
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract—Time-of-flight image sensors based on single-photon

detection, i.e. SPADs, require some filtering of pixel readings.
Accurate depth measurements are only possible if the jitter of the
detector is mitigated. Moreover, the time stamp needs to be
effectively separated from uncorrelated noise such as dark counts
and background illumination. A powerful tool for this is building
a histogram of a number of pixel readings. Future generation of
ToF imagers are seeking to increase spatial and temporal
resolution along with the dynamic range and frame rate. Under
these circumstances, storing the complete histogram for every
pixel becomes practically impossible. Considering that most of
the information contained by the histogram represents noise, we
propose a highly efficient method to store just the relevant data
required for ToF computation. This method makes use of the
shifted inter-frame histogram (SifH). It requires a memory as low
as 128 times smaller than storing the complete histogram if the
pixel values are coded on up to 15 bits. Moreover, a fixed 28
words memory is enough to process histograms containing up to
215 bins. In exchange, the overall frame rate only decreases to one
half. The hardware implementation of this algorithm is
presented. Its remarkable robustness for a low SNR of the ToF
estimation is demonstrated by Matlab simulations and FPGA
implementation using input data from a SPAD camera prototype.

Index Terms—shifted inter-frame histogram (SifH), real-time
time-of-flight (ToF) estimation, ToF image sensor, single-photon
avalanche-diode (SPAD)

I. INTRODUCTION

HE performance of CMOS image sensors based on Single
Photon Avalanche Diodes (SPADs) has been

tremendously improved in the last years [1], [2]. They have
been proven for photon counting and Time-of-Flight (ToF)
[3]. SPADs are able to work in low illumination conditions
with small integration times and to time stamp the arrival of
the first detected photon. These features make them suitable
for high-speed ToF CMOS Image Sensors (CIS) [4]. ToF-CIS

Manuscript received ???; revised ???; accepted ???. This work has been

mainly funded by the Office of Naval Research (USA) ONR, grant No.
N000141410355, the Spanish MINECO and the European Region
Development Fund (ERDF/FEDER) through project ‘iCaveats’ (Ref.
TEC2015-66878-C3-1-R), and partially supported by Junta de Andalucía
through project ‘SmartCIS3D’ (Ref. TIC 2338-2013) and by EU-REA through
project ‘Achieve’ (EU H2020 MSCA-ITN 2017, Grant No. 765866)

Ion Vornicu, Angela Darie, Ricardo Carmona-Galán, Ángel Rodríguez-
Vázquez - Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC-
Universidad de Sevilla, C/ Americo Vespucio 28, Parque Científico y
Tecnológico de La Cartuja 41092 – Sevilla, Spain (email: ivornicu@imse-
cnm.csic.es)

obtain the depth map of a scene by estimating the ToF at pixel
level. Due to the SPAD and Time-to-Digital Converter (TDC)
ensemble limitations such as uncorrelated noise (e. g. dark
counts and background illumination), limited photon detection
efficiency, jitter and low illumination conditions, the pixels
ToF cannot be estimated from a single measurement. Instead,
a relatively large number of measurements is required. From
now on, let us call these measurements “inter-frames”, so M
inter-frames are required to build the final frame representing
an accurate depth image. Even for the best performance SPAD
imagers, still several thousands of inter-frames are required
[3]. Besides, if the level of the uncorrelated noise is high, then
it could trigger the pixels most of the time. For instance,
according to the experimental results reported in [5], only 236
detections are true out of M = 100k inter-frames. In the
remaining 99.76% of the cases, pixels have not been triggered
at all or they have been triggered by noise. In these conditions,
averaging is not an option. Instead, the computation of the
ToF at pixel level involves the finding of the digital code that
is repeated most of the time across all acquired inter-frames, i.
e. the extraction of the mode. Mode filters have been
employed in image processing in the spatial scope [6]. In this
occasion, we are going to filter all the time stamps obtained
for the same pixel. This problem can be addressed by building
ToF histograms at pixel level [7] or by deep learning
algorithms [8]. In this paper we only contemplate the first
approach. In this way the Signal-to-Noise Ratio (SNR)
increases, improving accuracy by √ܯ times. The pixel values
(ToF codes) across multiple inter-frames are the addresses of
the bins in the histogram memory whilst the content of a

Fig. 1 Block diagram of inter-frame histogram building

P(i,j) P(i,j) P(i,j) P(i,j) P(i,j) P(i,j)

No
detection

Photon
detection

Photon
detection

No
detection

Photon
detection

No
detection

Time

T1 T2 Tk

T1
T2

Tk

Compact Real-Time Inter-Frame Histogram
Builder for 15Bits High-Speed ToF-Imagers

based on Single-Photon Detection

I. Vornicu, A. Darie, R. Carmona-Galán, Senior Member, IEEE, Á. Rodríguez-Vázquez, Fellow, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

memory address represents how many times the address has
been encountered (Fig. 1) [5]. When it comes to real-time ToF
computation at ultra-high speed (hundreds of thousands of
inter-frames per second) for wide range (hundreds of
nanoseconds) with few picoseconds temporal resolution and
large spatial resolution (kpixel-array, 1 kpixel = 1024 pixels),
the memory size required to store the histogram becomes too
large and full random access time requirements become
critical. In order to have a better understanding of the
challenges designing a pixel level inter-frame histogram
builder and the limitations of histograms storage, let us give
some numbers:

i) Suppose that ToFs estimated by each pixel are coded on
15 bits, the complete histogram for one single pixel has 32
kbins (1 kbin = 1024 bins). If each of the bins of the histogram
is coded on 10 bits, i.e. ௛ܰ ൌ 10, the pixel histogram requires
320 kb of memory. For an array of 64×64 pixels, the memory
footprint of the complete histogram will be 1.25 Gb.

