . . . , Xn, X̄n} be the real basis of g dual to this basis
of 1–forms. Without loss of generality, we can assume that the basis {Xi, X̄i; 1 ≤
i ≤ n} is such that {Xn−nl+1, X̄n−nl+1, . . . , Xn, X̄n} is a real basis of al, nl =
dimC al. In fact, proceeding as in the proof of Theorem 12, having chosen a basis
{X1, X̄1, . . . , Xn−nt−1 , X̄n−nt−1} of the Lie algebra g/at−1, we complete it to a ba-
sis {X1, X̄1, . . . , Xn−nt−1 , X̄n−nt−1 , Xn−nt−1+1, X̄n−nt−1+1, . . . , Xn−nt−2 , X̄n−nt−2}
of the Lie algebra g/at−2, and so on, until we have a basis {X1, X̄1, . . . , Xn, X̄n}
of the Lie algebra g (see Example 4 in Section 5). Thus, {Xn−nl+1, X̄n−nl+1, . . . ,
Xn, X̄n} is a basis for al, and {ωi, ω̄i; 1 ≤ i ≤ n− nl} determines the quotient Lie
algebra g/al. Moreover, since [al+1, g] ⊂ al, we have

[al+1/al, al+1/al] ⊂ [al+1/al, g/al] = 0.

This implies that the coefficients Aijk and Bijk are zero if j > n − nl+1 or if
k > n− nl+1; that is, the structure equations for g/al are

dωi =
∑

j<k≤n−nl+1

Aijk ωj ∧ ωk +
∑

j,k≤n−nl+1

Bijk ωj ∧ ω̄k (1 ≤ i ≤ n− nl).
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(Here we are denoting with the same symbol ωi the element in g and the one induced
on the quotient.) Therefore, g/al is itself the Lie algebra of a simply–connected
connected nilpotent Lie groupGl with a nilpotent (left invariant) complex structure,
which is exactly the almost complex structure Jl defined by (8); hence dimCGl =
n − nl. Moreover, kerπl = al/al−1 is a complex Abelian Lie algebra of complex
dimension nl − nl−1; therefore, it defines a simply–connected connected Abelian
complex Lie group Al−1, that is, Al−1

∼= Cnl−nl−1 . Furthermore, since al/al−1 is an
ideal in g/al−1, Al−1 is a closed normal Lie subgroup of Gl−1 and Gl = Gl−1/Al−1.
In particular, kerπt = at/at−1 = g/at−1 is also Abelian and it defines the complex
Lie group Cn−nt−1 . A basis of 1–forms for al/al−1 is obtained by considering the
1–forms ωi, ω̄i, n− nl + 1 ≤ i ≤ n− nl−1, as closed forms.

Integrating the Lie algebra homomorphisms in (7), we get a tower of Lie groups
and surjective homomorphisms πl with Abelian kernels

Cn1 ↪→ G0 = G

↓
Cn2−n1 ↪→ G1

↓
...
↓

Cnt−1−nt−2 ↪→ Gt−2

↓
Gt−1 = Cn−nt−1

where each πl : Gl−1 → Gl is holomorphic because it is obtained by integration of
πl : g/al−1 → g/al, which commutes with the (integrable) almost complex struc-
tures Jl−1 of g/al−1 and Jl of g/al, respectively. Moreover, since [al/al−1, g/al−1] =
0 we have an induced holomorphic free action of Cnl−nl−1 on Gl−1. Thus, any
simply–connected connected nilpotent Lie group G with a nilpotent (left invariant)
complex structure is realized as the total space at the top of a tower of holomorphic
principal bundles with Abelian structure groups.

Suppose Γl−1 is a lattice in Gl−1. Since Al−1 is contained in the center of Gl−1,
Al−1 ∩ Γl−1 is a lattice in Al−1, and thus the compact nilmanifold

(Al−1 ∩ Γl−1)\Al−1

is, up to isomorphism, the complex torus Tnl−nl−1 . Moreover, Al−1Γl−1 is closed
in Gl−1 and πl(Γl−1) is a lattice in Gl [R]. Let Γl = πl(Γl−1). Since

(Al−1 ∩ Γl−1)\Al−1
∼= Γl−1\Al−1Γl−1,

we obtain the following holomorphic principal bundle:

Tnl−nl−1 ↪→ Γl−1\Gl−1
πl−→ Γl\Gl.(14)

Let Γ be a lattice in G. Then, taking into account the argument above, Γ1 = π1(Γ),
Γ2 = π2(Γ1), . . . ,Γt−1 = πt−1(Γt−2) are lattices in G1, G2, . . . , Gt−1, respectively.
Therefore, replacing G by Γ\G and Gl by Γl\Gl (1 ≤ l ≤ t− 1) in the tower above,
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we get a new tower of holomorphic principal bundles

Tn1 ↪→ Γ0\G0 = Γ\G
↓

Tn2−n1 ↪→ Γ1\G1

↓
...(15)
↓

Tnt−1−nt−2 ↪→ Γt−2\Gt−2

↓
Γt−1\Gt−1

∼= Tn−nt−1

where T p denotes the complex torus of complex dimension p. Thus the compact
nilmanifold Γ\G with a nilpotent complex structure is realized as the total space at
the top of a tower of holomorphic principal bundles with structure groups complex
tori. We note that each manifold Γl\Gl in this tower is itself a compact nilmanifold
with nilpotent complex structure.

It is worthwhile to compare this construction with the constructions and results
of S. Murakami [Mu] which are concerned with compact complex nilmanifolds.
In that paper, Murakami proved that the total space of a holomorphic principal
bundle over a complex torus having connected Abelian structure group is a compact
complex nilmanifold. Murakami’s proof of this assertion makes use of the existence
of a canonical principal connection on the bundle.

Here, at each step (14) of the tower of bundles, there exists also a canonical
principal connection, defined as follows. First, note that the basis of left invariant
1–forms {ω1, . . . , ωn−nl−1} of type (1, 0) on Gl−1 descends to the quotient manifold
Γl−1\Gl−1 with nilpotent complex structure; we shall denote the forms on the
quotient manifold by the same symbols. Let {Z1, . . . , Znl−nl−1} be a basis of left
invariant holomorphic vector fields of type (1, 0) on the structure group Tnl−nl−1 ;
then

ωωω =
nl−nl−1∑
i=1

ωn−nl+i ⊗ Zi(16)

defines a principal connection on the bundle; this connection form has type (1, 0)
and is compatible with the holomorphic structures [A], [Ks]. Since the structure
group is Abelian, we have dωωω = π∗l ΩΩΩ, where ΩΩΩ denotes the curvature form of ωωω on
the base Γl\Gl, which is given by

ΩΩΩ =
nl−nl−1∑
i=1

 ∑
j<k≤n−nl

An−nl+ijk ωj ∧ ωk

+
∑

j,k≤n−nl

Bn−nl+ijk ωj ∧ ω̄k

⊗ Zi.
(17)

Now, since the structure group of this bundle is Abelian, then its adjoint bundle
is the product bundle (Γl\Gl)×Cnl−nl−1 ; this allows us to identify the differential
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forms on Γl\Gl with values in the adjoint bundle to Cnl−nl−1-valued differential
forms. Thus, the component of type (1, 1) of the curvature form,

ΩΩΩ1,1 =
nl−nl−1∑
i=1

(
∑

j,k≤n−nl

Bn−nl+ijk ωj ∧ ω̄k)⊗ Zi,(18)

defines a cohomology class [ΩΩΩ1,1] ∈ H1,1

∂̄
(Γl\Gl,Cnl−nl−1), which is known to be

independent of the choice of ωωω and is called the Atiyah class of the bundle [A],
[Ks]. Therefore, if some coefficient Bijk in (18) is nonzero, the Atiyah class of the
bundle (14) does not vanish or, which is equivalent, the bundle does not admit holo-
morphic connections. If Γ\G is a compact complex parallelizable nilmanifold, that
is, if the coefficients Bijk in (2) are all zero, then all the bundles in the tower (15)
have vanishing Atiyah class; indeed, ωωω in (16) is a holomorphic connection. The
examples in Section 5 will illustrate both possibilities.

