
Compact Representations of Simplicial Meshes

in Two and Three Dimensions∗

Daniel K. Blandford

dkb1@cs.cmu.edu

Guy E. Blelloch

blelloch@cs.cmu.edu

David E. Cardoze

cardoze@cs.cmu.edu

Clemens Kadow

kadow@cmu.edu

Carnegie Mellon University, Pittsburgh, PA, U.S.A.

Abstract

We describe data structures for representing simplicial
meshes compactly while supporting online queries and
updates efficiently. Our data structure requires about
a factor of five less memory than the most efficient
standard data structures for triangular or tetrahedral
meshes, while efficiently supporting traversal among
simplices, storing data on simplices, and insertion and
deletion of simplices.

Our implementation of the data structures uses
about 5 bytes/triangle in two dimensions (2D) and 7.5
bytes/tetrahedron in three dimensions (3D). We use the
data structures to implement 2D and 3D incremental
algorithms for generating a Delaunay mesh. The 3D al-
gorithm can generate 100 Million tetrahedrons with 1
Gbyte of memory, including the space for the coordi-
nates and all data used by the algorithm. The runtime
of the algorithm is as fast as Shewchuk’s Pyramid code,
the most efficient we know of, and uses a factor of 3.5
less memory overall.

1 Introduction

For many applications the space required to represent
large unstructured meshes in memory can be the lim-
iting factor in the size of a mesh. Standard represen-
tations of tetrahedral meshes, for example, can require
300-500 bytes per vertex. One option for using larger
meshes is to maintain the mesh in external memory. To
avoid thrashing, this requires designing algorithms for
which the access to the mesh is carefully orchestrated.
Although several such external memory algorithms have
been designed [18, 13, 11, 28, 42, 2, 41, 1], these algo-
rithms can be much more complicated than their main-
memory counterparts, and can be significantly slower.
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Another option for using larger meshes is to try
to compress the representation within main memory.
There has in fact been significant interest in compress-
ing meshes [12, 22, 40, 32, 33, 39, 25, 23, 17]. In three
dimensions, for example, these methods can compress
a tetrahedral mesh to less than a byte per tetrahe-
dron [39]—about 6 bytes/vertex (not including vertex
coordinates). These techniques, however, are designed
for storing meshes on disk or for reducing transmission
time, not for representing a mesh in main memory. They
therefore do not support dynamic queries or updates to
the mesh while in compressed form.

We are interested in compressed representations of
meshes that permit dynamic queries and updates to the
mesh. The goal is to solve larger problems while us-
ing standard random-access main-memory algorithms.
In this paper we present data structures for represent-
ing two and three dimensional simplicial meshes. The
data structures support standard operations on meshes
including traversing among neighboring simplices, in-
serting and deleting simplices, and the ability to store
data on simplices. For a class of well shaped meshes [30]
with bounded degree these operations all take constant
time. The precise definition of our interface is described
in Section 4. Although our data structures are not as
compact as those designed for disk storage, they still
save a factor of between 5 and 10 over standard repre-
sentations.

Our data structures are described in Section 5.
They take advantage of the separator properties of
well-shaped meshes [30] using recent results in graph
compression [4, 5]. In particular our technique uses
separators to relabel the vertices so that vertices that
share a simplex are likely to have labels that are close
in value. Pointers are then difference encoded using
variable length codes. We use this technique to radially
store the neighboring vertices around each vertex in 2D
and around a subset of the edges in 3D. A query need
only decode a single vertex in 2D or vertex and edge in
3D. For applications that need to generate new vertices,



e.g., Delaunay refinement, we leave extra space in the
label space and assign new labels based on the labels of
the neighbors.

Section 6 describes an implementation of our data
structure and Section 7 presents experimental results.
The implementation uses about 5 bytes per triangle in
2D and about 7.5 bytes per tetrahedron in 3D when
measured over a range of mesh sizes and point distribu-
tions. We present experiments based on using our rep-
resentation as part of incremental Delaunay algorithms
in both 2D and 3D. We use a variant of the standard
Bowyer-Watson algorithm [9, 43] and the exact arith-
metic predicates of Shewchuk [38] for all geometric tests.
We also present experiments based on a Delaunay re-
finement algorithm that removes triangles with small
angles by adding new points at their circumcenters. All
space is reported in terms of the total space including
the space for the vertex coordinates and all other data
structures required by the algorithm. The results for 1
Gbyte of memory are summarized as follows.

• We can generate a 2D Delaunay mesh with 110
million triangles (.47 Gbytes for the mesh, .44
Gbytes for the vertex coordinates, and about .1
Gbytes for auxiliary data used by the algorithm).
Compared to the Triangle code [37] (the most
efficient we know of) our algorithm uses a factor of 3
less memory. It is about 10% slower than Triangle’s
divide-and-conquer algorithm and much faster than
its incremental algorithm.

• We can generate a 3D Delaunay mesh with 100
Million tetrahedrons (.75 Gbytes for the mesh, .17
Gbytes for the vertex coordinates, and .08 Gbytes
for auxiliary data). Compared to the Pyramid
code [36], our algorithm uses a factor of 3.5 less
memory, and is about 30% faster.