ii) Concerning the access to the histogram memory, let us
consider a chip throughput of 1.6 Gbps. This assumption takes
in consideration the switching performance of the digital
output pads (50 MHz) and the level of parallelization limited
by the power ring budget and package number of pins (32
channels). As each pixel value is coded on 15 bits, full random
read and write access times have to be less than 9.4 ns. No
DDR memory off-the-shelf meets these specifications because
they have been designed to be faster in burst mode and they
have large Read/ Write, Active, Precharge and Refresh
latencies. Even though DDR technology gets faster, the
memory module also became larger such that the latency stays
the same. This limitation naturally calls for parallelism. If the
total memory is divided in 32 channels, then the access timing
constraint is relaxed to 300 ns. On top of this, the memory
shrinkage associated to the division in channels implies a
smaller latency. However the memory size still remains the
biggest issue, e. g. it is too large to fit in a FPGA’s Block
RAM (BRAM). Moreover, an ASIC implementation of an
SRAM memory of 40 Mb per single channel of 2×64-pixels
still requires an area (more than 40mm2 in a 90nm CMOS
process) that is too large to be affordable. For these reasons it
is not possible to store the complete histogram for every pixel.

Seeking to decrease the histogram memory size, the
following algorithms are considered: Partitioned inter-frame
Histogram (PifH) and Folded inter-frame Histogram (FifH).

PifH is storing only a part of the complete histogram at a
time. This approach is referred as time gated scanning
technique [9]. Consider a partial histogram of only 2ே್ bins,
where ௕ܰ is the number of bits of the partial histogram
memory. If the number of bits per pixel is ௣ܰ, this algorithm
will require to build 2ே೛ିே್ partial histograms. For instance,
pixel values on 15 bits can be represented in a histogram with
2ଵହ ൌ 32768 bins. In order to overcome the border effect, the
partial histograms have to overlap. If each partial histogram
contains, for instance, only 2଼ bins, this algorithm will require
building at least 128 partial histograms. As the data of the
partial histograms can be discarded after processing, the
histogram memory in this case is at least 2ே೛ିே್ times smaller
(i.e. 128 times in the example). After scanning the entire
dynamic range, one last partial histogram might be required

around the peak detected in the early ToF estimation phase. It
ensures that the ToF information is not truncated between
consecutive partitions. However, the overall frame rate is also
decreased by the total number of required partial histograms.
For this reason PifH is more appropriate for moderate values
of ௣ܰ (up to 10 bits).

 FifH algorithm consists of building partial histograms by
clustering the pixel value without overlapping [10]. Let us
suppose two clusters: one corresponding to the least
significant ௕ܰ bits of the pixel value coded on ௣ܰ bits; the
other corresponding to the ൫ ௣ܰ െ ௕ܰ൯ most significant bits. In
addition to requiring the same memory footprint as PifH, FifH
has an overall frame rate only 2 times smaller comparing to
the approach that stores the Complete inter-frame Histogram
(CifH). However, even if this technique is suitable for
hardware implementation, it requires additional compensation
for the uncertainty errors that occurs when the ToF Gaussian
bell is centered at multiples of 2ே್ bins. Moreover, it is worth
to mention that the SNR of both histograms is affected by
noise folding.

This work presents a novel approach to efficiently store the
inter-frame Histograms (ifH) without losing the accuracy of
the ToF estimation. The basic idea of the proposed Shifted
inter-frame Histogram (SifH) algorithm relies on the
following observations: the uncorrelated noise is uniformly
distributed on the histogram’s floor and the ToF information is
concentrated in the Gaussian bell. Therefore storing the CifH
is not necessary. Instead, only 2ே್ bins centered on the ToF
data are enough to be stored. In order to do that, all the time
stamps have to be shifted to the ௕ܰ-bit base address band.
Consequently, the required memory is much smaller and,
above all, fixed while ௣ܰ can vary over a range of values, e. g.
from 8 to 15 bits. This is an extraordinary advantage of this
algorithm because it allows to dynamically change ௣ܰ and to
maximize the frame rate depending on the dynamic range and
temporal resolution requirements.
 Ultra-high speed ToF sensors demand real-time ToF
computation. We propose a circuit to realize such estimate on-
the-fly while the pixel ifH is collected. It is based on the
detection of the ifH peak, i. e. a mode filter operating on all
the ToF measurements acquired by each pixel. Extraction of
the mode is rather preferred than the histogram center of mass
because it can be implemented with a simpler hardware that
requires a smaller memory footprint. Notice that this choice
relies on the assumption that the histogram has a Gaussian
shape. In these conditions, the depth image is ready as soon as
the acquisition of the inter-frames ends, with a latency of just
one inter-frame acquisition.