Remark 16. If Γ\G is assumed to be a compact (real) nilmanifold, then the ascend-
ing series {al} is not defined. But a similar construction for Γ\G can be done by
using the ascending central series {gl} instead of {al}. Thus, Γ\G is realized as the
total space at the top of a tower of differentiable principal bundles with structure
groups real tori. Moreover, canonical principal connections can be defined at each
step of the tower in a similar way (see [CFG5] for the details).

Remark 17. If Γ\G is assumed to be a compact complex parallelizable nilmanifold
in the sense of Wang [Wa], then g is a complex Lie algebra and gl is a complex
Lie subalgebra of g; in fact al = gl for all l. Therefore, a similar construction
for Γ\G can be done, so that Γ\G is realized as the total space at the top of a
tower of holomorphic principal bundles whose structure groups are complex tori.
As mentioned above, the connection ωωω will be holomorphic in this case.

4. Minimal model for the Dolbeault cohomology

of a compact nilmanifold with nilpotent complex structure

4.1. Basics of Dolbeault homotopy theory. A Dolbeault homotopy theory
has been developed in [NT] by defining “complex homotopy groups” in terms of
the Dolbeault complex of the manifold. The following are basic definitions of this
theory.

A differential bigraded algebra A∗,∗ is a bigraded commutative algebra over
C with a differential ∂̄ of type (0, 1) which is a derivation, i.e. ∂̄(ab) = (∂̄a)b +
(−1)degaa(∂̄b), where deg a is the total degree of a. It is further required that A be
augmented over C. Morphisms between differential bigraded algebras are required
to be bidegree preserving algebra maps which commute with the differentials.

The most immediate example of a differential bigraded algebra is the Dolbeault
complex (Λ∗,∗C M, ∂̄) of a complex manifold M ; the algebra Λ∗,∗C M is augmented by
choosing a point p ∈M and evaluating the C∞ complex valued functions at p. Since
these functions are Λ0,0

C M , this augments Λ∗,∗C M . Note that Λ∗,∗C M as an augmented
algebra depends on the base point. If M has no nonconstant holomorphic functions,
for example if M is compact connected, then H0,0

∂̄
(M) = C and the dependence on

the base point, at the cohomology level, is only up to isomorphism.
Another immediate example is the following. Let h be a complex Lie algebra,

and let h∗ be its dual. Let us consider their complexifications endowed with their
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natural decompositions:

hC = h1,0 + h0,1, (h∗)C = h1,0 + h0,1.

Since (hC)∗ ∼= (h∗)C, there is a canonical structure of bigraded commutative algebra
in the exterior algebra Λ∗(hC)∗:

Λ∗(hC)∗ =
⊕
p,q≥0

Λp,q(hC)∗,

where Λp,q(hC)∗ = (Λph1,0)⊗ (Λqh0,1). Consider the Chevalley–Eilenberg differen-
tial d : Λ∗h∗ −→ Λ∗+1h∗ given by

(dα)(x1, . . . , xk+1) =
∑
i<j

(−1)i+j α([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1),

where α ∈ Λkh∗, x1, . . . , xk+1 ∈ h; then d extends in a natural way to Λ∗(hC)∗.
Since h is a complex Lie algebra,

[h1,0, h1,0] ⊂ h1,0, [h0,1, h0,1] ⊂ h0,1, [h1,0, h0,1] = 0,

and therefore d decomposes as d = ∂ + ∂̄, where

∂ : Λp,q(hC)∗ −→ Λp+1,q(hC)∗, ∂̄ : Λp,q(hC)∗ −→ Λp,q+1(hC)∗,

and ∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0. Thus (Λ∗,∗(hC)∗, ∂̄) is a differential bigraded algebra.
This construction also applies to the Lie algebra g of a Lie group G with a left
invariant integrable almost complex structure (however, in this case [g1,0, g0,1] can
be nonzero); then (Λ∗,∗(gC)∗, ∂̄) is canonically identified to the differential bigraded
algebra of the complex valued left invariant differential forms on G.

Given a differential bigraded algebra (A∗,∗, ∂̄), we shall say that it is a model
for the Dolbeault cohomology of a complex manifold M if there exists a morphism
of differential bigraded algebras ρ : A∗,∗ → Λ∗,∗C M inducing an isomorphism on
cohomology. A model (A∗,∗, ∂̄) is said to be minimal if: (a) A∗,∗ is free as an
algebra; (b) there exists a collection of generators {aτ}τ∈I , for some well ordered
index set I, such that each ∂̄(aτ ) is expressed in terms of preceding generators aµ
(µ < τ) of total degree deg (aµ) ≤ deg (aτ ). A model (A∗,∗, ∂̄) is said to be formal if
there is a morphism of differential bigraded algebras ψ : (A∗,∗, ∂̄)→ (H∗,∗

∂̄
(A), ∂̄ =

0) inducing the identity on cohomology.
Massey (triple) products can be defined for H∗,∗

∂̄
(A) in the standard form. Let

ααα ∈ Hp,q

∂̄
(A), βββ ∈ Hr,s

∂̄
(A), γγγ ∈ Hu,v

∂̄
(A) satisfy ααα · βββ = 0 = βββ · γγγ. Let α, β and

γ be ∂̄–closed forms representing ααα, βββ and γγγ; then α ∧ β = ∂̄η, β ∧ γ = ∂̄µ, and
so η ∧ γ + (−1)p+q+1α ∧ µ is a ∂̄–closed form of type (p + r + u, q + s + v − 1)
whose cohomology class is well defined modulo the ideal I = ααα ·Hr+u,s+v−1

∂̄
(A)+

γγγ · Hp+r,q+s−1

∂̄
(A). This class in Hp+r+u,q+s+v−1

∂̄
(A)/I will be represented as

〈ααα,βββ,γγγ〉 and called the Massey (triple) product of ααα, βββ and γγγ. As it happens
for the de Rham homotopy theory (see [DGMS], [GM]), nonzero Massey products
are obstructions to the formality of a model (A∗,∗, ∂̄).

