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Abstract

We present a novel approach to 3D face recognition us-

ing compact face signatures based on automatically de-

tected 3D landmarks. We represent the face geometry with

inter-landmark distances within selected regions of inter-

est to achieve robustness to expression variations. The

inter-landmark distances are compressed through Principal

Component Analysis and Linear Discriminant Analysis is

then applied on the reduced features to maximize the sep-

aration between face classes. The classification of a probe

face is based on a nearest mean classifier after transforming

the probe onto the subspace. We analyze the performance of

different landmark combinations (signatures) to determine

a signature that is robust to expressions. The selected signa-

ture is then used to train a Point Distribution Model for the

automatic localization of the landmarks, without any prior

knowledge of scale, pose, orientation or texture. We evalu-

ate the proposed approach on a challenging publicly avail-

able facial expression database (BU-3DFE) and achieve

96.5% recognition rate using the automatically localized

signature. Moreover, because of its compactness the face

signature can be stored on 2D barcodes and used for radio-

frequency identification.

1. Introduction

Among the biggest challenges posed by the use of 3D ge-

ometrical information for face recognition are its sensitivity

to changes in expression and the amount of data required

to represent a face. The extraction of an appropriate set

of anthropometric landmarks that is robust to variations in

expressions, can aid in overcoming these limitations. How-

ever, automatic detection of landmarks is usually limited by

prior knowledge of orientation and pose of the faces, and

also by the availability of a texture map.

In this paper, we propose a compact face signature for 3D

face recognition that is extracted without prior knowledge

of scale, pose, orientation or texture. The automatic extrac-

tion of the face signature is based on the fitting of a trained

Point Distribution Model (PDM) [12]. The recognition al-

gorithm first represents the geometry of the face by a set

of Inter-Landmark Distances (ILDs) between the selected

landmarks. These distances are then compressed using

Principal Component Analysis (PCA) and projected onto

the classification space using Linear Discriminant Analysis

(LDA). The classification of a probe face is finally achieved

by projecting the probe onto the LDA-subspace and using

the nearest mean classifier.

The paper is organized as follows: Section 2 discusses

prior work in 3D face recognition. Section 3 describes the

proposed approach for face recognition and finding the most

robust face signature. Section 4 focuses on experimental

results and the validation of the algorithm. Finally, in Sec.

5 we draw the conclusions.

2. Prior work

Algorithms for 3D face recognition can be grouped in

three main classes of methods, based on: (i) direct compar-

ison of selected regions or of the whole surface [9, 3, 10];

(ii) projecting the faces onto appropriate spaces [2, 1]; and

(iii) comparison of features such as landmarks and con-

tours [11, 7]. A common approach to directly compare sur-

faces is through a rigid registration via the Iterated Closest

Point (ICP) algorithm [9, 3, 10]. The main limitation of ICP

for face recognition is that the performance of the registra-

tion degrades in the presence of deformations due to expres-

sions and outliers in the scans. For the ICP algorithm to con-

verge to the global minimum in terms of mean-square-error

(MSE), the surfaces must first be roughly aligned. This re-

quires prior knowledge of face orientation and the localiza-

tion of specific landmarks on the face [9]. An attempt to

overcome the limitation of facial expressions is presented

in [3] and [10] through the matching fusion of multiple face
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regions. Region detection is obtained with constraints on

orientation and thresholds for curvature features.

Statistical classifiers, such as Eigenfaces and Fisher-

faces [4], have been extensively used for 2D face recog-

nition due to their efficiency and speed. Chang et al. [2]

extended the EigenFace approach for use with 3D face

meshes. However, this method is highly sensitive to expres-

sions as the whole face surface is projected onto the eigen-

face space. Bronstien et al. [1] modeled faces as isome-

tries of facial surfaces and the face representation is in the

form of bending invariant canonicals. This canonization is

done on a geodesic mask, and the accuracy of the algorithm

highly depends on the accurate detection of the nose tip and

other landmarks used in the embedding. Kakadiaris et al.

