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 
Abstract—Time-of-flight image sensors based on single-photon 

detection, i.e. SPADs, require some filtering of pixel readings. 
Accurate depth measurements are only possible if the jitter of the 
detector is mitigated. Moreover, the time stamp needs to be 
effectively separated from uncorrelated noise such as dark counts 
and background illumination. A powerful tool for this is building 
a histogram of a number of pixel readings. Future generation of 
ToF imagers are seeking to increase spatial and temporal 
resolution along with the dynamic range and frame rate. Under 
these circumstances, storing the complete histogram for every 
pixel becomes practically impossible. Considering that most of 
the information contained by the histogram represents noise, we 
propose a highly efficient method to store just the relevant data 
required for ToF computation. This method makes use of the 
shifted inter-frame histogram (SifH). It requires a memory as low 
as 128 times smaller than storing the complete histogram if the 
pixel values are coded on up to 15 bits. Moreover, a fixed 28 
words memory is enough to process histograms containing up to 
215 bins. In exchange, the overall frame rate only decreases to one 
half. The hardware implementation of this algorithm is 
presented. Its remarkable robustness for a low SNR of the ToF 
estimation is demonstrated by Matlab simulations and FPGA 
implementation using input data from a SPAD camera prototype.       

Index Terms—shifted inter-frame histogram (SifH), real-time 
time-of-flight (ToF) estimation, ToF image sensor, single-photon 
avalanche-diode (SPAD)  

I. INTRODUCTION 

HE performance of CMOS image sensors based on Single 
Photon Avalanche Diodes (SPADs) has been 

tremendously improved in the last years [1], [2]. They have 
been proven for photon counting and Time-of-Flight (ToF) 
[3]. SPADs are able to work in low illumination conditions 
with small integration times and to time stamp the arrival of 
the first detected photon. These features make them suitable 
for high-speed ToF CMOS Image Sensors (CIS) [4]. ToF-CIS 
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obtain the depth map of a scene by estimating the ToF at pixel 
level. Due to the SPAD and Time-to-Digital Converter (TDC) 
ensemble limitations such as uncorrelated noise (e. g. dark 
counts and background illumination), limited photon detection 
efficiency, jitter and low illumination conditions, the pixels 
ToF cannot be estimated from a single measurement. Instead, 
a relatively large number of measurements is required. From 
now on, let us call these measurements “inter-frames”, so M 
inter-frames are required to build the final frame representing 
an accurate depth image. Even for the best performance SPAD 
imagers, still several thousands of inter-frames are required 
[3]. Besides, if the level of the uncorrelated noise is high, then 
it could trigger the pixels most of the time. For instance, 
according to the experimental results reported in [5], only 236 
detections are true out of M = 100k inter-frames. In the 
remaining 99.76% of the cases, pixels have not been triggered 
at all or they have been triggered by noise. In these conditions, 
averaging is not an option. Instead, the computation of the 
ToF at pixel level involves the finding of the digital code that 
is repeated most of the time across all acquired inter-frames, i. 
e. the extraction of the mode. Mode filters have been 
employed in image processing in the spatial scope [6]. In this 
occasion, we are going to filter all the time stamps obtained 
for the same pixel. This problem can be addressed by building 
ToF histograms at pixel level [7] or by deep learning 
algorithms [8]. In this paper we only contemplate the first 
approach. In this way the Signal-to-Noise Ratio (SNR) 
increases, improving accuracy by √ܯ times. The pixel values 
(ToF codes) across multiple inter-frames are the addresses of 
the bins in the histogram memory whilst the content of a  

 
Fig. 1 Block diagram of inter-frame histogram building 
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memory address represents how many times the address has 
been encountered (Fig. 1) [5]. When it comes to real-time ToF 
computation at ultra-high speed (hundreds of thousands of 
inter-frames per second) for wide range (hundreds of 
nanoseconds) with few picoseconds temporal resolution and 
large spatial resolution (kpixel-array,  1 kpixel = 1024 pixels), 
the memory size required to store the histogram becomes too 
large and full random access time requirements become 
critical. In order to have a better understanding of the 
challenges designing a pixel level inter-frame histogram 
builder and the limitations of histograms storage, let us give 
some numbers: 

i) Suppose that ToFs estimated by each pixel are coded on 
15 bits, the complete histogram for one single pixel has 32 
kbins (1 kbin = 1024 bins). If each of the bins of the histogram 
is coded on 10 bits, i.e. ௛ܰ ൌ 10, the pixel histogram requires 
320 kb of memory. For an array of 64×64 pixels, the memory 
footprint of the complete histogram will be 1.25 Gb. 