4.2. Hirsch Lemma for Dolbeault cohomology. In [Hi, Appendix Two], A.
Borel defined a spectral sequence associated to a complex analytic bundle with
compact connected fibres. This spectral sequence relates the Dolbeault cohomology
groups of the total space, of the base space and of the typical fibre of the bundle.
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Let us recall briefly Borel’s results for the particular case of a (not necessarily
principal) holomorphic fibre bundle F ↪→ E

π−→ B, where F , E and B are assumed
to be compact connected complex manifolds and the structure group of the fibration
is connected. For such a holomorphic fibration, Borel’s results can be read as
follows: there exists a spectral sequence (Er , dr), r ≥ 0, such that:

1. Er is 4–graded, by the base-degree, the fibre-degree and the type. Let p,qEs,tr
be the subspace of elements of Er of (total) type (p, q), base-degree s, fibre-
degree t. Then:

(a) p,qEs,tr = 0 if p+ q 6= s+ t or if one of p, q, s, t is < 0;

(b) dr : p,qEs,tr −→ p,q+1Es+r,t−r+1
r .

2. If p+ q = s+ t, then

p,qEs,t2
∼=
∑
i≥0

Hi,s−i
∂̄

(B)⊗Hp−i,q−s+i
∂̄

(F ).

3. The spectral sequence converges to H∗,∗
∂̄

(E), the Dolbeault cohomology of the
total space. For all p, q ≥ 0,

GrHp,q

∂̄
(E) =

∑
s+t=p+q

p,qEs,t∞(19)

for a suitable filtration of Hp,q

∂̄
(E).

4. (Er , dr) consists of differential commutative algebras, and the isomorphism
in (19) is compatible with the product.

Let us recall also that Borel’s filtration is given by the submodules

Lk(Λ∗CE) =
∑
a+b≥k

Ma,b,c,d,(20)

where the elements in Ma,b,c,d are to be thought of as (a, b)–forms on B with
coefficients in (c, d)–forms in the fibre. The total bidegree (p, q) is determined by
p = a+ c, q = b+ d.

We shall use Borel’s results to prove a Hirsch Lemma that will allow the determi-
nation of a model for the Dolbeault cohomology of the total space of a holomorphic
fibration satisfying some suitable hypothesis.

Let F ↪→ E
π−→ B be a holomorphic fibration, where E, B, F are connected,

F is compact and the structure group of the fibration is connected. An element
ααα ∈ Hp,q

∂̄
(F ) is said to be transgressive if there exists a representative α ∈ Λp,qC F

which extends to a form α̃ ∈ Λp,qC E such that ∂̄α̃ = π∗β for some ∂̄–closed form
β ∈ Λp,q+1

C B. If H∗,∗
∂̄

(F ) is free as a bigraded algebra, we say that it is transgressive
if it has an algebra basis consisting of transgressive elements.

Assume that the holomorphic fibration has H∗,∗
∂̄

(F ) free and transgressive. Let
(A∗,∗, ∂̄) be a differential bigraded algebra and ρ : A∗,∗ → Λ∗,∗C B a morphism of dif-
ferential bigraded algebras giving an isomorphism on cohomology; that is, (A∗,∗, ∂̄)
is a model for (Λ∗,∗C B, ∂̄). Pick an algebra basis {xxx1, . . . ,xxxp} for H∗,∗

∂̄
(F ). Let

α̃i ∈ Λ∗,∗C E be a form which when restricted to F gives a ∂̄–closed form repre-
senting xxxi. Let βi be such that ∂̄α̃i = π∗(βi). Since ρ is an isomorphism on
cohomology, we may pick ai such that βi = ρ(ai) for some ∂̄–closed form ai ∈ A∗,∗.
Let T = A∗,∗⊗H∗,∗

∂̄
(F ) be the tensor product of these bigraded algebras, and define
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a differential ∂̄ of type (0, 1) for T by setting ∂̄ : H∗,∗
∂̄

(F )→ A∗,∗+1 by ∂̄(xxxi) = ai.
Then (T, ∂̄) is a differential bigraded algebra. Define

ρ̃ : T = A∗,∗ ⊗H∗,∗
∂̄

(F ) −→ Λ∗,∗C E(21)

by ρ̃|A = π∗ ◦ ρ, ρ̃(xxxi) = α̃i.

Lemma 18 (Hirsch Lemma [Co]). The morphism ρ̃ in (21) induces an isomor-
phism on cohomology. Hence, (A∗,∗ ⊗ H∗,∗

∂̄
(F ), ∂̄) is a model for the Dolbeault

complex (Λ∗,∗C E, ∂̄).

Proof. We shall construct a spectral sequence Êr converging to the cohomology
H∗,∗
∂̄

(T ), and such that ρ̃ induces an isomorphism of Ê2 into the E2-terms in Borel’s
spectral sequence; then the result will follow from Borel’s in [Hi]. First, let us
consider the particular case of A∗,∗ = Λ∗,∗C B and ρ = identity. Put

T =
⊕
p,q

p,qT,

with
p,qT =

∑
a+c=p
b+d=q

Λa,bC B ⊗Hc,d

∂̄
(F ),

and define

LkT =
∑
a+b≥k

Λa,bC B ⊗Hc,d

∂̄
(F );

then
L0T = T, LkT = 0 if k > dimRB,

LkT ⊃ Lk+1T, ∂̄(LkT ) ⊂ LkT,

and, therefore, {LkT } is a bounded decreasing filtration of T which is stable under
∂̄; hence, we may consider the associated spectral sequence (Êr , dr), r ≥ 0. If we
set p,qLkT = (LkT )∩p,qT , then LkT =

∑
p,q≥0

p,qLkT and, since ∂̄ is homogeneous
of degree 1 in q and of degree 0 in p, this bigrading (p, q) is also present in the terms
Êr. Let p,qÊs,tr denote the terms of Êr of type (p, q), total degree s+ t and degree
s in the grading defined by the filtration; that is, p,qÊs,tr = 0 if p+ q 6= s+ t, and

p,qÊs,tr =
p,qZs,tr

p,qZs+1,t−1
r−1 + p,qBs,tr−1

,

where
p,qZs,tr = p,qLsT s+t ∩ ∂̄−1(p,q+1Ls+rT s+t+1),
p,qBs,tr = p,qLsT s+t ∩ ∂̄(p,q−1Ls−rT s+t−1),

and dr : p,qÊs,tr −→ p,q+1Ês+r,t−r+1
r . From the standard theory of spectral se-

quences, it follows easily that this spectral sequence converges to H∗,∗
∂̄

(T ).
Now, we note that ρ̃ in (21) is filtration preserving with respect to the Borel

filtration of Λ∗,∗C E. In fact, let

ωk =
∑
a+b≥k

ωa,b ⊗ xxxc,d ∈ LkT, ωa,b ∈ Λa,bC B, xxxc,d ∈ Hc,d

∂̄
(F ) ,
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and let α̃c,d ∈ Λc,dC E restrict to a representative of xxxc,d. Therefore ρ̃(ωk) =∑
a+b≥k π

∗(ωa,b)∧ α̃c,d ∈ Lk(Λ∗CE), where Lk(Λ∗CE) is the module in Borel’s filtra-
tion (20). Thus, ρ̃ induces a morphism of spectral sequences ρ̃r : Êr → Er such that,
indeed, ρ̃2 : Ê2 → E2 is an isomorphism. In order to prove this assertion, suppose
that {xxx1, . . . ,xxxp} is a transgressive basis for H∗,∗