• We can generate a refined 2D Delaunay mesh with
80 million triangles with no angle less than 26%.
This version dynamically generates new labels, and
uses an extra level of indirection in our data-
structure.

Our data structure can be used in conjunction with
external memory algorithms. Also, although we only
describe our implementation for 2D and 3D simplicial
meshes, the ideas extend to higher dimensions. These
topics are discussed, briefly, in Section 8.

2 Standard Mesh Data Structures

There have been numerous approaches for representing
unstructured meshes in 2 and 3 dimensions. Some
are specialized to simplicial meshes and others can

be used for more general polytope meshes. For the
purpose of comparing space usage, we review the most
common of these data structures here. A more complete
comparison for 2D structures can be found in a paper
by Kettner [26].

In two dimensions most approaches are based on ei-
ther triangles or edges. The simplest data structure is
based on triangles. Each triangle has three pointers to
the neighboring triangles, and three pointers to its ver-
tices. Assuming no data needs to be stored on triangles
or edges, this data structure uses 6 pointers per tri-
angle. Storing data requires extra pointers. Shewchuk’s
Triangle code [37], and the CGAL 2D triangulation data
structure [8] both use a triangle-based data structure.
To distinguish the three neighbors/vertices of a triangle,
a handle to a triangle typically needs to include an index
from 1 to 3. The data structure used by Triangle, for
example, includes such an index in the pointer to each
neighbor (in the low 2 bits) so that a neighbor query
not only returns the neighbor triangle, but returns in
which of three orders it is held.

There are many closely related data structures
based on edges, including the doubly connected edge
list [31], winged-edge [3], half-edge [44], and quad-
edge [21] structures. In addition to triangulated meshes,
these data structures can all be used for polygonal
meshes. In these data structures each edge maintains
pointers to its two neighboring vertices and to neigh-
boring edges cyclically around the neighboring faces and
vertices. Each edge might also maintain pointers to the
neighboring faces and to edge data. The most space effi-
cient of these data structures can maintain for each edge
a pointer to the two neighboring vertices and to just two
neighboring edges, one around each face and vertex. As-
suming no data needs to be stored on a face or edge, this
requires 4 pointers per edge, which for a manifold trian-
gulation is equivalent to the 6 pointers per triangle used
by the triangle structure (|E| = 3/2|T |). The half-edge
data structure [44], used by CGAL [26], LEDA [29] and
HGAM [19], maintains two structures per edge, one in
each direction. These half-edges are cross referenced,
requiring an extra two pointers per edge. The winged-
edge and quad-edge structures maintain pointers to all
four neighboring edges, requiring 6 pointers per edge (9
per triangle).

In three dimensions there are analogous data struc-
tures based either on tetrahedrons or on faces and edges.
Again the simplest data structure is to use a struc-
ture per tetrahedron. Each tetrahedron has 4 pointers
to adjacent tetrahedrons, and 4 to its corner vertices.
Assuming no data this requires 8 pointers per tetrahe-
dron. This data structure is used by Pyramid [36] and
CGAL [8]. The face and edge data structures are often
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called boundary representations (b-reps). Such bound-
ary representations are more general than the tetra-
hedron data structures, allowing the representation of
polytope meshes, but tend to take significantly more
space. Dobkin and Laszlo [14] suggest a data struc-
ture based on edge-face pairs, which in general requires
6 pointers per edge-face. For tetrahedral meshes this
data structure can be optimized to 9 pointers per face
(6 to the adjacent faces rotating around its 3 edges,
and 3 to the corner vertices). This corresponds to 18
pointers per tetrahedron. Weiler’s radial-edge repre-
sentation [45], Brisson’s cell-tuple representation [10],
and Linehard’s G-map representation [27] all take more
space.

In summary, the most efficient standard data struc-
tures of simplicial meshes use 6 pointers per triangle in
2D and 8 pointers per tetrahedron in 3D. At least one
extra pointer is required to store data on triangles in
2D or tetrahedrons in 3D.

3 Preliminaries

In this section we review some basic notions of combina-
torial topology used in this paper. For a more detailed
discussion the reader can refer to [15] and [34] among
others.

An (abstract) simplicial complex K is a non-empty
collection of finite sets which is closed under taking non-
empty subsets. The elements of K are called simplices.
The underlying set ∪K is called the vertex set and its
elements are called vertices. The dimension of a simplex
with d vertices is d − 1. The dimension of K is the
maximum dimension among its simplices. A simplex τ
is a face of a simplex γ iff τ ⊆ γ, and iff τ 6= γ we say
that τ is a proper face of γ. We say that K is pure if
every simplex is a face of a simplex of highest dimension.
Let S be a subset of K. We call the collection of all
simplices in S together with all their faces, Cl(S), the
closure of S. The star of a simplex is the union of its
superfaces, St(σ) = {γ : σ ⊆ γ}. The link of a simplex
σ is the set of simplices in the closure of its star that do
not intersect it, Lk(σ) = Cl(St(σ))− St(σ).