The paper is organized as follows: Section II presents the
PifH algorithm as a solution to decrease to histogram memory
requirements. Section III focuses on the FifH algorithm, which
represents an advance over PifH due to its suitability to
operate on the outputs of high-speed and high resolution
imagers. The limitations of these algorithms are discussed as
well. Section IV concentrates on the novel SifH algorithm,
which overcomes all the limitation in terms of frame-rate,
area, and ௣ܰ. The key parameters of the algorithm are
computed. The reliability and robustness of the algorithm are
confirmed by Matlab simulations and experimental results

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

obtained with a full custom FPGA implementation using input
data provided by a SPAD camera prototype. Section V
presents the proposed hardware for the SifH algorithm. It has
been implemented on a Spartan3 FPGA with very low
resources. Section VI contemplates the scalability of the
design for large arrays in the case of ASIC and FPGAs
implementations. Section VII extrapolates the implementation
of the peak detector for a SifH channel incorporating 128
pixels. Section VIII is dedicated to conclusions.

II. PARTITIONED INTER-FRAME HISTOGRAMS (PIFH)

This is a quite straightforward implementation, requiring only
to compare the pixel values to a threshold corresponding to the
extremes of each partial histogram —see Fig. 2 in which
௕ܰ ൌ 8. If each pixel value is coded on ௣ܰ ൌ 11, then there

are 2ே೛ିே್ ൌ 8 partitions. Considering again that ௛ܰ ൌ 10 —
which is a practical value derived from the fraction of events
that correspond to a true measurement in practice—, each
partition requires ௛ܰ ൈ 2ே್ ൌ 2.5 kb of physical memory,
which means 8 times less memory than CifH. Seamless
scalability for larger ௣ܰ is the major advantage of this
approach. This can be achieved by using the same memory
footprint per partial histogram and multiplexing it in time. The
major disadvantage is that the complete histogram has to be
scanned until the true ToF data are found. For better accuracy
and ToF information integrity, the partitions have to overlap.
Moreover, after scanning and peak detection, one last
histogram has to be acquired centered on the peak detected in
the scanning phase. This means that the overall frame rate
decreases at least by 2ே೛ିே್ times, depending on the
overlapping ratio.

The accurate ToF measurement is the mode of the CifH. It
will be denoted by ܤெ as it is the position of the bin rendering
the largest value. The position of the bin rendering the largest
value of a partition is ܾெ. If ெܲ is the index of the partition
containing the global maximum and the partitions are not
overlapping, ܤெ can be computed as:

ெܤ ൌ 2ே್ሺ ெܲ െ 1ሻ ൅ ܾெ (1)

In order to improve the overall ToF computation rate, the
partitions during scanning can have less samples [9], in which
case, the uncertainty error might increase. If speed is not a
concern, then this method can be successfully applied.

Fig. 2 Histogram partitioning

III. FOLDED INTER-FRAME HISTOGRAMS (FIFH)

This approach is based on applying masks on the incoming
time stamps in order to build 2 different histograms as
follows: the first one built from the most significant ൫ ௣ܰ െ

௕ܰ൯ bits and the second one built from the ௕ܰ less significant
bits. We have used CifH data provided by the SPAD-CAM
prototype [11] as input data in order to illustrate how FifH
technique works (see Fig. 3 – 11 bits marker). Compared to
CifH, the memory footprint is decreased by 2ே೛ିே್ ൌ 8 times.
Another important observation is related to the noise floor of
the Most Significant Bit (MSB) histogram, ܵெௌ஻ , which is
larger than the one of the Least Significant Bit (LSB)
histogram, ܵ௅ௌ஻ which in turn is larger than the noise of the
CifH on 2ே೛ bins, ௙ܵ௟௢௢௥ (Fig. 3 – upper and lower insets).
This happens because the noise that is spread along the CifH
folds into the MSB and LSB histograms. Obviously the
smaller the number of bins of representation, the higher the
folding order.

The ToF measurement, Bெ after performing the 2-step
acquisition is computed as:

Bெ ൌ 2ே್൫ܾெ,ெௌ஻ െ 1൯ ൅ ܾெ,௅ௌ஻ (2)

Fig. 3 Histogram folding

where ܾெ,ெௌ஻ and ܾெ,௅ௌ஻ represent the position of the
maximum values in the MSB and LSB histograms. They are
used to compute a first approximation of the ToF.

The major advantage of this algorithm is that it can be
employed with pixels values represented with up to 15 bits by
using the same amount of physical memory as in the PifH.
This technique requires only 2 acquisitions, no matter ௣ܰ.
This is another important advantage compared to PifH where
the overall frame rate decreases at least by 2ே೛ିே್.

The major drawback of this technique is the uncertainty
error that occurs whenever the Gaussian bell is swept through
multiples of 2ே್ . In this case the peak of the histogram is
misplaced (see Fig. 4 – circle marker). Note that the border
error is larger than 255 bins. This happens due to inherent
noise folding effect of the FifH technique. This is why a MSB
histogram has a lower SNR which makes it prone to detect
false peaks. The abnormal border errors correspond to 3 bits-
MSB (3MSB) histogram having the peak on the first bin. The
error could be lowered by increasing the SNRToF of the input
data (Fig. 4 – square marker). In this case, the 3MSB

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

histogram detects the peak with a boarder error around 255
bins, rather than detecting false positives only on the first bin.
Further corrections of the uncertainty points are required by
acquiring Fine Histograms (FH) centered on ܤெ. These
histograms must have at least 2ே್ାଵ bins, i.e. 512 with this
occasion. Even so, when located at the FH borders, the ToF
information could be truncated. This is not acceptable when
ToF is required to be computed more accurately such as the
center of mass of the ToF information. Therefore, additional
bins are required as safety margin for the FH. After all, it
looks like the footprint of the FH exceeds the 8 bits address
space allocated for the MSB and LSB histograms.