∂̄
(F ), and let α̃j ∈ Λ∗,∗C E restrict

to a representative of xxxj such that ∂̄α̃j = π∗(βj), where βj is a ∂̄–closed form on
the base B, for j = 1, . . . , p. Then, each element xxx in H∗,∗

∂̄
(F ) can be expressed as

a sum of products xxxr1 ∧ . . . ∧ xxxrk , with 1 ≤ k ≤ p and {r1, . . . , rk} ⊆ {1, . . . , p}.
So, ∂̄(xxxr1 ∧ . . . ∧ xxxrk) is a sum of elements of the form

βrj ⊗ (xxxr1 ∧ . . . ∧ xxxrj−1 ∧ xxxrj+1 ∧ . . . ∧ xxxrk)

with filtration degree at least 2, because the total degree of a representative of xxxj
is at least 1 and βj = ∂̄(xxxj), j = 1, . . . , p. Therefore, if ω ⊗ xxx, ω ∈ Λa,bC B, has
filtration degree u = a+ b, then we have

∂̄(ω ⊗ xxx) = ∂̄(ω)⊗ xxx+ (−1)uω ⊗ ∂̄(xxx),(22)

where ∂̄(ω)⊗xxx has filtration degree u+1 and ω⊗ ∂̄(xxx) has filtration degree at least
u+ 2.

Now, we notice that
p,qLsT s+t = p,qQs,t ⊕ p,qLs+1T s+t,

where
p,qQs,t =

∑
i≥0

Λi,s−iC B ⊗Hp−i,q−s+i
∂̄

(F );

therefore
p,qZs,t2 = (p,qQs,t ∩ ∂̄−1(p,q+1Ls+2T s+t+1))⊕ p,qZs+1,t−1

1 .

Now let

ωs =
∑
i≥0

ωi,s−i ⊗ xxxp−i,q−s+i ∈ p,qQs,t;(23)

then, it follows from (22) that

∂̄(ωs) =
∑
i≥0

(
∂̄(ωi,s−i)⊗ xxxp−i,q−s+i + (−1)sωi,s−i ⊗ ∂̄(xxxp−i,q−s+i)

)
,

where ωi,s−i ⊗ ∂̄(xxxp−i,q−s+i) has filtration degree at least s+ 2, and therefore

∂̄(ωs) =
∑
i≥0

∂̄(ωi,s−i)⊗ xxxp−i,q−s+i + terms in p,q+1Ls+2T s+t+1.

Since the first summands in this expression all have filtration degree s+1, it follows
that ωs ∈ p,qQs,t ∩ ∂̄−1(p,q+1Ls+2T s+t+1) if and only if each ωi,s−i in (23) is ∂̄–
closed.

On the other hand, an element ωs−1 ∈ p,q−1Ls−1T s+t−1 is of the form

ωs−1 =
∑
i≥0

ωi,s−i−1 ⊗ xxxp−i,q−s+i +
∑
k≥s

∑
i≥0

ωi,k−i ⊗ xxxp−i,q−k−1+i,

and therefore, using (22) again, we conclude that

∂̄(ωs−1) =
∑
i≥0

∂̄(ωi,s−i−1)⊗ xxxp−i,q−s+i + terms in p,qZs+1,t−1
1 .
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Then, it is obvious that

p,qÊs,t2
∼=
∑
i≥0

Hi,s−i
∂̄

(B)⊗Hp−i,q−s+i
∂̄

(F ),

and, hence, ρ̃2 is an isomorphism. Therefore, ρ̃ also induces an isomorphism

ρ̃ : H∗,∗
∂̄

(ΛCB ⊗H∂̄(F ))
∼=−→ H∗,∗

∂̄
(E).

Finally, a standard argument shows that

ρ⊗ id : A∗,∗ ⊗H∗,∗
∂̄

(F ) −→ Λ∗,∗C B ⊗H∗,∗
∂̄

(F )

is an isomorphism on cohomology if ρ is.

The following corollaries are direct consequences of Lemma 18.

Corollary 19 (Künneth formula). Let M , N be compact connected complex man-
ifolds. Then

H∗,∗
∂̄

(M ×N) ∼= H∗,∗
∂̄

(M)⊗H∗,∗
∂̄

(N),

i.e.

Hp,q

∂̄
(M ×N) ∼=

∑
a+c=p
b+d=q

Ha,b

∂̄
(M)⊗Hc,d

∂̄
(N).

Corollary 20. Let F ↪→ E
π−→ B be a holomorphic fibration, E, B, F being

connected, F compact and the structure group of the fibration also being connected.
Assume that the fibration has H∗,∗

∂̄
(F ) free and transgressive. Denote hp,q( ) =

dimHp,q

∂̄
( ). Then

hp,q(E) ≤
∑
a+c=p
b+d=q

ha,b(B) · hc,d(F ).

4.3. Proof of the Main Theorem. Suppose that M = Γ\G is a compact
nilmanifold with a nilpotent complex structure, and so G is defined by equa-
tions (2). Let (15) be its associated tower of holomorphic principal bundles. Con-
sider one arbitrary step (14) of the tower. Let {τ1, . . . , τnl−nl−1} be the basis
of holomorphic 1–forms on the fibre Tnl−nl−1 dual to the basis of vector fields
{Z1, . . . , Znl−nl−1}. Since ωωω in (16) is a connection, each 1–form ωn−nl+i, 1 ≤
i ≤ nl − nl−1, on Γl−1\Gl−1 restricts to τi on the fibre, and since ΩΩΩ in (17) is
the curvature of ωωω, it follows that each τi (resp. τ̄i) transgresses to the (1, 1)–form∑
j,k≤n−nl Bn−nl+i j k ωj ∧ ω̄k (resp. to the (0, 2)–form

∑
j<k≤n−nl Ān−nl+i j k ω̄j ∧

ω̄k) on Γl\Gl. Therefore, {τi, τ̄i} determines a transgressive basis for the Dolbeault
cohomology H∗,∗

∂̄
(Tnl−nl−1) of the fibre.

Now, we start an iterative procedure from the bottom to the top of the tower.
At the first step, the holomorphic principal bundle has Tn−nt−1 as the base and
Tnt−1−nt−2 as the fibre. Let us denote the minimal models for their Dolbeault
cohomology as follows:

Tn−nt−1 : (Λ∗,∗(xj1,0, x
j
0,1), 1 ≤ j ≤ n− nt−1, ∂̄ = 0),

Tnt−1−nt−2 : (Λ∗,∗(yi1,0, y
i
0,1), n− nt−1 + 1 ≤ i ≤ n− nt−2, ∂̄ = 0),
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where the generators are all of degree 1 and bidegree as indexed. Then, having in
mind the previous argumentation for l = t− 1 and the Hirsch Lemma, we see that
a model for H∗,∗

∂̄
(Γt−2\Gt−2) is the differential bigraded algebra

A∗,∗ =
(

Λ∗,∗(xj1,0, x
j
0,1)⊗ Λ∗,∗(yi1,0, y

i
0,1), 1 ≤ j ≤ n− nt−1 < i ≤ n− nt−2 , ∂̄

)
,

the differential ∂̄ being given as follows:

