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*is paper studies the problem of intelligence optimization, a fundamental problem in analyzing the optimal solution in a wide
spectrum of applications such as transportation and wireless sensor network (WSN). To achieve better optimization capability, we
propose a multigroup Multistrategy Compact Sine Cosine Algorithm (MCSCA) by using the compact strategy and grouping
strategy, which makes the initialized randomly generated value no longer an individual in the population and avoids falling into
the local optimum. New evolution formulas are proposed for the intergroup communication strategy. Performance studies on the
CEC2013 benchmark demonstrate the effectiveness of our new approach regarding convergence speed and accuracy. Finally, we
apply MCSCA to solve the dispatch system of public transit vehicles. Experimental results show that MCSCA can achieve
better optimization.

1. Introduction

*e optimization problem is the problem of finding the
optimal solution according to the optimization direction in a
feasible solution domain defined by constraints [1]. Inspired
by existing natural phenomena, a large number of re-
searchers have devoted themselves to heuristic algorithms.
Among them, the metaheuristic algorithm which shares the
collective information of all individuals based on species
behavior is a recent hotspot. Swarm intelligence algorithm is
a metaheuristic algorithm [2] that can get better results
without consuming too much computing time. Swarm in-
telligence generally simulates a living population, such as a
particle swarm that simulates bird swarm [3, 4], wolf swarm
[5], fish swarm [6], cat swarm [7–9], and artificial bee colony
[10, 11]. *ere are also inanimate objects like fireworks [12].
Swarm intelligence optimization algorithms generally have
the following characteristics: there are many particles
(representing each type of agent), the individuals are in-
dependent of each other, individuals move position
according to different mechanisms to explore the solution
space, and the position movement mechanism generally
introduces random numbers for better exploration.

*e Sine Cosine Algorithm (SCA) [1] is a new swarm
intelligence optimization algorithm proposed by the Aus-
tralian scholar Mirjalili in 2016. *is algorithm has a simple
structure and fewer parameters and is easy to implement. In
recent years, many scholars have further optimized this
algorithm to solve different problems. It is mainly optimized
from two aspects.*e one aspect is to optimize the algorithm
itself, such as the multiobjective version of the SCA algo-
rithm [13] and the binary version of the SCA algorithm
[14, 15], based on the opposite learning improved SCA
algorithm [16, 17]. *e other is to combine the algorithm
with other algorithms, such as the SCA algorithm combined
with particle swarm optimization algorithm [18, 19] and the
SCA algorithm combined with differential evolution algo-
rithm [20–23].

Sine Cosine Algorithm with Multigroup and Multi-
strategy (MMSCA) is an improved SCA algorithm [24].
MMSCA divides the population into groups and uses dif-
ferent update strategies in different groups. It uses two
strategies: rand strategy, and best strategy. In the rand
strategy, the next generation of solving goals is chosen by
using multiple roulette methods. In the best strategy, the best
individual in all populations is still the solution target.

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 5526127, 16 pages
https://doi.org/10.1155/2021/5526127

mailto:jengshyangpan@gmail.com
https://orcid.org/0000-0003-2117-0618
https://orcid.org/0000-0002-3128-9025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5526127


*e SCA and the improved SCA algorithms [24–26] are
used in many different fields to solve different problems. For
example, the SCA algorithm can solve the economic and
emission dispatch problem [27, 28], a design damping
controller [29], and a system for battery charging [30],
predict wind speed [31], reconfigure the power distribution
network [32], segment image [33], and control the load
frequency of power system [34]. *e SCA and improved
SCA algorithms still have some disadvantages. A disad-
vantage of the SCA algorithm is the algorithm that requires
evaluation of each solution in the swarm and needs to call
the target function multiple times. It increases the com-
plexity of the algorithm. Another disadvantage is the slow
convergence speed.