ii) Concerning the access to the histogram memory, let us 
consider a chip throughput of 1.6 Gbps. This assumption takes 
in consideration the switching performance of the digital 
output pads (50 MHz) and the level of parallelization limited 
by the power ring budget and package number of pins (32 
channels). As each pixel value is coded on 15 bits, full random 
read and write access times have to be less than 9.4 ns. No 
DDR memory off-the-shelf meets these specifications because 
they have been designed to be faster in burst mode and they 
have large Read/ Write, Active, Precharge and Refresh 
latencies. Even though DDR technology gets faster, the 
memory module also became larger such that the latency stays 
the same.  This limitation naturally calls for parallelism. If the 
total memory is divided in 32 channels, then the access timing 
constraint is relaxed to 300 ns. On top of this, the memory 
shrinkage associated to the division in channels implies a 
smaller latency.  However the memory size still remains the 
biggest issue, e. g. it is too large to fit in a FPGA’s Block 
RAM (BRAM). Moreover, an ASIC implementation of an 
SRAM memory of 40 Mb per single channel of 2×64-pixels 
still requires an area (more than 40mm2 in a 90nm CMOS 
process) that is too large to be affordable. For these reasons it 
is not possible to store the complete histogram for every pixel. 

Seeking to decrease the histogram memory size, the 
following algorithms are considered: Partitioned inter-frame 
Histogram (PifH) and Folded inter-frame Histogram (FifH). 

PifH is storing only a part of the complete histogram at a 
time. This approach is referred as time gated scanning 
technique [9]. Consider a partial histogram of only 2ே್ bins, 
where ௕ܰ is the number of bits of the partial histogram 
memory. If the number of bits per pixel is ௣ܰ, this algorithm 
will require to build 2ே೛ିே್ partial histograms. For instance, 
pixel values on 15 bits can be represented in a histogram with 
2ଵହ ൌ 32768 bins. In order to overcome the border effect, the 
partial histograms have to overlap. If each partial histogram 
contains, for instance, only 2଼ bins, this algorithm will require 
building at least 128 partial histograms. As the data of the 
partial histograms can be discarded after processing, the 
histogram memory in this case is at least 2ே೛ିே್ times smaller 
(i.e. 128 times in the example). After scanning the entire 
dynamic range, one last partial histogram might be required 

around the peak detected in the early ToF estimation phase. It 
ensures that the ToF information is not truncated between 
consecutive partitions. However, the overall frame rate is also 
decreased by the total number of required partial histograms. 
For this reason PifH is more appropriate for moderate values 
of ௣ܰ (up to 10 bits).  

 FifH algorithm consists of building partial histograms by 
clustering the pixel value without overlapping [10]. Let us 
suppose two clusters: one corresponding to the least 
significant ௕ܰ bits of the pixel value coded on ௣ܰ bits; the 
other corresponding to the ൫ ௣ܰ െ ௕ܰ൯ most significant bits. In 
addition to requiring the same memory footprint as PifH, FifH 
has an overall frame rate only 2 times smaller comparing to 
the approach that stores the Complete inter-frame Histogram 
(CifH). However, even if this technique is suitable for 
hardware implementation, it requires additional compensation 
for the uncertainty errors that occurs when the ToF Gaussian 
bell is centered at multiples of 2ே್  bins. Moreover, it is worth 
to mention that the SNR of both histograms is affected by 
noise folding.  

This work presents a novel approach to efficiently store the 
inter-frame Histograms (ifH) without losing the accuracy of 
the ToF estimation. The basic idea of the proposed Shifted 
inter-frame Histogram (SifH) algorithm relies on the 
following observations: the uncorrelated noise is uniformly 
distributed on the histogram’s floor and the ToF information is 
concentrated in the Gaussian bell. Therefore storing the CifH 
is not necessary. Instead, only 2ே್  bins centered on the ToF 
data are enough to be stored. In order to do that, all the time 
stamps have to be shifted to the ௕ܰ-bit base address band. 
Consequently, the required memory is much smaller and, 
above all, fixed while ௣ܰ can vary over a range of values, e. g. 
from 8 to 15 bits. This is an extraordinary advantage of this 
algorithm because it allows to dynamically change ௣ܰ and to 
maximize the frame rate depending on the dynamic range and 
temporal resolution requirements.     
 Ultra-high speed ToF sensors demand real-time ToF 
computation. We propose a circuit to realize such estimate on-
the-fly while the pixel ifH is collected. It is based on the 
detection of the ifH peak, i. e. a mode filter operating on all 
the ToF measurements acquired by each pixel. Extraction of 
the mode is rather preferred than the histogram center of mass 
because it can be implemented with a simpler hardware that 
requires a smaller memory footprint. Notice that this choice 
relies on the assumption that the histogram has a Gaussian 
shape. In these conditions, the depth image is ready as soon as 
the acquisition of the inter-frames ends, with a latency of just 
one inter-frame acquisition.  

The paper is organized as follows: Section II presents the 
PifH algorithm as a solution to decrease to histogram memory 
requirements. Section III focuses on the FifH algorithm, which 
represents an advance over PifH due to its suitability to 
operate on the outputs of high-speed and high resolution 
imagers. The limitations of these algorithms are discussed as 
well. Section IV concentrates on the novel SifH algorithm, 
which overcomes all the limitation in terms of frame-rate, 
area, and ௣ܰ. The key parameters of the algorithm are 
computed. The reliability and robustness of the algorithm are 
confirmed by Matlab simulations and experimental results 
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obtained with a full custom FPGA implementation using input 
data provided by a SPAD camera prototype. Section V 
presents the proposed hardware for the SifH algorithm. It has 
been implemented on a Spartan3 FPGA with very low 
resources. Section VI contemplates the scalability of the 
design for large arrays in the case of ASIC and FPGAs 
implementations. Section VII extrapolates the implementation 
of the peak detector for a SifH channel incorporating 128 
pixels. Section VIII is dedicated to conclusions.  