Fig. 4 FifH uncertainty error

FifH technique to compute the first approximation of the ToF
has been recently reported as Partial Histogram Readout
(PHR) [10]. PHR employs 3 Coarse Histograms (CH) instead
of 2 (previously called MSB and LSB histograms). These 3
CHs coded on 3 bits are successively accumulated for coarse
estimation of 10 bits-ToF. Similar to eq. (2), the coarse
approximation of the ToF is computed as ܤெ ൌ 2଻ܾெ,ଽ଻ ൅
2ସܾெ,଺ସ ൅ 2ଵܾெ,ଷଵ, where ܾெ,ଷଵ, ܾெ,଺ସ and ܾெ,ଽ଻ are the
position of the peak in the CHs built from the [3:1], [6:4] and
[9:7] bits out of the [9:0] bits of the pixel values.

One particularity of FifH technique is that the bits
corresponding to the CHs do not overlap. Consequently, as
predicted by the FifH approach, PHR is prone to uncertainty
errors. This is proved by the simulation results presented in
Fig. 5. It shows a parametric simulation by sweeping the peak
of 10 bits-CifH along the entire dynamic range with 1 bin step.
The true peak of CifH is compared to the coarse
approximation computed by PHR (CH-PHR) and CH-6MSB
which is built by the bits [9:4] of the pixel value. Thus, CH-
PHR suffers of border errors of 2଻ or 2ସ or 2ଵ bins (Fig. 5-red
curve). This means that FH would require at least 2଼ bins to
encompass the ToF information. It is worth to mention that the
number of border errors becomes even larger for smaller
SNRToF. This is due to the noise folding effect which implies a
higher noise floor for a smaller CH (see Fig. 3).

Although CH-6MSB makes a coarser approximation than
CH-PHR, it is more accurate because does not exhibit border
errors. Therefore CH-6MSB eventually requires smaller FH

then CH-PHR does. For this reason this approach is
contemplated in the next section related to the proposed SifH
algorithm. Obviously CH-PHR occupies less memory then
CH-6MSB but also involves much larger FHs to resolve the
border errors. Moreover, the coarse approximation of the peak
by CH-PHR is 3× slower than CH-6MSB.
Thus, multiple non-overlapping CHs are not suitable for larger
ToF depths due to lower computation rate and larger
uncertainty errors. For this reason the proposed SifH algorithm
is based on a single MSB histogram. Its size is optimized for
computation speed, memory footprint and accuracy for
different ToF depths up to 15 bits. SifH is extensively
presented in Section IV. A comparison with the PHR approach
will be presented as well.

Fig. 5 Coarse peak estimation by CH-PHR and CH-6MSB. True peak of

CifH with SNRToF of 34dB

IV. SHIFTED INTER-FRAME HISTOGRAMS (SIFH)

SifH completely eliminates the uncertainty error of the FifH
approach which involves large FHs for linearity corrections.
Besides, the physical memory requirements and overall frame
rate remain the same. Thus, by only using ௛ܰ ൈ 2ே್-bits
SRAM memory, the ToF can be accurately computed on-the-
fly while ௣ܰ can vary in a range that goes up to 15 bits.

This feature is very important for the next generation of 3D
cameras that will require simultaneously both, picosecond
time resolution and a wide dynamic range. Under these
circumstances, the representation of pixel values by 15 bits
codes could be quite common. It means that the CifH for a
single pixel would have 32768 bins. In this case, the required
physical memory is of 320 kb, leading to an outrageous
amount of 1.25 Gb for a 64×64-pixel array. Obviously,
building the complete histogram is not a good solution
anymore [11], [13]. As mentioned in Section III, PHR
algorithm based on the FifH approach is a good option for ToF
coded on lower number of bits. However it is prone to border
errors, as it will be demonstrated later on by comparing the
ToF computation based on SifH and PHR.

The proposed SifH algorithm achieves a remarkable
memory reduction, down to 128 times smaller than CifH of 15
bits-ToF. It is highly accurate over the entire dynamic range
even in low SNRToF. To the best of our knowledge, these
specifications are reported for the first time. Moreover, SifH is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

able to adapt to different ௣ܰ. Thus, frame rate can increase
when accuracy or dynamic range are less demanding.

Before explaining the principle of SifH, it is worth to
mention that a per-pixel histogram always contains 2 key
parts: the Gaussian bell which encodes the ToF and SPAD-
TDC jitter; and the noise floor which encodes the amount of
uncorrelated noise in the pixel. Let us suppose a typical ToF
CifH retrieved from the SPAD-CAM [11] (see Fig. 2). The
specifications of the SPAD imager along with the
experimental setup are presented in [5]: i) the average Dark
Count Rate (DCR) at 1V and the Photon Detection Efficiency
(PDE) at 640nm are 42 kHz and 5%; ii) the imager operates in
gating mode with 300ns time gate; iii) the irradiance is below
10nW/mm2; iv) each 11 bits-CifH is built out of 65536 inter-
frames. Analyzing the ToF histogram, one can realize that it is
not necessary to store the entire noise floor by building the
CifH because the majority of the bins contain redundant
information of the pixel noise. In fact, only using a reduced
amount of bins is enough to accurately compute the ToF. Note
that the histogram spans over about 300ns. Moreover the
histogram accumulates the noise by measuring the time
interval from the first occurrence of a noise pulse, after the
time gate opens, to a synchronization pulse coming from the
laser. This explains the uniformly distributed noise shape.