[8] performed face recognition with an annotated model that

is non-rigidly registered to face meshes through a combina-

tion of ICP, simulated annealing and elastically adapted de-

formable model fitting. A limitation of this approach is the

imposed constraints on the initial orientation of the face.

Face recognition through the use of specific anthropo-

metric landmarks can aid in overcoming the limitations

due to expressions mentioned above. Facial features such

as landmarks, regions and contours are generally localized

based on the surface curvature. Moreno et al. [11] proposed

an approach based on the extraction of an 86-D feature

vector composed of landmarks and regions. The features

are evaluated for their discriminatory power and results are

demonstrated on different combinations of these features.

The main limitation of such approaches lies in the localiza-

tion of these facial features, which is highly dependent on

the prior knowledge of feature map thresholds, face orien-

tation and pose. Gupta et al. [7] presented a recognition

approach using facial proportions extracted from key land-

marks. The selection of the key landmarks is done manu-

ally and is based on literature about anthropometric facial

proportions. However, automatic localization of these key

landmarks (especially around the mouth region) is difficult.

3. Proposed approach

We aim to extract a compact landmark-based signature

of a 3D face that is robust to changes in facial expressions.

To this end, we first select a robust facial representation

based on testing extensive sets of manually selected land-

marks. Next, we train a Point Distribution Model (PDM) to

identify the selected set of landmarks.

3.1. Landmarkbased face recognition

Given a set S = {ω1, ω2, ..., ωN} of N 3D landmarks

on a face mesh Ψ, where ωi = (xi, yi, zi) represents the

ith landmark, we extract geometrical information describ-

ing the face morphology. To this end, we compute the inter-

landmark distances (ILDs), dij , between pairs of landmarks

and generate a feature vector, ∆, of dimension N(N-1)/2,

represented as

∆ =
(

d1,2, d1,3, ..., d1,N , d2,3, ..., d2,N , ..., d(N−1),N

)

,

(1)

where di,j = ||ωi −ωj ||. We choose the Euclidean distance

for its simplicity of computation and robust representation

of face geometry than, for example, geodesic distances. In

fact, geodesic distances are highly sensitive to expressions,

noise and the resolution of the face meshes. Moreover, the

use of the Euclidean distance allows us to obtain a more

concise signature as only N landmarks need to be stored,

whereas the N(N-1)/2 ILDs can be calculated at the recog-

nition stage.

The feature vector ∆ is normalized with respect to the

size of the face to make it scale invariant, thus generating

∆̃ =
∆

dS

, (2)

where the scaling factor dS is the distance between two pre-

defined landmarks.

To reduce the dimensionality of the feature space we ap-

ply Subspace Linear Discriminant Analysis (SLDA) [17].

SLDA is the projection of the data onto a LDA space af-

ter applying PCA. The use of LDA as a feature space is

suited for the task of face recognition, especially when suf-

ficient samples per class are available for training. LDA is

a supervised learning algorithm that targets data classifica-

tion more than feature extraction and finds the classification

hyperplane that maximizes the ratio of the between-class

variance to the within-class variance, thereby guaranteeing

maximal separability. The initial PCA projection allows us

to reduce the dimensionality of the data while retaining its

discriminative power, which LDA further improves upon by

maximizing the class separation.

Let M be the number of faces in the training database

and ∆̃ = (∆̃1, ∆̃2, . . . , ∆̃M ) represent the normalized

feature vectors for all the training faces. The initial PCA

projection, Λ, is defined as

Λ = AT
∆̃, (3)

where A is the transformation matrix whose columns are

the eigenvectors obtained from the covariance matrix, Z∆,

of the data. The LDA projection, Γ, is defined as

Γ = BT
Λ, (4)

where the matrix B holds the eigenvectors of Z−1
w Zb. Here

Zw is the within-class covariance matrix and Zb is the

between-class covariance matrix (see [17] for details).