II. PARTITIONED INTER-FRAME HISTOGRAMS (PIFH) 

This is a quite straightforward implementation, requiring only 
to compare the pixel values to a threshold corresponding to the 
extremes of each partial histogram —see Fig. 2 in which 
௕ܰ ൌ 8. If each pixel value is coded on ௣ܰ ൌ 11, then there 

are 2ே೛ିே್ ൌ 8 partitions. Considering again that ௛ܰ ൌ 10 —
which is a practical value derived from the fraction of events 
that correspond to a true measurement in practice—, each 
partition requires ௛ܰ ൈ 2ே್ ൌ 2.5 kb of physical memory, 
which means 8 times less memory than CifH. Seamless 
scalability for larger ௣ܰ is the major advantage of this 
approach. This can be achieved by using the same memory 
footprint per partial histogram and multiplexing it in time. The 
major disadvantage is that the complete histogram has to be 
scanned until the true ToF data are found. For better accuracy 
and ToF information integrity, the partitions have to overlap. 
Moreover, after scanning and peak detection, one last 
histogram has to be acquired centered on the peak detected in 
the scanning phase. This means that the overall frame rate 
decreases at least by 2ே೛ିே್ times, depending on the 
overlapping ratio.  

The accurate ToF measurement is the mode of the CifH. It 
will be denoted by ܤெ as it is the position of the bin rendering 
the largest value. The position of the bin rendering the largest 
value of a partition is ܾெ. If ெܲ is the index of the partition 
containing the global maximum and the partitions are not 
overlapping, ܤெ can be computed as: 

ெܤ ൌ 2ே್ሺ ெܲ െ 1ሻ ൅ ܾெ                      (1) 

In order to improve the overall ToF computation rate, the 
partitions during scanning can have less samples [9], in which 
case, the uncertainty error might increase. If speed is not a 
concern, then this method can be successfully applied.  

 
Fig. 2 Histogram partitioning 

III. FOLDED INTER-FRAME HISTOGRAMS (FIFH) 

This approach is based on applying masks on the incoming 
time stamps in order to build 2 different histograms as 
follows: the first one built from the most significant ൫ ௣ܰ െ

௕ܰ൯ bits and the second one built from the  ௕ܰ less significant 
bits. We have used CifH data provided by the SPAD-CAM 
prototype [11] as input data in order to illustrate how FifH 
technique works (see Fig. 3 – 11 bits marker). Compared to 
CifH, the memory footprint is decreased by 2ே೛ିே್ ൌ 8 times. 
Another important observation is related to the noise floor of 
the Most Significant Bit (MSB) histogram, ܵெௌ஻ , which is 
larger than the one of the Least Significant Bit (LSB) 
histogram, ܵ௅ௌ஻ which in turn is larger than the noise of the 
CifH on 2ே೛ bins, ௙ܵ௟௢௢௥ (Fig. 3 – upper and lower insets). 
This happens because the noise that is spread along the CifH 
folds into the MSB and LSB histograms. Obviously the 
smaller the number of bins of representation, the higher the 
folding order.  

The ToF measurement, Bெ after performing the 2-step 
acquisition is computed as: 

Bெ ൌ 2ே್൫ܾெ,ெௌ஻ െ 1൯ ൅ ܾெ,௅ௌ஻              (2) 

 
Fig. 3 Histogram folding 

where ܾெ,ெௌ஻ and ܾெ,௅ௌ஻ represent the position of the 
maximum values in the MSB and LSB histograms. They are 
used to compute a first approximation of the ToF. 

The major advantage of this algorithm is that it can be 
employed with pixels values represented with up to 15 bits by 
using the same amount of physical memory as in the PifH. 
This technique requires only 2 acquisitions, no matter ௣ܰ.  
This is another important advantage compared to PifH where 
the overall frame rate decreases at least by 2ே೛ିே್. 

The major drawback of this technique is the uncertainty 
error that occurs whenever the Gaussian bell is swept through 
multiples of 2ே್ . In this case the peak of the histogram is 
misplaced (see Fig. 4 – circle marker). Note that the border 
error is larger than 255 bins. This happens due to inherent 
noise folding effect of the FifH technique. This is why a MSB 
histogram has a lower SNR which makes it prone to detect 
false peaks. The abnormal border errors correspond to 3 bits-
MSB (3MSB) histogram having the peak on the first bin. The 
error could be lowered by increasing the SNRToF of the input 
data (Fig. 4 – square marker). In this case, the 3MSB 
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histogram detects the peak with a boarder error around 255 
bins, rather than detecting false positives only on the first bin. 
Further corrections of the uncertainty points are required by 
acquiring Fine Histograms (FH) centered on ܤெ. These 
histograms must have at least 2ே್ାଵ bins, i.e. 512 with this 
occasion. Even so, when located at the FH borders, the ToF 
information could be truncated. This is not acceptable when 
ToF is required to be computed more accurately such as the 
center of mass of the ToF information. Therefore, additional 
bins are required as safety margin for the FH. After all, it 
looks like the footprint of the FH exceeds the 8 bits address 
space allocated for the MSB and LSB histograms.     