Based on the above discussions, it is key to effectively
deal with high complexity and slow convergence speed.
Unlike the existing SCA methods, we develop a compact
SCA with multigroup and multistrategy, named MCSCA, to
make the initialized randomly generated value no longer an
individual in the population and avoid falling into the local
optimum. Compact strategy [35–38] is a technique based on
a probabilistic model. *is technique reduces the memory
usage and computation time of the algorithm by using a
probabilistic model to replace the population from a mac-
roperspective. *e idea of grouping [39–41] implies that
many populations can be iteratively updated simultaneously.
*e advantage of this method is that it ensures population
diversity and further improves the search capability and
performance of the algorithm. In particular, when solving
complex optimization problems, grouping populations is an
effective way to improve the efficiency and accuracy of the
algorithm.

*e superiority of the proposedMCSCA is proved by the
comparison between MCSCA and several heuristic algo-
rithms on benchmark functions. To test the ability of
MCSCA in solving practical problems, we apply it to the
dispatching system of public transit vehicles, which is one of
the problems that transportation needs to solve, which is
related to the economic and social benefits of public
transportation companies.

*e main contributions of the paper are listed as follows:

(1) We develop a new compact SCA algorithm for in-
telligent optimization problems

(2) We propose an optimization approach by designing
new evolution formulas and utilizing a grouping
strategy

(3) We extend the MCSCA algorithm in the application
of the dispatching system of public transit vehicles

We conduct extensive empirical studies on the
CEC2013 benchmark in Section 4. *e empirical studies
confirm that our new approach significantly outperforms
the state-of-the-art approaches.

*e rest of the paper is organized as follows. Section 2
gives a brief retrospect to the SCA algorithm and the basic
principles of the compact. Section 3 formally proposes the
MCSCA algorithm. In Section 4, the results of numerical
experiments are presented and discussed. Section 5

introduces the application of this algorithm in the dis-
patching system of public transit vehicles. Finally, Section 6
gives a conclusion.

2. Related Works

Besides the related works discussed above, other related
works are categorized as follows.

2.1. Sine Cosine Algorithm. *e SCA algorithm is a meta-
heuristic algorithm that uses mathematical equations to
estimate the global optimal solution of the optimization
problem. It creates multiple initial random candidate so-
lutions and requires them to use mathematical models based
on sine and cosine functions to fluctuate outward or toward
the best solution. *e algorithm also integrates several
random and adaptive variables to emphasize the exploration
and use of the search space at different stages of optimi-
zation. *e update formula is as follows:

Xt+1
i �

Xt
i + r1 × sin r2( ) × r3 × Ptb − Xt

i

∣∣∣∣ ∣∣∣∣, r4 < 0.5,
Xt
i + r1 × cos r2( ) × r3 × Ptb − Xt

i

∣∣∣∣ ∣∣∣∣, r4 ≥ 0.5,


(1)
where Xt

i is the position of the i-th dimension in the t-th
iteration. r1, r2, r3, and r4 are random numbers, r2 ∈ [0, 2π],
r3 ∈ [0, 2], and r4 ∈ [0, 1], and ptb represents the best in-
dividual position after t iterations.*e updated formula of r1
is as follows:

r1 � a − a
t

T
, (2)

where a is a constant, t is the number of current iterations,
and T is the maximum number of iterations.

2.2. Fundamentals of Compact and Grouping. *e essence of
the compact is based on a probability model to represent the
distribution of all particles. *e virtual population replaces
the actual solution population. *is virtual population is
encoded in a data structure. *is data structure is named the
disturbance vector and represented by PV. *ere are K
particles in the original population, and each particle has n
dimensions. After adding the compact, each dimension can
be represented by a normal distribution, so that the original
K× n matrix becomes a 2× n matrix:

PVt � μt, σt[ ], (3)

where μ and σ are, respectively, vectors containing, for each
design variable, mean and standard deviation values of a
Gaussian Probability Distribution Function (PDF) [42]
truncated within the interval [-1, 1].