For classification, we project the probe onto the created

LDA-subspace and use the nearest mean classifier. Given a

2

IEEE INTERNATIONAL CONFERENCE ON ADVANCED SIGNAL AND VIDEO BASED SURVEILLANCE (AVSS), GENOVA, ITALY, 2-4 SEPTEMBER 2009



(a)

(b)

Figure 1. Sample subject scans from the BU-3DFE database: (a)

7 expressions (Neutral, Anger, Disgust, Fear, Happiness, Sadness,

Surprised), (b) 4 intensity levels of the Surprise expression

 

Figure 2. Sample face scan showing the annotated landmarks and

the scaling distance dS (dotted line) used in the tests

probe face Ψ
p and its landmarks (ωp

1 , ω
p
2 , ..., ω

p
N ), we com-

pute the feature vector ∆̃
p of normalized ILDs (Eq. 2). ∆̃

p

is then projected onto the LDA-subspace using Eq. 3 and

Eq. 4. The identity ∆∗
p is then chosen according to

∆∗
p = arg min

j

∣

∣

∣

∣

∣

∣
Γ

p − Γj

∣

∣

∣

∣

∣

∣
, (5)

where ||.|| is the Euclidean distance, Γj is the mean for class

j and Γ
p is the projected probe face.

We evaluated extensively the proposed recognition al-

gorithm on the BU-3DFE database [16], which includes a

challenging range of expressions and 83 manually anno-

tated landmarks for each face. The database contains 25

face meshes per person with four degrees (intensities) of ex-

pressions for each of the six available expressions, namely

anger, disgust, fear, happiness, sadness and surprise, in ad-

dition to one neutral expression. A sample subject showing

the range of expressions and intensities is shown in Fig. 1

while the annotated landmarks are shown in Fig. 2. We eval-

uated various subsets (regions) of the 83 ground-truth land-

marks on 100 individuals (56 females and 44 males). The

regions included the left and right eyes and eyebrows, the

nose, the mouth and the boundary of the face. The scaling

distance dS used for feature normalization is the distance

between the two outer eye points, as shown in Fig. 2. An

exhaustive combination of landmarks from the five regions

results in 31 different models (25 − 1), ranging from single

regions to all the regions. As expected, the single region

that led to the worst recognition results is the mouth region,

as it is most affected by variations in expressions. The most

compact representation that led to the best result is the com-

bination of the eyes, eyebrows and nose regions (48 land-

marks). We refer to this model as ”EY2N”. This result is in

line with recent literature [3, 7, 10, 13] showing robustness

of the eyes and nose regions to expressions. This combina-

tion has the same recognition results as the full model and

was therefore chosen for its compactness.

To automatically detect the EY2N landmarks, we gener-

ate a Point Distribution Model (PDM) [12] that includes sta-

tistical information of the shape variation of the landmarks

over a training set, and then fit it to each probe and training

mesh.

3.2. Model fitting for pose and scale invariant face
recognition

To represent the 48 EY2N landmarks, we build a param-

eterized model Ω = Υ(b), where Ω = {ω1, ω2, ..., ωN},

with N = 49. The extra landmark (nose tip) was included

to facilitate the model fitting process that will be described

later. The vector b holds the parameters that can be used

to vary the shape and Υ defines the function over the pa-

rameters. To obtain the model, a training set of manually

localized landmarks from L face meshes is used. Training

shapes are aligned and scaled to the same co-ordinate frame

to eliminate global transformations using Procrustes analy-

sis [5]. PCA is then applied to capture the variations of the

shape cloud formed by the training shapes in the (3 × 49)

- dimensional space, along the principal axes of the point

cloud. The principal axes and corresponding variations are

represented by the eigenvectors and eigenvalues obtained

from the covariance matrix, ZΩ, of the data.

Let φ contain the t eigenvectors corresponding to the

largest eigenvalues. Then any shape, Ω, similar to those

in the training set can be approximated as

Ω ≈ Ω + φb, (6)

where Ω is the mean shape, φ = (φ1|φ2| . . . |φt) and b =
φT (Ω − Ω) is a t dimensional vector. The value of t is

chosen such that the model represents 98% of the shape

variance, ignoring the rest as noise [5]. The mean shape

is obtained when all parameters are set to zero.