 
Fig. 4 FifH uncertainty error  

FifH technique to compute the first approximation of the ToF 
has been recently reported as Partial Histogram Readout 
(PHR) [10]. PHR employs 3 Coarse Histograms (CH) instead 
of 2 (previously called MSB and LSB histograms). These 3 
CHs coded on 3 bits are successively accumulated for coarse 
estimation of 10 bits-ToF. Similar to eq. (2), the coarse 
approximation of the ToF is computed as ܤெ ൌ 2଻ܾெ,ଽ଻ ൅
2ସܾெ,଺ସ ൅ 2ଵܾெ,ଷଵ, where ܾெ,ଷଵ, ܾெ,଺ସ and ܾெ,ଽ଻ are the 
position of the peak in the CHs built from the [3:1], [6:4] and 
[9:7] bits out of the [9:0] bits of the pixel values.  

One particularity of FifH technique is that the bits 
corresponding to the CHs do not overlap. Consequently, as 
predicted by the FifH approach, PHR is prone to uncertainty 
errors. This is proved by the simulation results presented in 
Fig. 5. It shows a parametric simulation by sweeping the peak 
of 10 bits-CifH along the entire dynamic range with 1 bin step. 
The true peak of CifH is compared to the coarse 
approximation computed by PHR (CH-PHR) and CH-6MSB 
which is built by the bits [9:4] of the pixel value. Thus, CH-
PHR suffers of border errors of 2଻ or 2ସ or 2ଵ bins (Fig. 5-red 
curve). This means that FH would require at least  2଼ bins to 
encompass the ToF information. It is worth to mention that the 
number of border errors becomes even larger for smaller 
SNRToF. This is due to the noise folding effect which implies a 
higher noise floor for a smaller CH (see Fig. 3).  

Although CH-6MSB makes a coarser approximation than 
CH-PHR, it is more accurate because does not exhibit border 
errors. Therefore CH-6MSB eventually requires smaller FH 

then CH-PHR does. For this reason this approach is 
contemplated in the next section related to the proposed SifH 
algorithm. Obviously CH-PHR occupies less memory then 
CH-6MSB but also involves much larger FHs to resolve the 
border errors. Moreover, the coarse approximation of the peak 
by CH-PHR is 3× slower than CH-6MSB.  
Thus, multiple non-overlapping CHs are not suitable for larger 
ToF depths due to lower computation rate and larger 
uncertainty errors. For this reason the proposed SifH algorithm 
is based on a single MSB histogram. Its size is optimized for 
computation speed, memory footprint and accuracy for 
different ToF depths up to 15 bits. SifH is extensively 
presented in Section IV. A comparison with the PHR approach 
will be presented as well.      

 
Fig. 5 Coarse peak estimation by CH-PHR and CH-6MSB. True peak of 

CifH with SNRToF of 34dB 

IV. SHIFTED INTER-FRAME HISTOGRAMS (SIFH) 

SifH completely eliminates the uncertainty error of the FifH 
approach which involves large FHs for linearity corrections. 
Besides, the physical memory requirements and overall frame 
rate remain the same. Thus, by only using ௛ܰ ൈ 2ே್-bits 
SRAM memory, the ToF can be accurately computed on-the-
fly while ௣ܰ can vary in a range that goes up to 15 bits.  

This feature is very important for the next generation of 3D 
cameras that will require simultaneously both, picosecond 
time resolution and a wide dynamic range. Under these 
circumstances, the representation of pixel values by 15 bits 
codes could be quite common. It means that the CifH for a 
single pixel would have 32768 bins.  In this case, the required 
physical memory is of 320 kb, leading to an outrageous 
amount of 1.25 Gb for a 64×64-pixel array. Obviously, 
building the complete histogram is not a good solution 
anymore [11], [13]. As mentioned in Section III, PHR 
algorithm based on the FifH approach is a good option for ToF 
coded on lower number of bits. However it is prone to border 
errors, as it will be demonstrated later on by comparing the 
ToF computation based on SifH and PHR.  

The proposed SifH algorithm achieves a remarkable 
memory reduction, down to 128 times smaller than CifH of 15 
bits-ToF. It is highly accurate over the entire dynamic range 
even in low SNRToF. To the best of our knowledge, these 
specifications are reported for the first time. Moreover, SifH is 
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able to adapt to different ௣ܰ. Thus, frame rate can increase 
when accuracy or dynamic range are less demanding. 