*e sampling mechanism of a design variable x[i] as-
sociated with a generic candidate solution x from PV re-
quires an extensive explanation. For each design variable
indexed by i, a truncated Gaussian PDF with mean value μ[i]
and the standard deviation σ[i] is associated.
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PDF(truncNorm(x)) � e− (x− μ[i])2( )/ 2σ[i]2( )( ) ��2/π√

σ[i](erf((μ[i] + 1)/(
�
2

√
σ[i])) − erf((μ[i] − 1)/

�����
2σ[i]

√
)),

(4)

where erf is the error function; see [43].*e update rule for μ
and σ is

μt+1[i] � μt[i] + 1

Np

(winner[i] − loser[i]), (5)

σt+1[i]( )2 � σt[i]( )2 + μt[i]( )2 − μt+1[i]( )2
+ 1

Np

winner[i]2 − loser[i]2( ), (6)

where i represents the i-th dimension, Np is the virtual
population number, and winner and loser are obtained by
comparing the two particles generated by PV.

By constructing a Chebyshev polynomial, the probability
density function can correspond to a cumulative distribution
function with values ranging from 0 to 1. *e cumulative
distribution function is described by the following equation:

CDF � ∫x
− 1

PDFdx � ∫x
− 1

���
2/π

√
e− (x− μ)2/2σ2( )

σerf((μ + 1)/
�
2

√
σ) − erf((μ − 1)/

�
2

√
σ) dx,

CDF � erf((μ + 1)/
�
2

√
σ) + erf((x − μ)/

�
2

√
σ)

erf((μ + 1)/
�
2

√
σ) − erf((μ − 1)/

�
2

√
σ)
.

(7)

*e inverse function of the cumulative distribution is as
follows:

y �
�
2

√
δ erf − 1 − erf μ + 1�

2
√

δ
( ) − xerf μ − 1�

2
√

δ
( ) + xerf μ + 1�

2
√

δ
( )( ) + μ.

(8)
Many metaheuristic algorithms have applied the idea of

grouping, such as parallel PSO [39], parallel ACO [40], and
parallel QUATRE [41]. *is method changes the basic
characteristics of the traditional SCA algorithm. Each
group evolves independently, and the entire population
adopts a unified mechanism to evolve. *erefore, it can
effectively increase the speed of calculation. Different
groups adopt different update formulas, which helps pre-
vent falling into the local optimum while preventing
premature convergence.

Although the compact strategy reduces memory usage
and computation time, it limits the search capability and
convergence speed of the algorithm. *erefore, the compact
strategy and the group strategy are combined to improve the
performance of the algorithm [44].

2.3. Dispatching System of Public Transit Vehicles. *ere are
many issues worth studying in the direction of trans-
portation, such as vehicle speed estimation and prediction
[45, 46], traffic monitoring [47], traffic accident prediction
[48], bus arrival time prediction [49], and dispatching
system of public transit vehicles [50]. Public transit vehicles
have the advantages of large passenger capacity, low road
traffic conditions, and access to many areas. So, public
transit vehicle is an important direction in this field. It has
many issues worth studying, such as the choice of bus types,
site construction and road selection [51], calculation of

greenhouse gas emissions from public transit vehicles [52],
integration of unmanned driving, and public
transportation.

In this paper, the improved SCA algorithm is applied to
the dispatching system of public transit vehicles. Intelligent
dispatch of operating vehicles is one of the problems that
transportation needs to solve, which is related to the eco-
nomic and social benefits of public transportation compa-
nies. *e bus scheduling problem is a complex nonlinear
dynamic optimization problem using a bus dispatching
model that takes into account the interests of both the
company and the passengers. It is to find an optimal solution
that satisfies the proposed objective function in the solution
space that satisfies the scheduling constraints. Many algo-
rithms have been used for the dispatching system of public
transit vehicles, such as ACO [53], GA [54, 55], and Immune
Algorithms (IA) [56]. *e dispatching system of public
transit vehicles still has many problems such as the fact that
weights of the multiobjective function are difficult to be
determined, the original data source is not accurate, and the
algorithm convergence is slow.

3. Compact SCA Algorithm with Multigroup
and Multistrategy

In this section, we first propose a compact SCA algorithm in
Section 3.1 and then develop optimization techniques in-
spired by the idea of grouping to avoid the local optimum
issue in Section 3.2.