Let E be a mapping from the vertices of K to Rm.
We let |σ| denote the convex hull of the images of their
vertices of σ under E, and let |K| = ∪σ∈K |σ|. We say
that |K| is an embedding of K iff for all simplices σ and
τ it holds that |σ| ∩ |τ | = |γ| where γ is their maximum
common face (which may be empty). We say that K
is a d-manifold (with boundary) iff |K| is a d-manifold
(with boundary). If K is a manifold of dimension d
then the link of every (d− 2)-simplex is a cycle of edges
and vertices (i.e., a 1-manifold). If K is a manifold
with boundary, then the link of every (d − 2)-simplex
is either a cycle or a path, i.e., a 1-manifold with or

V V

(a) (b)

Figure 1: Example of a 2D manifold complex with
boundary (a) and a pseudomanifold complex (b) along
with the link of a vertex v. The link is a single path in
(a) and two paths in (b).

without boundary (see Figure 1 (a)). We will make use
of this fact in our representation described in section 5.

An ordering, ~sd, of a d-simplex, sd, is a total
ordering of its vertices. An orientation, sd, of a
simplex, sd, is a maximal set of orderings which are

even permutations of each other1. Every ordering ~sd on
a simplex implies an orientation sd on the simplex, and
every d-simplex, d > 0, has two possible orientations.
The orientation sd of a simplex induces an orientation

sd−1 on every d−1 subsimplex—i.e., for all ~sd−1 ∈ sd−1

there exists ~sd ∈ sd such that ~sd−1 is a prefix of ~sd.
For our purposes, a d-pseudomanifold is a pure d-

complex where every (d − 1)-simplex is contained in
at most two d-simplices and where the dual graph is
connected. The vertices of the dual graph are the d-
simplices and the edges are the (d − 1)-simplices. A
d-pseudomanifold is orientable if its d-simplices can be
given orientations in such a way that when they meet at
a (d−1)-simplex s, they induce opposite orientations on
s. Every orientable d-pseudomanifold has two possible
orientations, which can be specified by the orientation
of one of its d-simplices. If K is a d-pseudomanifold
then the link of every (d − 2)-simplex is a collection of
disjoint cycles and/or paths (see Figure 1 (b)).

In this paper we will use the term simplicial mesh
to refer to a pseudomanifold abstract simplicial complex
with a given orientation.

4 Interface

In this section we present the interface for simplicial
meshes that our data structure implements. It is a sim-
plified version of an interface described in [6]. The inter-

1An even permutation is a permutation reached by an even

number of swaps.
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face supports standard operations on meshes including,
a mechanism to systematically traverse a mesh (e.g.,
reflect across a face, or rotate around a vertex), and
for updating the mesh, including inserting and deleting
simplices and associating data with simplices. The in-
terface consists of four operations on ordered simplices
(empty, up, down), and faces, and three operations
on simplicial meshes (add,delete, and findUp).

Let sk = (v1, . . . , vk+1) be an ordered simplex. The
empty operation creates an empty simplex empty()→
(). The up operation adds a vertex v to s: up(sk, v)→
(v1, . . . , vk+1, v). The down operation extracts the
last vertex from sk: down(sk) → (v1, . . . , vk) : vk+1.

Given ~sd consider the (d− 1)-faces sd−1

1 , . . . , sd−1

d+1
. The

faces operation returns a set { ~sd−1

1 , . . . , ~sd−1

d+1
} such that

~si
d−1 is not a prefix of ~sd. Intuitively this means

that it returns every (d − 1)-faces in the opposite

orientation than the one given in ~sd. This can be easily
implemented using the above operations.

Let M be a d-dimensional simplicial mesh. The
add operation takes M and a highest dimension ordered

simplex ~sd and returns a new mesh M ′ that results from
adding sd to M . We require that sd has consistent
orientation with M . Note that when we add sd, we don’t

have to store all even permutations of ~sd—just storing ~sd

is enough to determine the orientation of sd. The delete
operation takes M and a highest dimension ordered

simplex ~sd and returns the mesh M ′ that results from
removing sd from M . The findUp takes an ordered

simplex ~sk, 0 ≤ k ≤ d, and M . If sk is not in M it
returns null. Otherwise it returns an ordered simplex
~sd such that sd ∈ M and ~sk is a prefix of ~sd, or null if
none exists. In the special case where k = d − 1, then
there is at most one sd that can be returned.

In addition to the core interface, we also provide two
operations to associate and retrieve data from simplices
in a complex. The addData operation takes M , an

ordered simplex ~sk, 0 ≤ k ≤ d and some user supplied
data u. It associates u with sk in M . The operation

findData takes M and an ordered simplex ~sk and
returns the user data ud associated with sk in M . If
there is no associated data then null is returned.

The interface as described can be used for most
applications that traverse and update a simplicial mesh.
Figure 2 gives an example of code that traverses a d-
simplicial mesh with boundary and returns the (d − 1)
boundary mesh. It recursively traverses the mesh in
depth-first order storing flags on the d simplices when
visited. Whenever a boundary d − 1 simplex is found
(s′

d
= null in the code), it is added to the output mesh.