∂̄xj1,0 = ∂̄xj0,1 = 0, 1 ≤ j ≤ n− nt−1,

∂̄yi1,0 =
n−nt−1∑
j,k=1

Bijk x
j
1,0 ∧ xk0,1, n− nt−1 + 1 ≤ i ≤ n− nt−2,

∂̄yi0,1 =
n−nt−1∑
j,k=1
j<k

Āijk x
j
0,1 ∧ xk0,1, n− nt−1 + 1 ≤ i ≤ n− nt−2,

(24)

Aijk and Bijk being the structure constants of g in (2).
Therefore, the mapping A∗,∗ −→ Λ∗,∗C (Γt−2\Gt−2) given by

xj1,0 7→ ωj , xj0,1 7→ ω̄j , 1 ≤ j ≤ n− nt−1,

yi1,0 7→ ωi , yi0,1 7→ ω̄i , n− nt−1 + 1 ≤ i ≤ n− nt−2,

defines an isomorphism Hp,q

∂̄
(Γt−2\Gt−2) ∼= Hp,q

∂̄
((g/at−2)C). If we continue the it-

eration, we get Hp,q

∂̄
(Γt−3\Gt−3) ∼= Hp,q

∂̄
((g/at−3)C) at the second step, and finally,

at the top of the tower, Hp,q

∂̄
(Γ\G) ∼= Hp,q

∂̄
(gC), and the proof is complete.

Corollary 21. The differential bigraded algebra (Λ∗,∗(gC)∗, ∂̄) is a minimal model
for the Dolbeault cohomology of Γ\G.

Proof. It is obvious since J is nilpotent.

Remark 22. This proof can be adapted to the real context if we suppose Γ\G to
be a compact (real) nilmanifold and take Remark 16 into account. Then, using the
classical Hirsch Lemma, Nomizu’s theorem will follow: H∗(Γ\G,R) is canonically
isomorphic to H∗(g) (see [CFG5]).

Sakane’s theorem [Sa] for the Dolbeault cohomology of a compact complex paral-
lelizable nilmanifold follows easily from our Main Theorem and Remark 17. Suppose
that Γ\G is a compact complex parallelizable nilmanifold. Then the coefficients
Bijk in (2), and hence in (24), are all zero. Therefore, a minimal model for the
Dolbeault cohomology H∗,∗

∂̄
(Γ\G) is the differential bigraded algebra

A∗,∗ =
(
Λ∗,∗(xi1,0, x

i
0,1), 1 ≤ i ≤ n , ∂̄

)
,

the differential ∂̄ being given by

∂̄xi1,0 = 0 , ∂̄xi0,1 =
∑
j<k<i

Āijk x
j
0,1 ∧ xk0,1.

Hence Hp,q

∂̄
(Γ\G) ∼= Hp,q(A∗,∗, ∂̄) ∼= Λp(xi1,0)⊗Hq(Λ(xi0,1)), where Λ∗(xi1,0) is the

exterior algebra generated by {xi1,0; 1 ≤ i ≤ n}, and Hq(Λ(xi0,1)) is the cohomology
of the differential algebra (Λ∗(xi0,1), ∂̄). Thus,
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Theorem 23 ([Sa]). Let Γ\G be a compact complex parallelizable nilmanifold.
Then there is a canonical isomorphism

Hp,q

∂̄
(Γ\G) ∼= Λp(g1,0)∗ ⊗Hq(Λ(g0,1)∗),

where Hq(Λ(g0,1)∗) denotes the cohomology of (g0,1)∗.

5. Examples of compact nilmanifolds

with nilpotent complex structure

We shall apply all the previous constructions and results to computing the Dol-
beault cohomology of some compact nilmanifolds with nilpotent complex structure.
Four examples will be developed. The first one is the Iwasawa manifold; it is the
simplest non-trivial example of a compact complex parallelizable nilmanifold. The
last three examples are compact nilmanifolds with nilpotent complex structure
which are not complex parallelizable; in particular, Example 2 is the well known
Kodaira–Thurston manifold.

Example 1. The Iwasawa manifold I3. Let us consider the structure equations

dω1 = dω2 = 0, dω3 = −ω1 ∧ ω2.

They determine the complex Heisenberg group, that is, the complex nilpotent Lie
group G of complex matrices of the form1 z1 z3

1 z2

1

 .

The Iwasawa manifold is the compact complex parallelizable nilmanifold obtained as
I3 = Γ\G, where Γ is the subgroup of G consisting of those matrices whose entries
are Gaussian integers. In terms of the natural (complex) coordinate functions
z1, z2, z3 on G, we have that the 1-forms ω1, ω2 and ω3 can be expressed by

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z1dz2.

Since these 1-forms are left invariant on G, they descend to the quotient I3.
If {X1, . . . , X̄3} is the basis of left invariant vector fields dual to the basis of

1–forms {ω1, . . . , ω̄3}, then a1 = g1 = {X3, X̄3} and a2 = g2 = g; therefore I3 is the
total space of the holomorphic principal torus bundle

T1 ↪→ I3
π−→ T 2.

At the level of Lie groups, the projection π : G → C2 is given by π(z1, z2, z3) =
(z1, z2), and the right action G× C→ G by ((z1, z2, z3), w) 7→ (z1, z2, z3 + w).

Let Z denote the left invariant complex vector field of type (1, 0) on T1; then
ωωω = ω3 ⊗Z is the canonical (holomorphic) connection on the bundle I3(T 2, π,T1),
and its curvature form is ΩΩΩ = −(ω1 ∧ ω2) ⊗ Z. Since ΩΩΩ1,1 = 0, the Atiyah class of
this holomorphic principal bundle vanishes.

For the Iwasawa manifold I3, as total space of a holomorphic principal bundle,
the base is T 2 and the fibre is T1. Therefore, their Dolbeault cohomology groups
are

H∗,∗
∂̄

(B) = H∗,∗
∂̄

(T 2) ∼= H(Λ∗,∗(x1
1,0, x

2
1,0, x

1
0,1, x

2
0,1), ∂̄ = 0),

H∗,∗
∂̄

(F ) = H∗,∗
∂̄

(T1) ∼= H(Λ∗,∗(y1,0, y0,1), ∂̄ = 0),
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where all the generators have total degree 1 and bidegree as indexed; hence, a model
for the Dolbeault cohomology of I3 is the differential bigraded algebra

(Λ∗,∗(x1
1,0, x

2
1,0, x

1
0,1, x

2
0,1)⊗ Λ∗,∗(y1,0, y0,1), ∂̄),

with ∂̄ given by

∂̄x1
1,0 = ∂̄x2

1,0 = ∂̄x1
0,1 = ∂̄x2

0,1 = ∂̄y1,0 = 0,

∂̄y0,1 = −x1
0,1 ∧ x2

0,1.

This is indeed a minimal model for the Dolbeault cohomology of I3.
A straightforward computation allows us to find explicitly each Hp,q

∂̄
(I3) (see

[Co] for the details); the dimensions of these groups (see also [FG], [Sa]) are

h3,3(I3) = 1, h3,2(I3) = h0,1(I3) = 2, h2,3(I3) = h1,0(I3) = 3,

h3,1(I3) = h0,2(I3) = 2, h1,3(I3) = h2,0(I3) = 3,

h3,0(I3) = h0,3(I3) = 1, h2,1(I3) = h1,2(I3) = 6,

h2,2(I3) = h1,1(I3) = 6.