Before explaining the principle of SifH, it is worth to 
mention that a per-pixel histogram always contains 2 key 
parts: the Gaussian bell which encodes the ToF and SPAD-
TDC jitter; and the noise floor which encodes the amount of 
uncorrelated noise in the pixel. Let us suppose a typical ToF 
CifH retrieved from the SPAD-CAM [11] (see Fig. 2). The 
specifications of the SPAD imager along with the 
experimental setup are presented in [5]: i) the average Dark 
Count Rate (DCR) at 1V and the Photon Detection Efficiency 
(PDE) at 640nm are 42 kHz and 5%; ii) the imager operates in 
gating mode with 300ns time gate; iii) the irradiance is below 
10nW/mm2; iv) each 11 bits-CifH is built out of 65536 inter-
frames. Analyzing the ToF histogram, one can realize that it is 
not necessary to store the entire noise floor by building the 
CifH because the majority of the bins contain redundant 
information of the pixel noise. In fact, only using a reduced 
amount of bins is enough to accurately compute the ToF. Note 
that the histogram spans over about 300ns. Moreover the 
histogram accumulates the noise by measuring the time 
interval from the first occurrence of a noise pulse, after the 
time gate opens, to a synchronization pulse coming from the 
laser. This explains the uniformly distributed noise shape.  

The key is to find a method to virtually zoom into the CifH 
such that the Gaussian bell is captured by a smaller histogram 
of just 2ே್  bins. The SifH algorithm consists in building 2 
histograms on a ௕ܰ bits address —for illustration purposes 
௕ܰ ൌ 8 for ௣ܰ ൌ 15, 14 and ௕ܰ ൌ 6 for ௣ܰ ൌ 11, 10: 

 The first one is used to compute a coarse approximation of 
the ToF data by extracting the position of the peak in the 
histogram, ܾெ,௖௢௔௥௦௘. The CH is built from the incoming 
pixel values previously filtered by applying a mask on the 
௕ܰ-MSB (Fig. 6 – black/red curves: CifHs are on 15/11 

bits). Note that the 11 bits-CifH has been expanded to 15 
bits-CifH as follows: the ToF peak has been separated from 
the noise floor; the noise floor of the 15 bits-CifH is built by 
concatenating the noise floor of the 11 bits-CifH. The 
choice of this coarse estimation approach has been 
discussed in Section III by comparing it with the CH-PHR 
approach. As mentioned before, due to noise folding effect, 
each additional 20dB of SNR-CifH entails an increase of 
SNR-CH by only 8dB.   

 The second one is centered on the ToF data such that we 
keep the same accuracy of the CifH no matter ௣ܰ (Fig. 7). It 
is achieved by shifting the pixel values, ݈ܽݒ_ݔ݅݌ such that 
they can be mapped on a histogram of 2ே್  bins. 

Unlike FifH and PHR, SifH employs the same number of bits 
for both CH and FH. It is computed as ௕ܰ ൌ උ ௣ܰ/2ඏ ൅ 1. This 
means that at least one bit overlapping occurs between CH and 
FH. For instance if ௣ܰ ൌ 15 then ௕ܰ ൌ 8. Note that for 

௣ܰ ൌ 14, ௕ܰ has the same value as for 15 bits. For even ௣ܰ, 
two bits overlap which is even better from the SNRTOF point of 
view.  
The thresholds of the filter are computed as: 

ାܪܶ ൌ 2ே೛ିே್ܾெ,௖௢௔௥௦௘ ൅ ܤܵ െ ܾ௢௦                     (3) 

ିܪܶ ൌ 2ே೛ିே್ܾெ,௖௢௔௥௦௘ െ ܤܵ െ ܾ௢௦                     (4) 

 
Fig. 6 First histogram (CH) on 256 bins (black color) and 64 bins (red color) 

when CifH has 32768 bins and 2048 bins 

 
Fig. 7 Second histogram (FH) on 64 bins and CifH on 2048 bins 

ܤܵ ൌ 2ே್ିଵ; ܾݏ݋ ൌ 2ே್ 4⁄                           (5) 

where ܵܤ is the number of side-band bins, and ܾ௢௦ is the offset 
eventually needed to correct the position of the peak as 
follows. If ௣ܰ is of 15 bits then ௕ܰ has to be of 8 bits. This 
means that FH peak can be located anywhere along 2ே೛ିே್ 
bins. At both ends, the ToF information might be truncated, 
especially for large Gaussian FWHM. The solution is to use a 
larger number of bins (256 in this case). The ܾ௢௦ parameter 
helps to center the FH displacement range on the FH addresses 
space (see Fig. 7-inset). 

The shifting value, ∆ to be able to map the filtered pixel 
values on ௕ܰ-bit histogram is computed as follow: 

∆ൌ ൤floor ൬
ଶಿ೛షಿ್௕ಾ,೎೚ೌೝೞ೐ାௌ஻ି௕೚ೞ

ଶಿ್
൰ െ 1൨ ∙ 2ே್   

൅mod൬
ଶಿ೛షಿ್௕ಾ,೎೚ೌೝೞ೐ାௌ஻ି௕೚ೞ

ଶಿ್
൰                           (6) 

where “floor” and “mod” are the quotient and rest of the 
division by 2ே್ .  