The code assumes the boundary is a simplicial mesh.

procedure boundary(sd, M, Mb)
if not findData(M, sd) then

addData(M, sd, true)

for every f in faces( ~sd) do

s′
d

= up(f)

if (s′
d

= null) then add(Mb, f)

else boundary(s′
d
, M, Mb)

Figure 2: Pseudocode for computing the d−1 boundary
Mb of a d simplicial mesh M .

5 Data Structure

Here we describe our 2D and 3D data structures for sim-
plicial meshes (simplicial orientable pseudo manifolds).
We first describe uncompressed versions of the data
structures and then describe how to compress them.
Our data structures are based on storing the link for
a set of (d − 2)-simplices. In 2D this is similar to the
half-edge structure [44], and in 3D it is similar to the
Dobkin and Laszlo [14] structure. We note, however,
that all references are to vertex labels instead of point-
ers to other higher-dimensional simplex structures, al-
lowing us to compress based on vertex labels. Our data
structures have the property that if the degree of all
vertices is bounded all queries take constant time. We
first describe a version for manifold complexes.

Our 2D data structure maps each vertex to its link,
represented as a cycle of the labels of its neighboring
vertices. The cycle is ordered radially around the
vertex in the orientation of the complex, e.g., clockwise.
A findUp query on the ordered edge (v1, v2) can be
answered by looking up the link for v1, finding v2 in
the link, and returning the next vertex in the link. A
findUp on a vertex can be answered by selecting the
first two vertices off of its link.

The link can be stored as a list of labels starting
at an arbitrary point on the cycle. If the vertex has
bounded degree, the lookup takes constant time. To
analyze the space note that each edge appears in two
cycles, and each appearance requires two pointers, one
to the vertex label and one to the next element in
the list. The total space is therefore 4 pointers/edge
+ 1 pointer/vertex. This is identical in space usage
to the triangle-based structure, assuming that it also
maintains a pointer from each vertex to one of its
incident triangles. Our data structure is similar to
the half-edge structure since there are effectively two
structures per edge, one pointing in each direction.
It differs, however, in that there are no direct cross
pointers between the matching half edges.

In 3D the data structure maps a subset of all
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ordered edges to their link, represented as a cycle of
vertex labels. The cycle is maintained in a consistent
orientation, e.g., obeying a right-hand rule with respect
to the order (direction) of the edge. The representative
subset E′ is selected to include only the edges {v1, v2}
for which either the labels of v1 and v2 are both odd, or
they are both even. Furthermore an edge is only stored
in one of its two orders, chosen using a fixed rule, e.g.,
lower labeled vertex first. Since for any triangle (2-
simplex) at least two labels have to be either odd or
even, this sampling of the edges guarantees that every
triangle has at least one representative ordered edge in
E′. The data structure also needs to supply a way to
access the link given the vertex labels of any edge in
E′. This can be implemented using an adjacency list
for each v ∈ V of all outgoing representative edges
(v, v′) ∈ E′. Each element of the list stores v′ and a
pointer to the link of (v, v′).

A findUp on an ordered triangle (v1, v2, v3) works
as follows. It first finds a representative ordered edge
(va, vb) from the triangle. Let’s call the third vertex on
the triangle vc. It looks up the link of (va, vb) in the
adjacency list for va, and searches for vc in the link.
If (v1, v2, v3) and (va, vb, vc) have the same orientation
(are an even permutation of each other) findUp returns
the next vertex in the link, otherwise it returns the
previous vertex in the link. A findUp on a vertex can
be implemented by selecting any of its outgoing edges,
and selecting the first two vertices of the edge’s link.
A vertex, however, might have no outgoing edges in
E′. For such a vertex v the data structure can store
(v1, v2) for any triangle (v, v1, v2). The triangle can be
used to find the tetrahedron. To support findUp on
edges requires storing all edges (in one direction), but
not necessarily their links. For edges not in E ′ (i.e.,
odd-even edges), the data structure needs only store a
single vertex in their link.

To analyze the space for this data structure we
assume that the links of representative edges are stored
as lists of vertices. Each list element has two pointers:
one to the vertex and one to the next element in
the list. For an edge e ∈ E ′ there is a one-to-one
correspondence between the triangles for which e is a
face and list elements in the link of e. Since a triangle
has 3 edges, and on average half the edges will appear
in E′2, every triangle will contribute and average of
3 ∗ .5 = 1.5 list elements to the overall data structure.
Since there are twice as many triangles as tetrahedrons,
each tetrahedron will contribute an average of 3 list
elements, which corresponds to 6 pointers. We also need

2This is only strictly true for randomly selected labels. How-

ever, for non-random labels one can use a hash on the labels to

decide on which edges to include.

to store the vertex adjacency lists for out-edges in E ′.
Each edge (v1, v2) ∈ E′ will appear as an element in one
list (v1), and will require three pointers: one to v2, one
to the link of (v1, v2), and one to the next element in
the list. Additionally a pointer from each vertex to its
list is required. The total space to support findUp on
triangles is therefore 6|T |+ 3/2|E|+ |V |. For a typical
reasonably shaped mesh |E| ≈ 7/6|T | and |V | ≈ 1/6|T |,
giving approximately 8 pointers/tetrahedron. This is
the same as the data structure based on tetrahedrons.