In view of this list, we note that complex conjugation does not define in general an
isomorphism between Hp,q

∂̄
(I3) and Hq,p

∂̄
(I3).

Moreover, it is easy to check that the minimal model for the Dolbeault coho-
mology of I3 is in fact not formal. For example, the cohomology class of x1

0,1 ∧ y0,1

defines the nonzero Massey product 〈x1
0,1, x

1
0,1, x

2
0,1〉.

More examples of compact complex parallelizable nilmanifolds can be construc-
ted in the same way. For a complete list of these manifolds up to complex dimen-
sion 5, see [Na].

Example 2. The Kodaira–Thurston manifold K. The simplest example of a com-
pact nilmanifold with nilpotent complex structures which is real parallelizable but
not complex parallelizable is the following. Let us consider the structure equations

dω1 = 0, dω2 = ω1 ∧ ω̄1.

They determine the simply–connected connected nilpotent Lie group G of complex
matrices of the form 1 z̄1 z2

1 z1

1

 .

We note that this Lie groupG is not a complex Lie group, since right translations are
not holomorphic. The Kodaira–Thurston manifold K is the compact nilmanifold
with nilpotent complex structure obtained as K = Γ\G, where Γ is the subgroup of
G consisting of those matrices whose entries are Gaussian integers. (This manifold
was the first known example of a compact symplectic manifold which is also a
complex manifold with no positive definite Kähler metric [Ko], [Th], [CFG1].) The
functions z1, z2 are natural complex coordinates on G. In terms of dz1 and dz2, the
1-forms ω1 and ω2 can be expressed by

ω1 = dz1, ω2 = dz2 − z̄1dz1.

Moreover, these 1-forms descend to the quotient K because they are left invariant
on G.
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If {X1, X̄1, X2, X̄2} is the basis of left invariant vector fields dual to the basis of
1–forms {ω1, ω̄1, ω2, ω̄2}, then a1 = g1 = {X2, X̄2}, a2 = g2 = g. Therefore K is
the total space of the holomorphic principal bundle

T1 ↪→ K
π−→ T1.

At the level of Lie groups, the projection π : G→ C is given by π(z1, z2) = z1, and
the right action G× C→ G by ((z1, z2), w) 7→ (z1, z2 + w).

Let Z denote the left invariant complex vector field of type (1, 0) on T1; then,
ωωω = ω2 ⊗ Z is the canonical (non-holomorphic) connection on the holomorphic
principal bundle K(T1, π,T1), and its curvature form is given by ΩΩΩ = (ω1∧ ω̄1)⊗Z.
Since [ω1 ∧ ω̄1] ∈ H1,1

∂̄
(T1,C) is nonzero (here C is identified to the Lie algebra of

T1), this holomorphic principal bundle has nonvanishing Atiyah class and hence
does not admit holomorphic connections.

For the Kodaira–Thurston manifold K, as total space of a holomorphic principal
bundle, the base and the fibre both are T1. Therefore, their Dolbeault cohomology
groups are

H∗,∗
∂̄

(B) = H∗,∗
∂̄

(T1) ∼= H(Λ∗,∗(x1,0, x0,1), ∂̄ = 0),

H∗,∗
∂̄

(F ) = H∗,∗
∂̄

(T1) ∼= H(Λ∗,∗(y1,0, y0,1), ∂̄ = 0),

where the generators have total degree 1 and bidegree as indexed; hence, a mini-
mal model for the Dolbeault cohomology of K is the differential bigraded algebra
(Λ∗,∗(x1,0, x0,1)⊗ Λ∗,∗(y1,0, y0,1), ∂̄), with ∂̄ given by

∂̄x1,0 = ∂̄x0,1 = ∂̄y0,1 = 0, ∂̄y1,0 = x1,0 ∧ x0,1.

The explicit list of the groups Hp,q

∂̄
(K) is given in [Co]. Their dimensions are:

h2,2(K) = 1, h2,1(K) = h0,1(K) = 2, h1,2(K) = h1,0(K) = 1,

h2,0(K) = h0,2(K) = 1, h1,1(K) = 2.

Again we remark that complex conjugation does not define in general an isomor-
phism between Hp,q

∂̄
(K) and Hq,p

∂̄
(K). Also, the minimal model is not formal. For

example, the cohomology class of x1,0 ∧ y1,0 defines the nonzero Massey product
〈x1,0, x1,0, x0,1〉.

Example 3. Let us consider the structure equations
dω1 = 0,
dω2 = ω1 ∧ ω̄1,

dω3 = ω1 ∧ ω2 + ω1 ∧ ω̄2;

they determine the (real) nilpotent Lie group G of complex matrices of the form
1 z̄1 z2 z1

1
2z

2
1 z3

1 z1 0 0 1
2z

2
1

1 0 0 z1

1 z1 −z̄2

1 −z̄1

1

 .

Then N3 = Γ\G, where Γ denotes the subgroup of G consisting of those matrices
with Gaussian integers as entries, is a compact nilmanifold with a nilpotent complex
structure of complex dimension 3.
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If {X1, . . . , X̄3} is the basis of left invariant vector fields dual to the basis of
1–forms {ω1, . . . , ω̄3}, then

a1 = {X3, X̄3} ⊂ g1 = {X2 − X̄2, X3, X̄3},

a2 = {X2, X̄2, X3, X̄3} ⊂ g2 = g,

a3 = g.

Therefore, we obtain in this case the following tower of holomorphic principal bun-
dles:

T1 ↪→ N3

↓
T1 ↪→ N2

↓
T1

Here N2 = Γ1\G1, where G1 is the nilpotent Lie group defined by the structure
equations dω1 = 0, dω2 = ω1 ∧ ω̄1; that is, N2 is the Kodaira–Thurston manifold
K considered in Example 2.

At the level of Lie groups, the projection maps in this tower are given as follows:

π1 : G −→ G1 : (z1, z2, z3) 7→ (z1, z2),

π2 : G1 −→ C : (z1, z2) 7→ z1,

and the right actions by

G× C −→ G : ((z1, z2, z3), w3) 7→ (z1, z2, z3 + w3),

G1 × C −→ G1 : ((z1, z2), w2) 7→ (z1, z2 + w2).

The canonical (non-holomorphic) connections on this tower are given as follows.
The connection form on K(T1, π2,T1) is ωωω = ω2 ⊗ Z2, and its curvature form is
ΩΩΩ = (ω1∧ω̄1)⊗Z2. On the bundle N3(K,π1,T1) the connection form isωωω = ω3⊗Z3,
and its curvature form is ΩΩΩ = (ω1 ∧ ω2 +ω1 ∧ ω̄2)⊗Z3. Again, each bundle at this
tower has nonvanishing Atiyah class, and hence they cannot admit holomorphic
connections.

In order to computeH∗,∗
∂̄

(N3) we proceed by iteration from the bottom to the top
of the tower. A minimal model for the Dolbeault cohomology of K was constructed
in Example 2. Now, at the second step, the bundle has base K and fibre T1. Hence,
a minimal model for the Dolbeault cohomology of N3 is

(Λ∗,∗(x1,0, x0,1)⊗ Λ∗,∗(y1,0, y0,1)⊗ Λ∗,∗(z1,0, z0,1), ∂̄),

with generators of total degree 1 and bidegree as indexed, and ∂̄ given by

∂̄x1,0 = ∂̄x0,1 = ∂̄y0,1 = 0,

∂̄y1,0 = x1,0 ∧ x0,1,

∂̄z1,0 = x1,0 ∧ y0,1,

∂̄z0,1 = x0,1 ∧ y0,1.