At this point we have to map on ௕ܰ-bit histogram the 
incoming pixel values which have passed through the filter 
such that: 

ାܪܶ ൒ ݈ܽݒ_ݔ݅݌ ൐  (7)                            ିܪܶ
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Note that ݈ܽݒ_ݔ݅݌ െ ∆൏ 2ே್ when the CifH has 2ே೛ bins, i.e. 
݈ܽݒ_݈݁ݔ݅݌ ൏ 2ே೛. 
 After the FH is built, the precise position of ToF data is 
obtained by extracting the position of the peak in the 
histogram, ܾெ,௙௜௡௘. Finally, the accurate ToF code is computed 
as: 

Bெ ൌ ܾெ,௙௜௡௘ ൅ ∆                             (8) 

where ܤெ is actually the ݈ܽݒ_ݔ݅݌ that was repeated most of 
the time along the acquisition phase. 

It is worth to mention that even though ∆ could be affected 
by error when the ToF data is positioned at multiples of 2ே್ , it 
does not affect the Bெ. The reason is that ∆ is subtracted from 
the pixel values to build the FH and subsequently added to 
compute the accurate ToF, such that an auto-zero 
compensation is automatically performed. Thus SifH is 
uncertainty error free even if the SNRToF of the CifH is as 
small as 34dB. This is proved by Fig. 8 where the histogram 
peak is swept across the full dynamic range of the CifH. The 
continuous lines represent the histogram peak extracted from 
the CifH. The square and circle markers represent the 
histograms peaks computed by the SifH algorithm using only 
8 bits histograms. There is a perfect match between Matlab 
simulations and experimental results. Note that the input data 
used in Matlab simulations have been fed to the FPGA 
implementation through a pattern generator.  

In order to have a fair comparison with the PHR algorithm, 
SifH has been down scaled to operate 10 bits-CifH. As 
explained in Section III, PHR coarse peak could jump by ±16 
bins or ±128 bins. The FH of the PHR has ±8 bins around the 
coarse peak. FH is always centered on the coarse peak. This 
means that, if the coarse peak is deviated by 16 bins, the fine 
peak would be out of the FH range. Even with 32 bins, the fine 
peak could be located at one of the FH’s ends where peak 
detection is not safe to operate. Consequently, PHR fails to 
resolve the ToF even for 24× border errors, as Fig. 9 
demonstrates. The 24× and 27× border errors (Fig. 9-blue 
curve) might not be seen in the distance ranging experiment 
because it has too less points [10]. As predicted, these errors 
have been solved by employing a FH of 34 bins, instead of 16 
bins around the coarse estimation. However, the larger errors 
cannot be resolved by 34 bins-FHs. It requires at least 2଻ାଵ 
bins. Therefore the apparent advantage of smaller CH-PHR 
footprint compared to CH-SifH footprint is cancelled. 

Instead, FH-SifH on 64 bins (6 bits) has a considerable 
margin to operate error free even if the FWHM of the ToF 
data is large. Moreover, the ܾ௢௦ parameter can adjust the FH 
address space such as the fine peak is never truncated. This is 
the key difference that allows SifH to compute ToF error free, 
along the entire dynamic range of the sensor (Fig. 9-red 
curve). Moreover, SifH keeps working perfectly at 24dB, 
equivalent to a high level of uncorrelated noise of 20× DCR. 
In this case, PHR increases the number of ambiguity points.  

Unlike SifH, PHR cannot be scaled up because the ToF 
computation rate gets even lower than SifH (e.g. 5× slower for 
௣ܰ=15 bits). Moreover, FH-PHR memory requirement exceed 

by far the one for CH-PHR (e.g. 2ଵଷାଵ bins for ௣ܰ=15 bits). 
Therefore SifH compared to PHR is faster and more accurate. 
SifH occupies less memory for larger depth ToF.  

 
Fig. 8 Comparison between ToF code computed from 15 and 11 bits CifH and 

SifH on 8 bits 

 

 
Fig. 9 ToF computed by SifH, PHR and CifH; SNRToF = 34dB 

V. SIFH BUILDING BLOCKS 

In this implementation, we will be considering that ௣ܰ is 15 
bits, ௛ܰ is 10 and ௕ܰ is equal to 8. The design of the real-time 
SifH has been implemented on a Spartan3 FPGA. It includes 
the following main blocks (see Fig. 10): a ௣ܰ-bit serial-input 
parallel-output (SIPO), a ௣ܰ-bit parallel-input parallel-output 
register (PIPO), one digital filter (DF), a multiplexer with 2 
inputs on ௣ܰ bits, a ௛ܰ ൈ 2ே್-bit SRAM memory, a ௛ܰ-bit 
register with one step automatic increment, a peak detector 
circuit, 3 algebraic circuits to compute additions, subtractions, 
multiplications and divisions (Alg1, 2 and 3) and 2 ൈ ௣ܰ-bit 
memory to store the Δ value and accurate ToF of the pixel. 