The additional space to support findUp on vertices
is trivial since most vertices already have an outgoing
edge. To support findUp on edges, we need to sep-
arately store the excluded edges (v1, v2) that are not
in E′ in either direction. These can be stored off of
v1 using a linked list with 3 pointers per edge—one for
v2, one for some v in the link of (v1, v2), and one for
the next pointer. This comes to about 3 ∗ 1/2 ∗ |E| =
7/6 ∗ 3/2|T | = 7/4|T |. Many applications will not need
findUp on edges, so in these cases this extra data need
not be stored.

For manifolds with boundaries, the link might be a
path of vertices instead of a cycle. We can simply keep
the path starting at the first element. For pseudomani-
folds the link of singular vertices (2D) or edges (3D) can
consist of a set of cycles and/or paths. We call this set
the link set and it can be represented as multiple lists.

A d-simplex s can be deleted by finding the repre-
sentative (d− 2)-simplices that faces of s, and splitting
a cycle or path of each of their links. For example, in
Figure 1 when the triangle is deleted from (a) going to
(b), the path for the link of vertex v is split into two
paths. Similarly the cycles for the other two vertices
on the triangle are each slit into a path. If splitting a
link leaves the link set empty, then the (d − 2)-simplex
is deleted. A d-simplex s can be added by finding the
representative (d−2)-simplices of s, and extending each
of their link sets. This extension might add a new path
to the set (if neither of the two new vertices are in the
set), it might extend an existing path (if one vertex is
in the set), it might join two existing paths (if the two
vertices are in separate paths), or it might joint a path
into a cycle (if the two vertices are the ends of the same
path). If the data structure is restricted to manifolds
with boundary, then the single path must either be ex-
tended by one (on either side), or jointed into a cycle.

Data can be added to the d simplices (or d − 1
simplices) by adding a data field to each element of the
link. Since a d simplex will appear in multiple links, the
data only needs to be stored on one of them (chosen in
a fixed manner to make lookup easy). We make use of
this in the compressed data structure.
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Figure 3: The neighborhood and corresponding differ-
ence code data for vertex 314. The first entry, 6, is the
degree of the vertex. Other entries are the offsets of the
neighbors.

Compressed Data Structure: We first discuss
how to compress the data structure in 2D. Compression
in 3D is similar. We make use of difference coding, in
which each element in a vertex’s link is represented
by its difference from the original vertex. If these
differences are small, then a variable-length prefix code
(such as the Gamma code of Elias [16]) can represent
them efficiently. An additional sign bit can be added
to allow for negative differences. To ensure that the
differences are small, our algorithm relabels the vertices
in a preprocessing phase which we will discuss later.

Once the vertices are relabeled, the link of a vertex
can be represented by concatenating the code for its
degree to the codes for the differences of its neighbors.
(See Figure 3 for an example.) If a vertex has a link
consisting of multiple cycles or paths (as can occur in
a pseudomanifold), this link set can be represented by
putting the cycles/paths one after the other with a
count before each. If data is associated with some of
the simplices, this can be interleaved with the codes for
the neighbors. The resulting vertex encodings are stored
in fixed-length blocks; if an encoding is larger than will
fit in one block, multiple blocks may be formed into a
linked list to hold the encoding. Our data structure
makes use of a hashing technique to minimize the size
of the pointers used in these linked lists.

When the data structure is queried, the code for
the corresponding vertex is decompressed. When an
update is made, the code for the corresponding vertices
is decompressed, modified, and then compressed again.

Compression of a 3D data structure is similar
except that the data structure stores the link around
representative edges rather than around vertices. For

each vertex the data structure stores a list of that
vertex’s representative out-edges, with pointers to the
links of those out-edges. These pointers are compressed
using the same hashing technique as above.

Generating Labels. If all the vertices are known
before the algorithm begins, our algorithm can relabel
them using a technique based on x-y cuts. Given a
set of points, the technique first finds which of the
x and y axes has the greatest diameter. It finds the
approximate median in that coordinate and partitions
the points on either side of that median. The points on
one side are labeled first, then the points on the other
side. This is done recursively to produce a labeling
in which points that are near each other have similar
labels. This is similar to a separator-based technique for
graph compression through relabeling [4] except that it
occurs before any edges have been added to the mesh.

If not all vertices are known before the algorithm
begins, our algorithm can assign a sparse labeling to
the initial vertices. When a new vertex is added, it
is assigned a label that is close to the labels of its
neighbors. It would be inefficient to allocate storage
for every possible label; instead, our algorithm uses an
extra level of indirection to map vertex labels to memory
blocks.

6 Implementation

2D Triangulation. Our 2-dimensional com-
pressed data structure is implemented as follows.