This minimal model is again not formal. In fact, the cohomology class of x1,0 ∧
z1,0 defines the nonzero Massey product 〈x1,0, x1,0, y0,1〉.
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Example 4. Let G be a simply–connected connected nilpotent Lie group deter-
mined by the structure equations

dµ1 = dµ2 = 0,
dµ3 = µ1 ∧ µ̄1,

dµ4 = µ1 ∧ (µ2 + µ̄2) + µ1 ∧ (µ3 + µ̄3),

dµ5 = µ1 ∧ (−µ2 + µ̄2) + µ1 ∧ µ4.

Let Γ be a lattice in G, and N5 = Γ\G. Then N5 is a compact nilmanifold with a
nilpotent complex structure of complex dimension 5.

If {Z1, . . . , Z̄5} is the basis of left invariant vector fields dual to the basis of
1–forms {µ1, . . . , µ̄5}, then

a1 = {Z5, Z̄5} ⊂ g1 = {Z2 + Z̄2 − 2Z3, Z2 − Z3 + Z4 − Z̄4, Z3 − Z̄3, Z5, Z̄5},
a2 = {Z2 − Z3, Z̄2 − Z̄3, Z4, Z̄4, Z5, Z̄5} ⊂ g2

= {Z2 − Z̄2, Z2 + Z̄2 − 2Z3, Z3 − Z̄3, Z4, Z̄4, Z5, Z̄5}
= {Z2 − Z3, Z̄2 − Z̄3, Z3 − Z̄3, Z4, Z̄4, Z5, Z̄5},

a3 = {Z2, Z̄2, Z3, Z̄3, Z4, Z̄4, Z5, Z̄5} ⊂ g3 = g,

a4 = g.

Now, we shall consider a new basis {X1, . . . , X̄5} for g such that {X5, X̄5} is a ba-
sis for a1, {X3, X̄3, X4, X̄4, X5, X̄5} is a basis for a2 and {X2, X̄2, X3, X̄3, X4, X̄4, X5,
X̄5} is a basis for a3. For that, we define the 1-forms ωi, 1 ≤ i ≤ 5, as follows:

ω1 = µ1, ω2 = µ2 + µ3, ω3 = µ2 − µ3, ω4 = µ4, ω5 = µ5.

Then {ω5, ω̄5} is a basis for a∗1, {ω3, ω̄3, ω4, ω̄4, ω5, ω̄5} is a basis for a∗2, {ω2, ω̄2, ω3, ω̄3,
ω4, ω̄4, ω5, ω̄5} is a basis for a∗3, and {ωi, ω̄i; 1 ≤ i ≤ 5} is a basis for the 1-forms on
g (= a4) satisfying

dω1 = 0,
dω2 = ω1 ∧ ω̄1,

dω3 = −ω1 ∧ ω̄1,

dω4 = ω1 ∧ (ω2 + ω̄2),

dω5 =
1
2
ω1 ∧ (−ω2 − ω3 + 2ω4 + ω̄2 + ω̄3).

Let {X1, . . . , X̄5} be the basis for g dual to the basis {ω1, . . . , ω̄5}. Then, {X1, . . . ,
X̄5} is the desired basis for g.

Therefore, we have the following tower of holomorphic principal bundles:

T1 ↪→ N5

↓
T 2 ↪→ N4

↓
T1 ↪→ N2

↓
T1
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Here N4 = Γ1\G1 and N2 = Γ2\G2, where G1 and G2 are the nilpotent Lie groups
defined by the structure equations

dω1 = 0, dω2 = ω1 ∧ ω̄1, dω3 = −ω1 ∧ ω̄1, dω4 = ω1 ∧ (ω2 + ω̄2),

and

dω1 = 0, dω2 = ω1 ∧ ω̄1,

respectively. That is, N2 is the Kodaira-Thurston manifold K.
The canonical (non-holomorphic) connections on the tower are given as follows.

The connection form on K(T1, π3,T1) is ωωω = ω2 ⊗W2, and its curvature form is

ΩΩΩ = (ω1 ∧ ω̄1)⊗W2.

On the bundle N4(K,π2,T 2) the connection form is ωωω = ω3 ⊗W3 + ω4 ⊗W4, and
its curvature form is

ΩΩΩ = −(ω1 ∧ ω̄1)⊗W3 + (ω1 ∧ ω2 + ω1 ∧ ω̄2)⊗W4.

On the bundle N5(N4, π1,T1) the connection form is ωωω = ω5⊗W5, and its curvature
form is

ΩΩΩ =
1
2

(−ω1 ∧ ω2 − ω1 ∧ ω3 + 2ω1 ∧ ω4 + ω1 ∧ ω̄2 + ω1 ∧ ω̄3)⊗W5.

Again, each bundle at this tower has nonvanishing Atiyah class, and hence they
cannot admit holomorphic connections.

In order to computeH∗,∗
∂̄

(N5) we proceed by iteration from the bottom to the top
of the tower. A minimal model for the Dolbeault cohomology of K was constructed
in Example 2. At the second step, the bundle has base K and fibre T 2. Hence, a
minimal model for the Dolbeault cohomology of N4 is

(Λ∗,∗(x1,0, x0,1)⊗ Λ∗,∗(y1,0, y0,1)⊗ Λ∗,∗(z1
1,0, z

2
1,0, z

1
0,1, z

2
0,1), ∂̄),

with generators of total degree 1 and bidegree as indexed, and ∂̄ given by

∂̄x1,0 = ∂̄x0,1 = ∂̄y0,1 = ∂̄z1
0,1 = 0,

∂̄y1,0 = x1,0 ∧ x0,1,

∂̄z1
1,0 = −x1,0 ∧ x0,1,

∂̄z2
1,0 = x1,0 ∧ y0,1,

∂̄z2
0,1 = x0,1 ∧ y0,1.

At the third step, the bundle has base N4 and fibre T1. Hence, a minimal model
for the Dolbeault cohomology of N5 is

(Λ∗,∗(x1,0, x0,1)⊗ Λ∗,∗(y1,0, y0,1)⊗ Λ∗,∗(z1
1,0, z

2
1,0, z

1
0,1, z

2
0,1)⊗ Λ∗,∗(t1,0, t0,1), ∂̄ ),

where the generators t1,0, t0,1 have total degree 1 and bidegree as indexed, and ∂̄ is
given by

∂̄t1,0 =
1
2
x1,0 ∧ y0,1 +

1
2
x1,0 ∧ z1

0,1,

∂̄t0,1 = −1
2
x0,1 ∧ y0,1 −

1
2
x0,1 ∧ z1

0,1 + x0,1 ∧ z2
0,1.

This minimal model is again not formal. In fact, the cohomology class of x1,0 ∧
z2

1,0 defines the nonzero Massey product 〈x1,0, x1,0, y0,1〉.
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6. Examples of compact complex nilmanifolds

with no nilpotent complex structure

In this section we exhibit two examples of compact complex nilmanifolds, L6 and
M10, whose complex structures are not nilpotent. Therefore, the Main Theorem of
this paper cannot be applied to compute the Dolbeault cohomology groups of L6

and M10. Moreover, we prove that the compact nilmanifold L6 admits no nilpotent
complex structures.