The PDM Ω is fitted onto a probe mesh Ψ
p through sim-

ilarity transformations of the model, estimated using three

control points of the mean shape Ω. These control points

are the inner eye points (ωr and ωl) and the nose tip (ωn),
with {ωr, ωl, ωn} ∈ Ω [12]. The inner eye and nose tip

areas on a face are normally unique based on local curva-

ture and can be robustly isolated. In order to character-
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(a) (b)

(c) (d)

Figure 3. Feature maps used to isolate candidate vertices: (a) shape

index, (b) curvedness index. Candidate vertices (regions in green

are candidate nose tip vetices and regions in red are candidate eye

tip vertices): (c) without decimation and without averaging, (d)

with decimation and averaging

ize the curvature property of each vertex (vi) on the face

mesh, two features maps are computed, namely the shape

index, ρ(.), and the curvedness index, σ(.) [6]. The shape

index describes shape variations from concave to convex,

whereas the curvedness index indicates the scale of curva-

ture present at each vertex. These feature maps are com-

puted after Laplacian smoothing to reduce the outliers aris-

ing from the scanning process. Figure 3(a-b) shows the two

feature maps obtained on a sample face after the smoothing

process. Moreover, to reduce the computational overhead,

the original mesh is first decimated and then the features are

averaged across vertex neighbors according to

ρ̃(vi) =
1

P

∑

p∈P(vi)

ρ(vp), σ̃(vi) =
1

P

∑

p∈P(vi)

σ(vp), (7)

where P(vi) is the set of P neighboring vertices of vi. If

σ̃(.) > σs, then vi is in a salient high-curvature region.

The condition ρ̃(.) < ρe identifies concave regions; while

ρ̃(.) > ρn identifies convex regions. We can therefore re-

lax thresholds to segregate candidate inner eye vertices from

the nose tip ones. The thresholds σs = 0.1, ρe = 0.3 and

ρn = 0.7 were found to be adequate for the entire database.

Figure 3(c-d) shows a comparison of the isolated candidate

inner eye vertices (red) and nose tip vertices (green) ob-

tained with and without the mesh decimation and feature

averaging steps.

A further reduction in outlier candidate combinations is

performed by checking the triangle formed by each com-

Figure 4. Examples of scale and pose invariant model fitting on

faces with different expressions (top), and faces with different pose

and scale (bottom)

bination of two candidate inner eye points (αr, αl) and a

nose tip point (αn). A plausible eyes-nose triangle should

be acute angled with






d2
rl + d2

rn > d2
ln

d2
rl + d2

ln > d2
rn

d2
rn + d2

ln > d2
rl

where drl, drn and dln are the lengths of the sides of the

triangle. Plausible combinations of the candidate inner eye

vertices and candidate nose tip vertices on Ψ
p are used as

target points to transform the model. Next, the remaining

points of Ω are moved to the closest vertices on Ψ
p. Ω is

then projected back onto the model space and the parame-

ters of the model, b, are updated. Based on this selective

search over the isolated candidate vertices, the transforma-

tion exhibiting the minimum deviation from the mean shape

is chosen as the fit for the model. Sample face meshes with

the fit model are shown in Fig. 4.

4. Experiments and discussions

We evaluate here the performance of the proposed face

recognition algorithm and compare it with the 3D eigenface

approach. Moreover, we discuss the influence of the expres-

sion intensities in the training and the memory requirements

of the automatically detected EY2N signature based on 49

landmarks. The proposed PDM discussed in this section is

trained with manually annotated landmarks from 100 (out

of the total 2500) face meshes. The landmarks of the probe

and training faces are detected automatically.

Figure 5 shows a comparison of the recognition rates ob-

tained with different training and probe combinations to an-

alyze the influence of the expression intensities used in the
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Figure 5. Comparison of recognition results using different combinations of probe and training sets. The training set was varied to include

(red) and exclude (blue): (a) neutral, (b) intensity-1 (lowest intensity), (c) intensity-2, (d) intensity-3, and (e) intensity-4 (highest intensity)

SLDA training. Note that the neutral intensity has the least

influence on training (Fig. 5(a)), while the inclusion of the

remaining intensities have a larger effect (Fig. 5(b-e)), be-

cause neutral samples are fewer than the other intensities (1

neutral and 6 each of intensity 1-4 per person). Higher accu-

racy is achieved when more samples having a wide expres-

sion range are used in the training. More accurate recog-

nition is obtained when the neutral and intensity-1 samples

are used as probe, while intensity-4 provides the least accu-

rate results. The best result (96.5% recognition accuracy) is

achieved using intensity-1 as probe and the remaining sam-

ples in the training. The reduced recognition accuracy for

the highly expressive samples is to be attributed to the re-

duced accuracy in the PDM fitting.