The hardware implementation of the SifH algorithm of a 
single pixel is operating as follows:  

i) The global reset (RST_FR) is activated before starting to 
capture a new frame. At this point it is important to reset the 
Histogram SRAM and the Peak detector’s A and B registers. 
Later on, the pixel value is serially loaded from the SPAD 
imager through the SIPO, starting with LSB, on the negative 
edge of the clock (CLK), while the signal WS is set low (shift 
enabled). ௣ܰ is defined by the signal PNoB. Every ௣ܰ periods 
of CLK the content of SIPO is loaded into PIPO, on the 
positive edge of the signal PP. Therefore the output of the 
PIPO, called ݈ܽݒ_ݔ݅݌, is stable ௣ܰ×TCLK time period while it 
has to be placed in the right bin of the histogram. 

ii) The first step is to build the coarse histogram by setting 
the signal HS low. 
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Fig. 10 Block diagram of SifH 

When REN is set high, the memory located at the address 
indicated by the pixel value is read out on the positive edge of 
CLK. It represents how many times the current pixel value has 
been encountered before. It is incremented by 1 unit when LC 
is set high, on the negative edge of CLK. Subsequently, the 
updated Number of Counts (NoC) is overwritten in the 
histogram SRAM at the same address, when WEN is set high, 
on the positive edge of CLK. Next, if the current NoC is 
bigger than its previous value, it is overwritten along with the 
corresponding address ADDR in the Peak detector’s registers, 
A and B respectively (see Fig. 11).  

The acquisition of the coarse histogram ends right after the 
M-th pixel value is resolved. When ENDHC is set high, the 
pixel value that has been encountered most of the times in the 
CH is stored by register C to compute TH–, TH+ and Δ. It is 
worth to mention that the division operation has been 
implemented by a sequential scheme due to area constraints. 
Thus the operation is completed in ௣ܰ×TCLK. Under these 
circumstances, it is better to store the Δ value and recall it 
whenever is needed. This is the purpose of the register enabled 
by the signal STRHC.     

 
Fig. 11 Circuit diagram of peak detector 

Unlike ∆, TH– and TH+ are not required to be stored because 
they are computed quite fast from the position of the final 
peak of the CH, PNoCc.   
iii) At this point the Histogram SRAM and the temporal 
registers A and B of the Peak detector have to be reset again. 
The second acquisition can start to build the FH. The signal 
HS is set high such that the pixel value is routed through DF 
block (see Fig. 12). Note that the construction of the FH and 

the detection of the peak value are the same as in the previous 
step. The only differences are in the filtering of the input pixel 
values and the condition to count them in the histogram bins. 
First of all, some data alignment is required depending on the 
input PNoB. This is required only for adaptive frame rate 
applications where PNoB can vary from frame to frame. 
Subsequently, each incoming pixel value is checked whether it 
is within the limits computed at the previous step. If so, then 
the pixel value translated on ௕ܰ-bit histogram address is 
placed in the corresponding bin when both signals ACK and 
LC are high. The translation is required to fit a ௣ܰ-bit pixel 
value on a ௕ܰ-bit histogram address. It is done by merely 
subtracting the Δ value computed in the previous step from the 
incoming pixel value. The final peak value address of the fine 
histogram, PNoCf is available right after the acquisition of the 
FH ends by placing the last pixel value in the right bin.   

 

Fig. 12 Circuit diagram of DF 

 
Fig. 13 Signals chronogram 

Finally, the accurate ToF is computed on chip by adding the Δ 
value to the peak position of the FH, ܾெ,௙௜௡௘. The storage of 
the ToF is enabled by the signal END_FR, on the negative 
edge of CLK. The signals chronogram is depicted in Fig. 13. 
HC-Pi and HC-Pf labels stand for the initial and final peak 
values of the CH corresponding to a certain pixel. HF-Pi label 
represents the initial peak value of the FH corresponding to 
the same pixel. 

Thus, instead of sending to USB up to 320 kb of histogram 
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per pixel to estimate the ToF off-chip, we send directly only 
the accurate ToF represented on maximum ௣ܰ bits. 

VI. SIFH SCALABILITY 

The proposed SifH algorithm can be easily scaled to any 
pixel-array size and PNoB and is suitable for ultra-high frame 
rate imagers. Under these circumstances, in order to relax the 
time constraints on the readout and bin placement circuits, 
parallelism is naturally called.  

Let us make the calculations for a 64×64-pixels ToF image 
sensor with 32 outputs at 50 MHz with an equivalent 
throughput of 1.6 Gbps and an inter-frame rate of 26 kfps to 
48 kfps when PNoB changes from 15 to 8 bits.  

The time constraint on the histogram memory access is 
given by the minimum PNoB. Suppose that each serial output 
is connected to a SifH channel which has to resolve 128 
pixels. This means that the memory resources from Fig. 10 
have to be multiplied by 128, i.e. the 2.5 kbits histogram 
memory and 56 bits register allocated as follows: 2 × 8 bits to 
store the address of the peak values of the coarse/fine 
histograms, 10 bits for the peak value and 2 × 15 bits for Δ 
value and ToF. 

