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ABSTRACT. Examples of compact symplectic manifolds with no complex

and/or Kahler structures are presented.

1. Introduction. Many examples of compact symplectic manifolds that carry

no positive definite Kahler metric are now known. Here we present some com-

pact 4-dimensional manifolds that have symplectic structures but carry no complex

structures. More generally we prove

THEOREM 1.1. Let E4 be a principal circle bundle over E3, which in turn is a

principal circle bundle over a torus T2, so that the first Betti number ofïï,4 satisfies

2<6i(E4) <4.  Then

(i) î/&i(E4) = 2 then E4 has symplectic but no complex structures;

(ii) if bi(E,4) = 3 then E4 has both symplectic and complex structures but no

positive definite Kahler metrics; however E4 carries indefinite Kahler metrics;

(iii) i>i(E4) = 4 if and only ifE4 is a A-torus T4.

REMARKS. (1) Apparently the manifolds that occur in part (i) of Theorem 1.1

are the first examples of compact symplectic manifolds with no complex structures.

Van de Ven [VdV], Yau [Ya] and Brotherton [Br] have given examples of compact

4-dimensional almost complex manifolds with no complex structures. Brotherton

used Massey products to prove the nonexistence of complex structures on certain

parallelizable 4-dimensional manifolds.

(2) Thurston [Th] has given an example of a compact symplectic manifold with

no positive definite Kahler metric. (See also [Ab, CFG, CFL, Wei].) In §3

we shall see that it is covered under part (ii) of Theorem 1.1. It is interesting to

note that this example already occurs in the work of Kodaira [Kod, Theorem 19].

An explicit description of the Kodaira-Thurston example as a complex manifold is

given in §3.

(3) The spaces E4 are all real parallelizable (but only T4 is complex paralleliz-

able in the sense of Wang [Wa]). By a blowing up procedure one can construct

nonparallelizable symplectic manifolds with no complex structure and/or positive

definite Kahler metric [Go].

(4) Most of the manifolds considered in Theorem 1.1 have explicit matrix real-

izations as nilmanifolds [CM]. See also [PS], where it is proved that a compact

manifold is a principal torus bundle over a torus if and only if it is a 2-step nilman-

ifold. The paper [BG] is also relevant.
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(5) As a corollary to part (ii) of Theorem 1.1, we observe that none of the

complex structures mentioned there can be calibrated (in the sense of [Gro]) by

a symplectic form, since otherwise the corresponding E4 would admit a positive

definite Kahler metric.

(6) For a general discussion of symplectic manifolds constructed as fiber bundles

see [We2].

We wish to thank Mike Hoffman, Dosa McDuff, Jonathan Rosenberg, David

Simms and Alan Weinstein for several very useful discussions.

2. The topology of a principal circle bundle over a principal circle

bundle over a torus. The classification of principal circle bundles is well known:

THEOREM 2.1 [Kob, p. 35, Kos, p. 133]. There is a one-to-one correspon-

dence between equivalence classes of principal circle bundles over a manifold M

and the cohomology group ¿L2(M, Z). Furthermore, given an integral closed 2-form

3> on M, there is a principal circle bundle n: E —» M with connection form r¡ such

that $ is the curvature of r\ (that is, 7r*($) = dr\).

Now let a and ß be integral closed 1-forms on T2 such that a and ß are every-

where linearly independent and the cohomology class [a Aß] generates ¿î2(T2,Z).

Theorem 2.1 implies that for every integer n there is a principal circle bundle

E3 —► T2 corresponding to n[a A ß] and a connection form 7 on E3 chosen so that

the curvature of 7 is na A ß. The real minimal model of E3 is thus

M(E3) = {a, ß,~t\da = dß = 0,di = naA ß}.

(We use the same notation for differential forms on base spaces and their pullbacks

to total spaces.) Then HlQ&,R) = {[a], [/?]} and ¿¿2(E3,R) = {[a A 7], [ß A 7]}

when n^O.

If n = 0, E3 is a 3-torus; otherwise E3 can be realized as the compact quotient

r„\H„ where H„ is the Lie group of matrices of the form

(1    a    —c/n\

0    16
0    0       1    )

and r„ is the subgroup of H„ consisting of those matrices for which a, b and c are

integers.

Principal circle bundles E4 —► E3 are classified by ¿¿2(E3, Z). When n ^ 0 the

Gysin sequence yields ¿¿2(E3,Z) = Z © Z © Z\n\; thus for each pair of integers

(p, q) there is a principal circle bundle corresponding to the class p[aA7] +q[ß A 7].