The key is to find a method to virtually zoom into the CifH
such that the Gaussian bell is captured by a smaller histogram
of just 2ே್ bins. The SifH algorithm consists in building 2
histograms on a ௕ܰ bits address —for illustration purposes
௕ܰ ൌ 8 for ௣ܰ ൌ 15, 14 and ௕ܰ ൌ 6 for ௣ܰ ൌ 11, 10:

 The first one is used to compute a coarse approximation of
the ToF data by extracting the position of the peak in the
histogram, ܾெ,௖௢௔௥௦௘. The CH is built from the incoming
pixel values previously filtered by applying a mask on the
௕ܰ-MSB (Fig. 6 – black/red curves: CifHs are on 15/11

bits). Note that the 11 bits-CifH has been expanded to 15
bits-CifH as follows: the ToF peak has been separated from
the noise floor; the noise floor of the 15 bits-CifH is built by
concatenating the noise floor of the 11 bits-CifH. The
choice of this coarse estimation approach has been
discussed in Section III by comparing it with the CH-PHR
approach. As mentioned before, due to noise folding effect,
each additional 20dB of SNR-CifH entails an increase of
SNR-CH by only 8dB.

 The second one is centered on the ToF data such that we
keep the same accuracy of the CifH no matter ௣ܰ (Fig. 7). It
is achieved by shifting the pixel values, ݈ܽݒ_ݔ݅݌ such that
they can be mapped on a histogram of 2ே್ bins.

Unlike FifH and PHR, SifH employs the same number of bits
for both CH and FH. It is computed as ௕ܰ ൌ උ ௣ܰ/2ඏ ൅ 1. This
means that at least one bit overlapping occurs between CH and
FH. For instance if ௣ܰ ൌ 15 then ௕ܰ ൌ 8. Note that for

௣ܰ ൌ 14, ௕ܰ has the same value as for 15 bits. For even ௣ܰ,
two bits overlap which is even better from the SNRTOF point of
view.
The thresholds of the filter are computed as:

ାܪܶ ൌ 2ே೛ିே್ܾெ,௖௢௔௥௦௘ ൅ ܤܵ െ ܾ௢௦ (3)

ିܪܶ ൌ 2ே೛ିே್ܾெ,௖௢௔௥௦௘ െ ܤܵ െ ܾ௢௦ (4)

Fig. 6 First histogram (CH) on 256 bins (black color) and 64 bins (red color)

when CifH has 32768 bins and 2048 bins

Fig. 7 Second histogram (FH) on 64 bins and CifH on 2048 bins

ܤܵ ൌ 2ே್ିଵ; ܾݏ݋ ൌ 2ே್ 4⁄ (5)

where ܵܤ is the number of side-band bins, and ܾ௢௦ is the offset
eventually needed to correct the position of the peak as
follows. If ௣ܰ is of 15 bits then ௕ܰ has to be of 8 bits. This
means that FH peak can be located anywhere along 2ே೛ିே್
bins. At both ends, the ToF information might be truncated,
especially for large Gaussian FWHM. The solution is to use a
larger number of bins (256 in this case). The ܾ௢௦ parameter
helps to center the FH displacement range on the FH addresses
space (see Fig. 7-inset).

The shifting value, ∆ to be able to map the filtered pixel
values on ௕ܰ-bit histogram is computed as follow:

∆ൌ ൤floor ൬
ଶಿ೛షಿ್௕ಾ,೎೚ೌೝೞ೐ାௌ஻ି௕೚ೞ

ଶಿ್
൰ െ 1൨ ∙ 2ே್

൅mod൬
ଶಿ೛షಿ್௕ಾ,೎೚ೌೝೞ೐ାௌ஻ି௕೚ೞ

ଶಿ್
൰ (6)

where “floor” and “mod” are the quotient and rest of the
division by 2ே್ .

At this point we have to map on ௕ܰ-bit histogram the
incoming pixel values which have passed through the filter
such that:

ାܪܶ ൒ ݈ܽݒ_ݔ݅݌ ൐ (7) ିܪܶ

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Note that ݈ܽݒ_ݔ݅݌ െ ∆൏ 2ே್ when the CifH has 2ே೛ bins, i.e.
݈ܽݒ_݈݁ݔ݅݌ ൏ 2ே೛.
 After the FH is built, the precise position of ToF data is
obtained by extracting the position of the peak in the
histogram, ܾெ,௙௜௡௘. Finally, the accurate ToF code is computed
as:

Bெ ൌ ܾெ,௙௜௡௘ ൅ ∆ (8)

where ܤெ is actually the ݈ܽݒ_ݔ݅݌ that was repeated most of
the time along the acquisition phase.

It is worth to mention that even though ∆ could be affected
by error when the ToF data is positioned at multiples of 2ே್ , it
does not affect the Bெ. The reason is that ∆ is subtracted from
the pixel values to build the FH and subsequently added to
compute the accurate ToF, such that an auto-zero
compensation is automatically performed. Thus SifH is
uncertainty error free even if the SNRToF of the CifH is as
small as 34dB. This is proved by Fig. 8 where the histogram
peak is swept across the full dynamic range of the CifH. The
continuous lines represent the histogram peak extracted from
the CifH. The square and circle markers represent the
histograms peaks computed by the SifH algorithm using only
8 bits histograms. There is a perfect match between Matlab
simulations and experimental results. Note that the input data
used in Matlab simulations have been fed to the FPGA
implementation through a pattern generator.