The compact complex nilmanifold L6. Let G be the 6-dimensional simply-
connected connected 3-step nilpotent Lie group defined by the structure equations

dα1 = dα2 = dα3 = 0,
dα4 = α1 ∧ α3,

dα5 = α2 ∧ α3,

dα6 = α1 ∧ α4 + α2 ∧ α5.

Let {Xi ; 1 ≤ i ≤ 6} be the basis of left invariant vector fields on G dual to the
basis {αi ; 1 ≤ i ≤ 6}. Then, g1 = {X6}, and thus dim g1 = 1.

Next, we consider the left invariant integrable almost complex structure J on G
defined by

JX1 = X2, JX4 = X5, JX3 = X6.

A complex basis {ωi ; 1 ≤ i ≤ 3} for the complex forms on gC, g = Lie algebra of
G, is given by 

ω1 = α1 +
√
−1α2,

ω2 = α4 +
√
−1α5,

ω3 = α3 +
√
−1α6.

In terms of these forms, the structure equations of G are
dω1 = 0,

dω2 =
1
2

(ω1 ∧ ω3 + ω1 ∧ ω̄3),

dω3 =
√
−1
2

(ω1 ∧ ω̄2 + ω̄1 ∧ ω2),

(25)

and they allow us, by integration, to describe G as the (real) nilpotent Lie group
of complex matrices of the form

1 −
√
−1
2 z1 −

√
−1
2 z̄1 −

√
−1
4 z1z̄1 z3

1 0 − 1
2 z̄1 z̄2

1 − 1
2z1 z2

1 z3 + z̄3

1


.(26)

The functions z1, z2, z3 are the complex coordinates on G which correspond to the
integrable almost complex structure J , and the 1-forms ω1, ω2, ω3 can be expressed
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by 
ω1 = dz1,

ω2 = dz2 +
1
2
z1(dz3 + dz̄3),

ω3 = dz3 +
√
−1
2

(
z1dz̄2 + z̄1dz2 +

1
2
z1z̄1(dz3 + dz̄3)

)
.

Since the structure equations (25) are not of the form (2), it follows that the
integrable almost complex structure J on G is not nilpotent. Furthermore, it is easy
to check that the first term a1 in the series {al ; l ≥ 0} is a1 = 0 (= al for l ≥ 0) in
this case, and hence, taking into account Lemma 9 and Theorem 12, the complex
structure J on G cannot be nilpotent. In fact, since dim g1 = 1, Proposition 10
and Theorem 12 imply that G does not admit nilpotent (left invariant) complex
structures.

Looking at (26), it is easy to see that there exists a lattice Γ ⊂ G of maximal
rank, and therefore L6 = Γ\G is a compact complex nilmanifold with no nilpotent
complex structures.

Nevertheless, the compact complex manifold L6 can still be described as the
total space of a (non-holomorphic) principal bundle T2 ↪→ L6 π−→ T, as follows.

At the level of Lie groups, the fibration is defined as C2 ↪→ G
π−→ C, where

the projection map π : G → C is given by π(z1, z2, z3) = z1, and the right action
G× C2 → G of C2 on G by

((z1, z2, z3), (w1, w2)) 7→
(
z1, z2 + w1 −

1
2
z1(w2 + w̄2) ,

z3 + w2 +
√
−1
2

(
1
2
z1z̄1(w2 + w̄2)− z1w̄1 − z̄1w1)

)
,

which is not holomorphic. Hence the fibration, already at the level of Lie groups,
is not holomorphic either, and the Main Theorem cannot be applied.

Remark 24. It must be remarked that dim a1 = 0 is not the relevant fact to prevent
the existence of some nilpotent (left invariant) complex structure onG. The relevant
fact is that dim g1 = 1, which conflicts with Proposition 10 and Theorem 12.

The compact complex nilmanifold M10. Let us consider the 10-dimensional
simply-connected connected nilpotent Lie group G defined by the structure equa-
tions 

dα1 = dα2 = dα3 = dβ1 = 0,
dα4 = α1 ∧ α3,

dα5 = α2 ∧ α3,

dα6 = α1 ∧ α4 + α2 ∧ α5,

dβ2 = α1 ∧ β1,

dβ3 = α2 ∧ β1,

dβ4 = α1 ∧ β2 + α2 ∧ β3.

(27)

Let {Xi, Yj ; 1 ≤ i ≤ 6, 1 ≤ j ≤ 4} be the basis of left invariant vector fields
on G dual to the basis {αi, βj ; 1 ≤ i ≤ 6, 1 ≤ j ≤ 4}. Then, g1 = {X6, Y4},
g2 = {X4, X5, X6, Y2, Y3, Y4} and g3 = g. Therefore, dim g1 = 2, dim g2 = 6
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and dim g3 = 10. Let us now define the left invariant integrable almost complex
structures J and Ĵ on G by

JX1 = X2, JX4 = X5, JX3 = X6, JY1 = Y4, JY2 = Y3,

and

ĴX1 = X2, ĴX3 = Y1, ĴX4 = X5, ĴX6 = Y4, ĴY2 = Y3,

respectively. Then, one easily checks that the series {al(J); l ≥ 0} of J satisfies
al(J) = 0 for l ≥ 0, and hence the complex structure J on G is not nilpotent.
However, the series {al(Ĵ); l ≥ 0} associated to Ĵ satisfies al(Ĵ) = gl for l ≥ 0, and
thus a3(Ĵ) = g and Ĵ is nilpotent.

From equations (27) and Mal′cev’s theorem [Ma] it follows that there is a discrete
subgroup Γ of G such that the quotient space Γ\G is compact. We define M10

(respectively N10) to be the compact complex nilmanifold Γ\G with the complex
structure defined from J (respectively Ĵ) on G by passing to the quotient. Then,
the complex structure on M10 is not nilpotent; however, the complex structure on
N10 is nilpotent.

Moreover, denote by ηi (1 ≤ i ≤ 5) the left invariant 1–forms on G of type (1, 0)
with respect to Ĵ , defined by 

η1 = α1 +
√
−1α2,

η2 = α3 +
√
−1β1,

η3 = α4 +
√
−1α5,

η4 = β2 +
√
−1β3,

η5 = α6 +
√
−1β4.

Then, in terms of the 1–forms ηi, the compact complex nilmanifold N10 can be
defined by the equations

dη1 = dη2 = 0,

dη3 =
1
2

(η1 ∧ η2 + η1 ∧ η̄2),

dη4 = −
√
−1
2

(η1 ∧ η2 − η1 ∧ η̄2),

dη5 =
1
2

(η1 ∧ η̄3 + η̄1 ∧ η3) +
√
−1
2

(η1 ∧ η̄4 + η̄1 ∧ η4).

These equations are of type (2), which is equivalent to establishing (see Theorem 13)
that the complex structure on N10 is nilpotent.
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Apartado 644, 48080 Bilbao, Spain

E-mail address: mtpferol@lg.ehu.es

Department of Mathematics, University of Maryland, College Park, Maryland 20742

E-mail address: gray@bianchi.umd.edu
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