For an ASIC implementation in a 90nm CMOS process, the 
histogram memory footprint for one channel is below 0.4 
mm2. It easily fits into a mini ASIC with an affordable price. 
In the end, 32 channels could be encapsulated in the same 
package. 

SifH algorithm is also suitable to be integrated on-chip with 
the imager if it is shared by multiple pixels. 

For FPGA implementation, one has to consider the total 
histogram memory requirement from 8 to 16 Mb depending 
whether the number of counts per bin is represented on 8 to 16 
bits. However some Xilinx FPGA, such as XC7K160T 
(325×36 kbits BRAM), XC7A200T (365×36 kbits BRAM) or 
XC7K355T (715×36 kbits BRAM) [14] could accommodate 
all 32 SifH channels.         

For the sake of simplicity the next section presents only the 
scaling of the peak detector circuit. The multiplexing scheme 
is similar for the Δ and ToF registers. 

VII. ON-CHIP TOF COMPUTATION 

Ultra-high inter-frame rate 3D SPAD imagers require the 
computation of ToF on-the-fly. Consequently it has to be 
implemented on-chip and parallelized over different channels.  
For this purpose we propose a hardware to compute the peak 
of each histogram in real-time. The design for one pixel (Fig. 
11) is scaled for one channel of 128 pixels. The block diagram 
of one out of 32 channels is presented in Fig. 14. 

It is based on the fact that each bin is accessed during the 
histogram building phase. Thus the peak value is updated each 
time a new bin value is read from the histogram memory. 
Thus the histogram peak is available right after the acquisition 
phase ends. 

It is built by a pixel decoder, a 128×10 bits PIPO register to 
store the histograms peak, a 128×8 bits PIPO to store the peak 
address and a 128×8 bits PIPO to keep the final peak address 
of the CH which is used to compute the corresponding TH+ 
and TH–. Note that PIPO register can be replaced by latches.  

 

 
Fig. 14 Single channel of real-time peak detector 

The pixel decoder is implemented by a 128 bits circular 
shift register (CSR) and transmission gates (TG). It also can be 
used to multiplex the registers that store the ߂ value and ToF 
of each pixel. 

The circuit is operating as follows: PIPO 1, 2 are reset at the 
beginning of each frame. Before receiving the first inter-
frame, the CSR is reset as well, selecting the first position in 
PIPO 1-3, allocated for the first pixel in the channel.  
The maximum NoC in the histogram of the first pixel and the 
corresponding ADDR are updated on the positive edge of 
WEN signal. On the next edge of the signal PP, the shift 
register selects the second position in PIPO 1-3, allocated for 
the second pixel and so on up to the last pixel in the channel of 
the first inter-frame.    
After the last inter-frame is processed the final peak addresses 
in the pixels’ CH are stored in PIPO 3 by activating the signal 
ENDHC. At the end of the FH acquisition, the peaks addresses 
of the FHs are stored by PIPO 2.    

VIII. CONCLUSION 

This paper concentrates on noise reduction in ToF SPAD 
imagers based on pixel level inter-frame histogram building. 
We have discussed the area limitations of storing the CifH 
when ௣ܰ is up to 15 bits. Two different alternatives have been 
contemplated to reduce the histogram memory requirements, 
i.e. PifH and FifH. However the frame rate of the former 
technique is strongly affected by ௣ܰ. The latter technique 
requires some additional correction of the uncertainly errors 
and it is affected by noise folding.  

In order to overcome the aforementioned limitations, we 
propose a method to efficiently store histograms in real-time. 
SifH is highly efficient and suitable for kpixels high speed 
imagers and large ToF depths. An extensive comparison of the 
SifH algorithm to a recently reported PHR algorithm based on 
FifH has been presented as well. SifH has the following 
advantages: i)  it requires very low memory footprint (2.5 
kbits or 256 bins/ ifH); ii) the memory footprint is fixed for 
௣ܰof 8 bits up to 15 bits; iii) the required memory footprint for 

the same ௣ܰ tremendously decreases up to 128 times; iv) the 
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accuracy of peak detection is not affected by increasing ௣ܰ 
even if the ifH number of bins is fixed; v) SifH is faster than 
PHR and the computation speed does not depend on ௣ܰ; vi) 
unlike PHR, SifH is free of uncertainty errors along the entire 
dynamic range; vii) SifH can be scaled up to 15 bits-ToF. In 
order to cancel the border errors, PHR would need larger FH 
than FH-SifH.  

The SifH hardware implementation for one pixel is 
thoroughly presented. The scalability towards ultra-high frame 
rate ToF imagers is discussed. All the calculations are taking 
into account for 64×64-pixels array. 

We have also proposed a custom design to extract in real-
time the peak of the pixel ifHs of a channel incorporating 128 
pixels on up to 15 bits. The integration of the proposed 
algorithm in ASIC and FPGAs is addressed as well. 
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