In order to have a fair comparison with the PHR algorithm,
SifH has been down scaled to operate 10 bits-CifH. As
explained in Section III, PHR coarse peak could jump by ±16
bins or ±128 bins. The FH of the PHR has ±8 bins around the
coarse peak. FH is always centered on the coarse peak. This
means that, if the coarse peak is deviated by 16 bins, the fine
peak would be out of the FH range. Even with 32 bins, the fine
peak could be located at one of the FH’s ends where peak
detection is not safe to operate. Consequently, PHR fails to
resolve the ToF even for 24× border errors, as Fig. 9
demonstrates. The 24× and 27× border errors (Fig. 9-blue
curve) might not be seen in the distance ranging experiment
because it has too less points [10]. As predicted, these errors
have been solved by employing a FH of 34 bins, instead of 16
bins around the coarse estimation. However, the larger errors
cannot be resolved by 34 bins-FHs. It requires at least 2଻ାଵ
bins. Therefore the apparent advantage of smaller CH-PHR
footprint compared to CH-SifH footprint is cancelled.

Instead, FH-SifH on 64 bins (6 bits) has a considerable
margin to operate error free even if the FWHM of the ToF
data is large. Moreover, the ܾ௢௦ parameter can adjust the FH
address space such as the fine peak is never truncated. This is
the key difference that allows SifH to compute ToF error free,
along the entire dynamic range of the sensor (Fig. 9-red
curve). Moreover, SifH keeps working perfectly at 24dB,
equivalent to a high level of uncorrelated noise of 20× DCR.
In this case, PHR increases the number of ambiguity points.

Unlike SifH, PHR cannot be scaled up because the ToF
computation rate gets even lower than SifH (e.g. 5× slower for
௣ܰ=15 bits). Moreover, FH-PHR memory requirement exceed

by far the one for CH-PHR (e.g. 2ଵଷାଵ bins for ௣ܰ=15 bits).
Therefore SifH compared to PHR is faster and more accurate.
SifH occupies less memory for larger depth ToF.

Fig. 8 Comparison between ToF code computed from 15 and 11 bits CifH and

SifH on 8 bits

Fig. 9 ToF computed by SifH, PHR and CifH; SNRToF = 34dB

V. SIFH BUILDING BLOCKS

In this implementation, we will be considering that ௣ܰ is 15
bits, ௛ܰ is 10 and ௕ܰ is equal to 8. The design of the real-time
SifH has been implemented on a Spartan3 FPGA. It includes
the following main blocks (see Fig. 10): a ௣ܰ-bit serial-input
parallel-output (SIPO), a ௣ܰ-bit parallel-input parallel-output
register (PIPO), one digital filter (DF), a multiplexer with 2
inputs on ௣ܰ bits, a ௛ܰ ൈ 2ே್-bit SRAM memory, a ௛ܰ-bit
register with one step automatic increment, a peak detector
circuit, 3 algebraic circuits to compute additions, subtractions,
multiplications and divisions (Alg1, 2 and 3) and 2 ൈ ௣ܰ-bit
memory to store the Δ value and accurate ToF of the pixel.

The hardware implementation of the SifH algorithm of a
single pixel is operating as follows:

i) The global reset (RST_FR) is activated before starting to
capture a new frame. At this point it is important to reset the
Histogram SRAM and the Peak detector’s A and B registers.
Later on, the pixel value is serially loaded from the SPAD
imager through the SIPO, starting with LSB, on the negative
edge of the clock (CLK), while the signal WS is set low (shift
enabled). ௣ܰ is defined by the signal PNoB. Every ௣ܰ periods
of CLK the content of SIPO is loaded into PIPO, on the
positive edge of the signal PP. Therefore the output of the
PIPO, called ݈ܽݒ_ݔ݅݌, is stable ௣ܰ×TCLK time period while it
has to be placed in the right bin of the histogram.

ii) The first step is to build the coarse histogram by setting
the signal HS low.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 10 Block diagram of SifH

When REN is set high, the memory located at the address
indicated by the pixel value is read out on the positive edge of
CLK. It represents how many times the current pixel value has
been encountered before. It is incremented by 1 unit when LC
is set high, on the negative edge of CLK. Subsequently, the
updated Number of Counts (NoC) is overwritten in the
histogram SRAM at the same address, when WEN is set high,
on the positive edge of CLK. Next, if the current NoC is
bigger than its previous value, it is overwritten along with the
corresponding address ADDR in the Peak detector’s registers,
A and B respectively (see Fig. 11).

The acquisition of the coarse histogram ends right after the
M-th pixel value is resolved. When ENDHC is set high, the
pixel value that has been encountered most of the times in the
CH is stored by register C to compute TH–, TH+ and Δ. It is
worth to mention that the division operation has been
implemented by a sequential scheme due to area constraints.
Thus the operation is completed in ௣ܰ×TCLK. Under these
circumstances, it is better to store the Δ value and recall it
whenever is needed. This is the purpose of the register enabled
by the signal STRHC.