The use of PCA before applying LDA allows us to con-

siderably reduce the dimensions of the feature space while

retaining the most relevant information. To analyze the in-

fluence of the number of dimensions in the identification

accuracy, Figure 6 shows the rank-1 recognition results ob-

tained when varying the amount of feature energy retained

by the eigenmodes after PCA. The number of dimensions

that lead to the highest accuracy was 115, which corre-

sponds to 10.20% of the original size of the feature vector

(1128), using the manual landmarks. In the case of auto-

matic landmarks, the maximum accuracy was obtained with

22.53% (265 modes) of the feature vector. This is due to the

fact that as automatic landmarks contain a larger amount of

noise as compared to the manual landmarks, they require

more information to represent a face. These reduced di-

mensions correspond to 99.97% and 99.57% of the signal

energy for automatic and manual landmarks, respectively.

Figure 7 shows the Receiver Operating Characteristics

(ROC) curves that compares the proposed approach with a

3D eigenface method replicating [15], where depth-maps of

entire face meshes were used in the PCA projection. The 3D

eigenface method has lower accuracy results, with 60.48%

rank-1 recognition rate, as it cannot properly handle large

expression changes. The 3D eigen-face approach is also

presented in [14] and [2] with multimodal data and with

3D modality only, with recognition rates of 85% and 88.9%

respectively, being reported.

To quantify the decrease in recognition accuracy when

reducing the precision of the proposed facial signature, Fig-

ure 7 compares results obtained with automatic landmarks

of the probe using 32-bit floating point and 16-bit inte-

ger representation, where the landmark coordinates were

rounded to the nearest integer. While the storage of the sig-

nature with floating point representation requires 588 bytes

only, with an integer representation we achieve a further

50% reduction in the storage requirements. This would al-

low the 3D face signature to be stored not only on devices

such as RFIDs, but also in 2D barcodes. The rank-1 identi-

fication rate is 96.5% with the floating point representation

and 92.64% with integer representation. In summary, with

a significant decrease in the signature size (50%) using the

integer representation, there was only a 3.86% decrease in

rank-1 recognition.

5. Conclusions

We proposed a novel approach to scale and pose invari-

ant 3D face recognition with the use of a facial signature

and Subspace Linear Discriminant Analysis (SLDA). The

signature is a concise representation of a face that is robust

to facial expressions. The approach first extracts geometric

features of the face in the form of inter-landmark distances

(ILDs) within a set of regions of interest. Dimensionality

reduction is applied through Principal Component Analy-

sis (PCA) to compress the data, and Linear Discriminant

Analysis (LDA) is used on the reduced features to maxi-

mize the separation between the classes. The classification

of a probe face is based on the nearest mean classifier after

transforming its signature onto the SLDA space. We deter-

mined the most robust model to expressions using a large

set of candidate landmarks and demonstrated the improved

accuracy of using the sub-space LDA transformation com-

pared to PCA or LDA alone. The automatic extraction of

landmarks is based on the training and fitting of a point dis-
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Figure 6. Comparison of rank-1 recognition accuracies of manu-

ally and automatically localized signatures on varying the amount

of feature energy retained by the PCA eigenmodes. The inset is a

comparison of the signature accuracy against the number of eigen-

modes for the highlighted region
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Figure 7. Comparison of results using signatures with 32-bit float

and 16-bit integer representations, and the baseline 3D eigen-face

approach

tribution model that eliminates the need for prior knowledge

of orientation, pose or texture information.

Current work includes the validation of the proposed ap-

proach on additional datasets (such as FRGC and 3D RMA)

and on improving the fitting with local neighborhood con-

straints and global optimization strategies.
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