For difference encoding our structure uses the nibble
code, a code of our own devising that stores integers
using 4-bit “nibbles”. Each nibble contains three bits
of data and one “continue” bit. The continue bit is set
to 0 if the nibble is the last one in the representation
of a integer, and 1 otherwise. We find that this code is
much faster than the gamma code while being almost
as space-efficient.

It is sometimes necessary to store an extra bit b with
a value v. This is accomplished with a shift operation:
v′ ← 2v + b. In particular, if any value might be
negative, our difference coder stores its absolute value
plus a sign bit: v′ ← 2|v|+ sign(v).

A vertex is represented with a nibble code for
the degree of the vertex, followed by nibble codes for
the differences to each of the vertex’s neighbors. Our
implementation stores two additional “special-case” bits
with each neighbor to provide information about the
triangle that precedes it in the link. One bit is set to
indicate a gap in the link set: it indicates that there is
no triangle preceding that neighbor in the mesh. The
other bit is set when data is associated with the triangle
preceding that neighbor. In this case, the code for that
neighbor is followed with a nibble code representation
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of the data.
As an optimization, note that for many vertices

none of the special-case bits will be set. Our imple-
mentation stores a bit with the degree of each vertex to
indicate if none of its special-case bits are set; if this is
so, those bits are omitted in the encoding of that vertex.

Our implementation stores the nibble codes for each
vertex in an array containing one seven-byte block per
vertex. If a block overflows (that is, if the storage
needed is greater than seven bytes), additional space is
allocated from a separate pool of seven-byte blocks. The
last byte of the block stores a pointer to the next block
in the sequence. Our implementation uses a hashing
technique to ensure that the pointer never needs to be
larger than one byte. This requires a hash function that
maps (address, i) pairs to addresses in the spare memory
pool. Our implementation tests values of i in the range
0 to 127 until the result of the hash is an unused block.
It then uses that value of i as the pointer to the block.
Under certain assumptions about the hash function, if
the memory pool is at most 75% full, the probability
that this technique will fail to find an i ≤ 127 is at most
.75128 ' 10−16.

If the vertices are labeled sparsely (so that new la-
bels can be generated dynamically), our implementation
also makes use of a hash mapping between labels and
vertex data blocks. One byte of memory is allocated
per label; if the label is in use, this byte contains a hash
pointer to the first data block for that vertex.

One bit is stored with each block to indicate
whether the current block is the last in the sequence.
For the first block this bit is stored with the degree
of the vertex; for subsequent blocks it is stored as the
eighth bit of the one-byte pointer to that block.

There is a tradeoff in the sizes of the blocks used.
Large blocks are inefficient since they contain unused
space; small blocks are inefficient since they require
space for pointers to other blocks. In addition, there
is a cost associated with computing hash pointers by
searching for unused blocks in the memory pool. Fig-
ure 4 shows the tradeoff between these factors for our
Delaunay triangulation algorithm run on 220 uniformly
distributed points in the unit square. We chose a block
size of 7 since it gives the most efficient use of space.

To improve the efficiency of lookups our implemen-
tation use a caching system. When a query or update is
made, the blocks associated with the appropriate vertex
are decoded. The information is represented in uncom-
pressed form as a list with one vertex in the link per
element of the list. The lists are kept in a FIFO cache
with a maximum capacity of 2000 nodes. Update oper-
ations may affect the lists while they are in the cache.
The lists are encoded back into blocks when they are

Block Blocks Total
Size Needed Space
5 745151 10086381
6 475263 9998531
7 283559 9920446
8 164660 10101104
9 94105 10537195
10 53399 11179987
11 30496 11974072

Figure 4: The number of extra blocks needed for 220

vertices on a uniform distribution in 2D, and the total
space required if we allocate 30% more blocks than are
needed.

flushed from the cache.
3D Triangulation. Our 3-dimensional structure

is implemented as a slight generalization of our 2-
dimensional structure. Recall that our 3D data struc-
ture keeps a map from each vertex v to all of its repre-
sentative out-edges. This is stored as a difference coded
list of the corresponding neighbors. The code for each
neighbor v′ is followed by a code for the number of nib-
bles in the encoding of the representative edge (v, v′),
and a pointer to the first block containing the data for
that edge. (The pointer is stored using the same hash
trick as above to keep pointer sizes small.) Every rep-
resentative edge has its own block allocated from the
memory pool, with the capability to allocate additional
blocks if needed.

When an edge is queried, our implementation loads
only the list for one vertex and for the edge itself into
the cache. It does not need to decompress the other
edges adjoining that vertex.

Since the number of nibles needed per representa-
tive edge is quite variable, our data structure allocates
from pools of 2, 4, 6, 8, or 10-byte blocks to reduce
wasted space. The number of blocks in each pool was
determined experimentally and is shown in Figure 5.
The data structure ensures that each pool always has
at least 10% free space; if a block cannot be allocated
from a given pool, the data structure looks for a larger
one. The initial block for each vertex comes from a
separate array containing blocks of size 7.