Fig. 11 Circuit diagram of peak detector

Unlike ∆, TH– and TH+ are not required to be stored because
they are computed quite fast from the position of the final
peak of the CH, PNoCc.
iii) At this point the Histogram SRAM and the temporal
registers A and B of the Peak detector have to be reset again.
The second acquisition can start to build the FH. The signal
HS is set high such that the pixel value is routed through DF
block (see Fig. 12). Note that the construction of the FH and

the detection of the peak value are the same as in the previous
step. The only differences are in the filtering of the input pixel
values and the condition to count them in the histogram bins.
First of all, some data alignment is required depending on the
input PNoB. This is required only for adaptive frame rate
applications where PNoB can vary from frame to frame.
Subsequently, each incoming pixel value is checked whether it
is within the limits computed at the previous step. If so, then
the pixel value translated on ௕ܰ-bit histogram address is
placed in the corresponding bin when both signals ACK and
LC are high. The translation is required to fit a ௣ܰ-bit pixel
value on a ௕ܰ-bit histogram address. It is done by merely
subtracting the Δ value computed in the previous step from the
incoming pixel value. The final peak value address of the fine
histogram, PNoCf is available right after the acquisition of the
FH ends by placing the last pixel value in the right bin.

Fig. 12 Circuit diagram of DF

Fig. 13 Signals chronogram

Finally, the accurate ToF is computed on chip by adding the Δ
value to the peak position of the FH, ܾெ,௙௜௡௘. The storage of
the ToF is enabled by the signal END_FR, on the negative
edge of CLK. The signals chronogram is depicted in Fig. 13.
HC-Pi and HC-Pf labels stand for the initial and final peak
values of the CH corresponding to a certain pixel. HF-Pi label
represents the initial peak value of the FH corresponding to
the same pixel.

Thus, instead of sending to USB up to 320 kb of histogram

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

per pixel to estimate the ToF off-chip, we send directly only
the accurate ToF represented on maximum ௣ܰ bits.

VI. SIFH SCALABILITY

The proposed SifH algorithm can be easily scaled to any
pixel-array size and PNoB and is suitable for ultra-high frame
rate imagers. Under these circumstances, in order to relax the
time constraints on the readout and bin placement circuits,
parallelism is naturally called.

Let us make the calculations for a 64×64-pixels ToF image
sensor with 32 outputs at 50 MHz with an equivalent
throughput of 1.6 Gbps and an inter-frame rate of 26 kfps to
48 kfps when PNoB changes from 15 to 8 bits.

The time constraint on the histogram memory access is
given by the minimum PNoB. Suppose that each serial output
is connected to a SifH channel which has to resolve 128
pixels. This means that the memory resources from Fig. 10
have to be multiplied by 128, i.e. the 2.5 kbits histogram
memory and 56 bits register allocated as follows: 2 × 8 bits to
store the address of the peak values of the coarse/fine
histograms, 10 bits for the peak value and 2 × 15 bits for Δ
value and ToF.

For an ASIC implementation in a 90nm CMOS process, the
histogram memory footprint for one channel is below 0.4
mm2. It easily fits into a mini ASIC with an affordable price.
In the end, 32 channels could be encapsulated in the same
package.

SifH algorithm is also suitable to be integrated on-chip with
the imager if it is shared by multiple pixels.

For FPGA implementation, one has to consider the total
histogram memory requirement from 8 to 16 Mb depending
whether the number of counts per bin is represented on 8 to 16
bits. However some Xilinx FPGA, such as XC7K160T
(325×36 kbits BRAM), XC7A200T (365×36 kbits BRAM) or
XC7K355T (715×36 kbits BRAM) [14] could accommodate
all 32 SifH channels.

For the sake of simplicity the next section presents only the
scaling of the peak detector circuit. The multiplexing scheme
is similar for the Δ and ToF registers.

VII. ON-CHIP TOF COMPUTATION

Ultra-high inter-frame rate 3D SPAD imagers require the
computation of ToF on-the-fly. Consequently it has to be
implemented on-chip and parallelized over different channels.
For this purpose we propose a hardware to compute the peak
of each histogram in real-time. The design for one pixel (Fig.
11) is scaled for one channel of 128 pixels. The block diagram
of one out of 32 channels is presented in Fig. 14.

It is based on the fact that each bin is accessed during the
histogram building phase. Thus the peak value is updated each
time a new bin value is read from the histogram memory.
Thus the histogram peak is available right after the acquisition
phase ends.

It is built by a pixel decoder, a 128×10 bits PIPO register to
store the histograms peak, a 128×8 bits PIPO to store the peak
address and a 128×8 bits PIPO to keep the final peak address
of the CH which is used to compute the corresponding TH+
and TH–. Note that PIPO register can be replaced by latches.

Fig. 14 Single channel of real-time peak detector

The pixel decoder is implemented by a 128 bits circular
shift register (CSR) and transmission gates (TG). It also can be
used to multiplex the registers that store the ߂ value and ToF
of each pixel.

The circuit is operating as follows: PIPO 1, 2 are reset at the
beginning of each frame. Before receiving the first inter-
frame, the CSR is reset as well, selecting the first position in
PIPO 1-3, allocated for the first pixel in the channel.
The maximum NoC in the histogram of the first pixel and the
corresponding ADDR are updated on the positive edge of
WEN signal. On the next edge of the signal PP, the shift
register selects the second position in PIPO 1-3, allocated for
the second pixel and so on up to the last pixel in the channel of
the first inter-frame.
After the last inter-frame is processed the final peak addresses
in the pixels’ CH are stored in PIPO 3 by activating the signal
ENDHC. At the end of the FH acquisition, the peaks addresses
of the FHs are stored by PIPO 2.

VIII. CONCLUSION

This paper concentrates on noise reduction in ToF SPAD
imagers based on pixel level inter-frame histogram building.
We have discussed the area limitations of storing the CifH
when ௣ܰ is up to 15 bits. Two different alternatives have been
contemplated to reduce the histogram memory requirements,
i.e. PifH and FifH. However the frame rate of the former
technique is strongly affected by ௣ܰ. The latter technique
requires some additional correction of the uncertainly errors
and it is affected by noise folding.