Again we use Kobayashi's Theorem 2.1 to conclude that the connection form n of

E4 —♦ E3 can be chosen so that its curvature form is precisely pa A 7 + qß A 7. It

follows that when n/0 the (real) minimal models of the E4 are given as follows:

M(E4) = {a, ß, 7, r\ \ da = dß = 0, dq = na A ß, dr¡ = pa A 7 + qß A 7}.

Clearly, 61 (E4) =3ifp = <7 = 0 and 61 (E4) = 2 otherwise. The case n = 0 is

similar: for each triple of integers (p, q, r) there is an E4 with

M(E4) = {a, ß, 7, rj \ da = dß — (¿7 = 0, dr¡ — ra A ß + pa A 7 + qß A 7}.

Then £>t (E4) = 4 if r = p = q = 0 and 61 (E4) = 3 otherwise.
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LEMMA 2.2. The minimal model M(E4) is not formal if one of n,p,q,r is

different from zero.

PROOF. It suffices to find nonzero Massey products. Suppose n ^ 0 (the proof

when n = 0 is simpler). Then the cohomology classes [a A a] and [a A nß] are both

zero, so that the Massey product ([a], [a], [nß]) is well defined. By definition it is

represented by a A 7. Now [a A 7] ^0 for E3; it is also nonzero in the cohomology

of E4 except when p ^ 0, q = 0. But in this case the Massey product ([/?], [/?], [na])

is nonzero.

3. Proof of Theorem 1.1. First let us note that in all cases E4 has many

symplectic forms. For example

Ü = (act + bß) A 7 + (ea + fß) An

is closed if a, b, e, / are constants such that fp — eq = 0, and has maximal rank if

0/ - be # 0.
PROOF OF (i). We use [Kod, Theorem 25]: A [complex] surface is a deformation

of an algebraic surface if and only if its first Betti number is even. Suppose E4 with

61 (E4) = 2 had a complex structure. Then [Kod, Theorem 25] would imply that

E4 would have a positive definite Kahler metric. But now a result of [DGMS]

would imply that M(E4) is formal, and this is impossible by Lemma 2.2.

REMARK. It is amusing to compare an E4 with bi (E4) = 2 with the Kahler

manifold S2 x T2. Both are parallelizable and have the same Betti numbers. But

E4 has nonzero Massey products while S2 x T2 does not.

PROOF OF (ii). When 61 (E4) = 3 and n^Oan explicit complex structure on E4

can be constructed as follows. Let A, Y, Z, T be the parallelization dual to a, ß, 7, n;

the only nonzero bracket is [A, Y] = — nZ. Now define an almost complex structure

J on E4 by JX = Y, JZ = T. A direct calculation shows that the Nijenhuis tensor

of J vanishes; consequently J is complex. A similar construction yields a complex

structure on an E4 with n = 0.

None of these E4 can possess a positive definite Kahler metric since 61 (E4) is

odd. (There are also nonzero Massey products.) Nonetheless an indefinite Kahler

metric <f> for the complex structure J can be constructed as follows. Let O be a

symplectic form which has type (1,1) with respect to J; for example we can take

n = aAi + ßAn. Then put <¡>(U,V) = Q(U, JV) for vector fields U,V on E4.

In general suppose that Q is Hermitian with respect to an almost complex struc-

ture J so that the metric <j> is given by qb(x, y) = fl(x, Jy). For vector fields A, Y, Z

we have that

2Vx(fi)(Y, Z) = dü(X, Y, Z) - dü(X, JY, JZ) - <f>(X, S(Y, JZ)),

where S denotes the Nijenhuis tensor of J [Gra, formula (4.8)]. It follows that if

J is integrable and fi is symplectic, then <f> is Kählerian, but possibly indefinite.

REMARK. The Kodaira-Thurston example belongs to case (ii); explicitly it is

T-i\H-i x S1. As a complex manifold it has the following description. For each

Gaussian integer n let

G« — z and w are complex
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Gn is a complex manifold and as a Lie group it is left holomorphic but not right

holomorphic. Let $„ be the subgroup of Gn consisting of all those matrices whose

elements are Gaussian integers. Then E4 = ^n\Gn is a nilmanifold and a com-

plex manifold (but not a complex nilmanifold). The Kodaira-Thurston example is

»i\Gi.
The proof of (iii) is obvious.
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