Dynamic point generation. To support dy-
namic point generation we use an expanded label space.
If a total of n vertices are to be generated, we allow for
2n possible labels. Each label receives a one-byte hash
pointer which, if the label is in use, points to the ini-
tial data block for the corresponding vertex. The initial
vertices are spread evenly across the label space.
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Block Blocks Blocks Used
Size Allocated 210 215 220

2 0.55n 59% 67% 70%
4 1.3n 90% 90% 88%
6 1.55n 90% 90% 87%
8 1.3n 78% 73% 75%
10 1.8n 30% 51% 63%

Figure 5: The number of blocks of each size that are
allocated for an n-vertex 3D mesh, and the percentage
of blocks that were used for n = 210, 215, and 220.

Incremental Delaunay: We implemented a De-
launay triangulation algorithm in two and three dimen-
sions using our compressed data structure. We em-
ploy the well-known Bowyer-Watson kernel [9, 43] to
incrementally generate the mesh. During the course of
the algorithm a Delaunay triangulation of the current
pointset is maintained. An incremental step inserts a
new vertex into the mesh by determining the elements
that violate the Delaunay condition. Those elements
form the Delaunay cavity. The faces that bound the
cavity are called the horizon. The mesh is modified by
removing the elements in the cavity and connecting the
new vertex to the horizon.

The cavity is connected, thus can be found by a
local search on the current mesh. When a point p is
inserted, the cavity is determined starting from any
element that will get removed by the insertion of p.
To archieve optimal runtime bounds we use the idea
of Guibas et al. [20] and maintain an association of
every point p not yet inserted into the mesh with the
element tp that contains p. The search for the cavity of
p will start at tp. In their algorithm the history of the
mesh is kept and at the time p is inserted that history
is used to locate the element tp in the current mesh. In
contrast we do not keep the mesh history but maintain
the association of noninserted points p to containing
elements tp on the current mesh.

At each incremental step all points on cavity ele-
ments have to be reassociated with new elements us-
ing lineside tests in 2D and planeside tests in 3D,
which accounts for the dominant cost of the algorithm.
We have carefully implemented the bulldozing idea de-
scribed in [6] and extended it to three dimensions.

Our implementation does not require extra memory
for the lists of points since at any time a point is either
a vertex in the mesh or in one such list. The memory
that will be used to store the vertex in the mesh can
first be used as a list node.

The algorithm maintains a work queue of elements
whose interiors contain points. When no elements

contain points (i.e., all have been added to the mesh),
the algorithm terminates.

In this scenario all points are known at the begin-
ning. We relabel the input points using cuts along co-
ordinate directions as described above. The runtimes
reported in the next section include this preprocessing
step.

Delaunay Refinement: To test our implementa-
tion’s performance for the case when new points are dy-
namically generated at runtime, we implemented a 2D
Delaunay refinement code in the style of Ruppert [35].
We augment a Delaunay triangulation by adding cir-
cumcenters of badly shaped triangles while maintaining
the Delaunay property. When the initial triangulation
is built we walk through the mesh once and check the
quality of each element, queuing the ones not satisfying
a preset minimum angle bound. The same work queue
used in the triangulation phase of the algorithm is used
to store the list of triangles to be split.

Whenever a new point p is generated the algorithm
assigns as new label by considering the horizon vertices
H of the cavity created by p and calculating the value v
that minimizes the sum of the log norms to H . It then
finds the closest label to v that is not yet used.

In the pure triangulation code, all vertices are
known at the beginning, so we can store the point
coordinates and the first level vertex arrays densely. In
the refinement code we can only fill these arrays up
to about 85% before the open address hashing takes
prohibitively long. We also require extra memory for
the additional map form the label space to the vertices.

7 Experiments

We report experiments on a Pentium 4, 2.4GHz system,
running RedHat Linux Kernel 2.4.18, GNU C/C++
compiler version 3.0.1. For all geometric operations
(lineside, planeside, incircle, and insphere tests) we use
Shewchuk’s adaptive precision geometric predicates [38].
We use single-precision floating-point numbers to rep-
resent the coordinates.

2D Delaunay: We tested our 2D implementation
on data drawn from several distributions to assess its
memory needs for non-uniform data sets. We ran
tests on the following distributions: Uniformly random,
normal, kuzmin, and a line singularity. Details on these
distributions can be found in [7]. In Figure 6 we report
the number of extra (overflow) 7-byte blocks used to
store Delaunay meshes of various point distributions
and the runtime of our implementation. It can be seen
that the runtime varies by about 40% while the number
of extra blocks varies by about 10%. Furthermore the
number of extra blocks used comes to only about 28%
of the number of default blocks needed, which is one

8



Distribution # Pts # Extra Blocks Time(s)
uniform 218 70823 3.16
normal 218 72239 3.52
kuzmin 218 72917 4.36
line 218 66297 3.64
uniform 220 288255 13.25
normal 220 292580 14.41
kuzmin 220 292709 21.34
line 220 276124 15.86

Figure 6: The number of extra 7-byte blocks needed
to store triangular Delaunay meshes for various point
distributions using our structure and the runtime of our
2D implementation.

per vertex. In our experiments we set the number of
extra blocks available to 35% of the number of default
blocks. The extra blocks therefore fill to about 80% of
capacity. Given this setting, the total space we require
for the mesh is 1.35 × 7 bytes/vertex, which is 4.725
bytes/triangle.