In order to overcome the aforementioned limitations, we
propose a method to efficiently store histograms in real-time.
SifH is highly efficient and suitable for kpixels high speed
imagers and large ToF depths. An extensive comparison of the
SifH algorithm to a recently reported PHR algorithm based on
FifH has been presented as well. SifH has the following
advantages: i) it requires very low memory footprint (2.5
kbits or 256 bins/ ifH); ii) the memory footprint is fixed for
௣ܰof 8 bits up to 15 bits; iii) the required memory footprint for

the same ௣ܰ tremendously decreases up to 128 times; iv) the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

accuracy of peak detection is not affected by increasing ௣ܰ
even if the ifH number of bins is fixed; v) SifH is faster than
PHR and the computation speed does not depend on ௣ܰ; vi)
unlike PHR, SifH is free of uncertainty errors along the entire
dynamic range; vii) SifH can be scaled up to 15 bits-ToF. In
order to cancel the border errors, PHR would need larger FH
than FH-SifH.

The SifH hardware implementation for one pixel is
thoroughly presented. The scalability towards ultra-high frame
rate ToF imagers is discussed. All the calculations are taking
into account for 64×64-pixels array.

We have also proposed a custom design to extract in real-
time the peak of the pixel ifHs of a channel incorporating 128
pixels on up to 15 bits. The integration of the proposed
algorithm in ASIC and FPGAs is addressed as well.

REFERENCES
[1] G.-F. Dalla Betta, L. Pancheri, D. Stoppa, et a., “Avalanche photodiodes

in submicron CMOS technologies for high-sensitivity imaging”, InTech,
Advances in Photodiodes, pp. 225-248, 2011, DOI: 10.5772/15178.
Available from: http://www.intechopen.com/books/advances-in-
photodiodes/avalanche-photodiodes-in-submicron-cmos-technologies-
for-high-sensitivity-imaging

[2] D. P. Palubiak, “CMOS SPADs: design issues and research challenges
for detectors, circuits and arrays”, J. of Selected Topics in Quantum
Electronics, Vol. 20, No. 6, Nov. 2014.

[3] A. Tosi, F. Zappa, “MiSPiA: microelectronic single-photon 3D imaging
arrays for low-light high-speed safety and security applications”, Proc.
SPIE 8899, Emerging Technologies in Security and Defence; and
Quantum Security II; and Unmanned Sensor Systems X, 88990D, Nov.
2013.

[4] D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W.
Brockherde, “100 000 frames/s 64×32 single-photon detector array for
2-D imaging and 3-D ranging”, IEEE J. of Selected Topics in Quant.
Electronics, Vol. 20, No. 6, Nov. 2014.

[5] I. Vornicu, R. Carmona-Galán, Á. Rodríguez-Vázquez, “Real-time inter-
frame histogram builder for SPAD image sensors”, IEEE Sensors
Journal, Vol. 18, No. 4, Feb. 2018.

[6] J. Van de Weijer and R. Van den Boomgaard, “Local mode filtering,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, Vol. 2, pp. II-428-II-433.

[7] F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. D. Mora,
D. Contini, D. Durini, S. Weyers, W. Brockherde, “CMOS imager with
1024 SPADs and TDCs for single-photon riming and 3-D time-of-
flight”, IEEE Journal of Selected Topics in Quantum Electronics, Vol.
20, No. 6, Nov./Dec. 2014

[8] O. Levy, L. Wolf, “Live repetition counting”, IEEE International
Conference on Computer Vision, pp. 3020-3028, 2015

[9] A. K. Sharma, A. Laflaquiere, G. A. Agranov, G. Rosenblum, S.
Mandai, “SPAD array with gated histogram construction”, U.S. Patent
US 2017/0052065 A1, Feb. 23, 2017.

[10] S. Lindner, C. Zhang, I. Antolovic, M. Wolf, E. Charbon, “A 252×144
SPAD pixel FLASH LiDAR with 1728 dual-clock 48.8ps TDCs,
integrated histogramming and 14.9-to-1 compression in 180nm CMOS
technology”, Symposium on VLSI circuits, 9-14 June 2018

[11] I. Vornicu, R. Carmona-Galán, Á. Rodríguez-Vázquez, “Live
demonstration: Photon counting and direct TOF camera prototype based
on CMOS SPADs”, IEEE International Symposium on Circuits and
Systems (ISCAS), 28-31 May 2017, Baltimore (MD), pp. 1-1, 2017.

[12] N. A. W. Dutton, S. Gnecchi, L. Parmesan, A. J. Holmes, B. Rae, L. A.
Grant, R. K. Henderson, “A time-correlated single-photon-counting
sensor with 14GS/s histogramming time-to-digital converter”, IEEE
International Solid-State Circuits Conference, Sensors and Imagers for
Life Science, Session 11, pp. 204-206, 2015

[13] N. Dutton, J. Vergote, S. Gnecchi, L. Graant, D. Lee, B. Rae, R.
Henderson, “Multiple-event direct histogram TDC in 65nm FPGA
technology”, Ph.D. Research in Microelectronics and Electronics, 2014

[14] Xilinx, 7 series FPGAs memory resources. Available from:
https://www.xilinx.com/support/documentation/user_guides/ug473_7Ser
ies_Memory_Resources.pdf