Next, we compare runtime and memory usage of
our implementation to Shewchuk’s Triangle [37] code
which is the most efficient code reported by Boissonnat
et. al. [8]. In Figure 7 we report the runtime of our
(incremental) code vs. Triangle’s divide-and-conquer
and its incremental implementation. We report the
total memory use of both codes in Figure 8 and break
down our memory use for the simplicial mesh, point
coordinates and the work queue in Figure 9. While
using just about a third of the memory our code runs
about 10% slower than Triangle’s divide-and-conquer
implementation and is about an order of magnitude
faster than Triangle’s incremental implementation. In
our code 50% of the memory is used to represent the
mesh, 40% to store the coordinates, and 10% for the
work queue.

3D Delaunay: As in 2D we tested our 3D imple-
mentation on the same four point distributions. In our
3D structure we allocate memory blocks of different size.
To compare the memory needs for various point distri-
bution, we report the number of bytes used to store
occupied blocks in Figure 10. As in 2D the runtimes
differ, but the memory needed is nearly independent of
the distribution.

We compare our 3D implementation with uniform
random data to Shewchuk’s Pyramid code [36]3. Fig-
ures 11 and 12 show the runtime and the memory usage.
Figure 13 breaks down the memory usage of our code.

3We note that the version of Pyramid we are using is a Beta

release.
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Figure 8: Memory use in 2D, uniformly random points
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Distribution # Pts # Bytes used Time(s)
uniform 216 2525309 9.26
normal 216 2572659 9.38
kuzmin 216 2571769 11.23
line 216 2264465 8.77
uniform 218 10135321 39.59
normal 218 10463761 41.89
kuzmin 218 10444195 45.04
line 218 9372669 38.97

Figure 10: The number of bytes needed for occupied
blocks to store tetrahedral Delaunay meshes for various
point distributions and the runtime of our 3D imple-
mentation.

In comparison our implementation runs slightly
faster and uses only about one third of the memory.
In 3D the representation of the mesh uses about 75%
of the total memory; point coordinates and work queue
account for 18% and 7%, respectively.

2D Delaunay refinement: We tested our 2D De-
launay refinement code and compare runtime and mem-
ory use to our pure 2D Delaunay code, see Figures 14
and 15. The Figures show problem size in terms of the
final number of elements in the mesh. In the pure De-
launay code, all n points are known initially, whereas
in the refinement code only n/2 points are known ini-
tially, the other n/2 are generated and labeled on the
fly as described in Section 6. We refine the mesh up to
a minimum angle of 26.85◦.

The runtimes for the two versions are almost iden-
tical. We need about 30% more memory in the refine-
ment code. Additional memory is needed for the map
from labels to vertices and for slack in the point coor-
dinate array and the first level vertex array needed for
our hashing technique.

8 Discussion

The representation we described can be used as an al-
ternative to external memory (out-of-core) representa-
tions, when the mesh is within a factor of five or so of
fitting in memory relative to a standard representation.
Our representation has the advantage that it allows ran-
dom access to the mesh without significant penalty, and
can therefore be used as part of standard in-memory al-
gorithms (or even code) by just exchanging the mesh
interface.

In conjunction with external memory. For
very large problems our representation can be used in
conjunction with external-memory techniques. Since
in our representation the ordering of the vertices is
designed to be local (it is based on the quad/oct tree
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Figure 12: Memory use in 3D, uniformly random points
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refinement
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Figure 15: Memory use in 2D, pure Delaunay vs.
Delaunay refinement

decomposition), and the blocks of memory for vertices
are laid out in this ordering, nearby vertices in the mesh
will most likely appear on the same page. One problem
is that if the data for a vertex overflows we now assign
the overflow data to the extra blocks using a hash, which
has no locality. To make sure that the overflow data has
some spatial locality one could be more careful about
assigning the extra blocks (e.g. preferentially within
the same page as the original block). Based on this
representation, algorithms that have a strong bias to
accessing the mesh locally (e.g., see the recent work
of Amenta, Choi and Rote [1]) will tend to have good
spatial locality and work well with virtual memory when
it does not fit into physical memory.

Generalizations to d-dimensions. The idea of
storing the link of every d − 2 dimensional simplex
generalizes to arbitrary dimension. The compression
technique also generalizes to arbitrary dimension, but
is likely to be ineffective for large dimensions. This
is because the size of the difference codes depends
on the separator sizes [4], which in turn depends on
the dimension. Choosing an effective way to select
the representative subset of the d − 2 dimensional
simplices will depend on the dimension and would
need to be considered to use our representation on
dimensions greater than three. We have not done
any experimentation to analyze the effectiveness of our
techniques on dimensions greater than three, or to
compare our representations to other representations.
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