3.1. Compact Sine Cosine Algorithm (CSCA). *e pseudo-
code of our compact SCA algorithm denoted by CSCA is
shown in Algorithm 1. We initially set the dimension as d,
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the population size asNp, and the upper and lower bounds
as ub and lb. *e vectors μ and σ of PV are initialized to 0
and 10. *e variable best is set as ub, which is used to store
the global optimum, and Fmin is set to infinity, which is used
to store the fitness value corresponding to the global opti-
mum (Line 1–4). *en, we iteratively use equation (8) to
generate a random solution ranging from -1 to 1 and use
equation (9) to control the generated solution in the decision
space (Line 6).*e solution is updated according to equation
(1) (Line 7). *e variables winner and loser are set as a
random solution and updated solution. *e values of the
objective function corresponding to the two solutions are
compared, and winner is set as the better solution (Line 8).
After that, for the solution, we first update PV according to
equations(5)and(6) (Line 10). *e variable fitwinner repre-
sents the objective function value corresponding to winner.
If fitwinner is less than the given threshold, the best and Fmin
values will be updated to winner and fitwinner, respectively
(Line 11–13). Finally, fitwinner and Fmin are compared to
update the global optimum.

x1 �
x

2
(ub − lb) + 1

2
(ub + lb). (9)

3.2. Compact Sine Cosine Algorithm with Multigroup and
Multistrategy (MCSCA). *e SCA algorithm can generate a
set of values per iteration. After adding the idea of compact,
the initialized randomly generated value is no longer an
individual in the population, but a set of vectors used for
compact. In this case, it is easy to fall into the local optimum.
*erefore, the idea of grouping is added. Grouping is a
common idea in optimization algorithms. After adding
group ideas, a set of values can be generated per iteration,
which increases the diversity of the population and jumps
out of the local optimal. So, the searchability and conver-
gence speed are improved, and the solution is found faster
(Algorithm 1).

*e communication strategy between groups adopts the
idea of differential evolution. *e differential evolution al-
gorithm is a random parallel optimization algorithm based
on population evolution and is a simple and efficient random
global optimization method [57]. *is article uses the fol-
lowing differential evolution formula and improved differ-
ential evolution formula:

DE/best/2: x � xbest + F xr1 − xr2( ) + F xr3 − xr4( ), (10)

DE/current − to − rand/1: x � xcurrent + F xcurrent − xr1( )
+ F xr2 − xr3( ),

(11)

DE/best − to − rand/1: x � xbest + F xbest − xr1( )
+ F xr2 − xr3( ), (12)

DE/best − to − current/1: x � xbest + F xbest − xcurrent( )
+ F xr1 − xr2( ),

(13)
where F stands for mutation factor, generally taking the
value 0.5, and xr1, xr2, xr3, and xr4 represent random in-
dividuals in the population. xbest is the global optimal in-
dividual and xcurrent represents the current individual.

*e original differential evolution strategy is to update
the individuals in the population according to the above
formula. *is algorithm groups the population, and x in the
corresponding formula also changes from the individual to
the optimal of a group. For example, xr originally represents
a random individual in the population, which represents the
optimal individual in a random group in this algorithm.
Four formulas are used for communication between groups,
among which equations (11)–(13) are improved on common
formulas. DE/current-to-rand/1 represents updating the
current solution with a random solution, DE/best-to-rand/1
represents updating the global optimum with a random
solution, and DE/best-to-current/1 represents updating the
global optimumwith the current solution. Using the random
solution and the current solution to influence the global
optimum can speed up the convergence speed, and updating
the current solution can increase the randomness of the
solution.

*e pseudocode of our Compact Sine Cosine Algorithm
with Multigroup and Multistrategy denoted by MCSCA is
shown in Algorithm 2.We initially set the variable globalbest
to represent the global optimum, set the variable globalfmin
to represent the fitness value corresponding to the global
optimum, set the variable g to represent the number of
groups, set G[i] · best to store the best in the group, and set
G[i] · Fmin to store the fitness value corresponding to
G[i] · best(Line 1–3). Dimension, population size, upper,
lower, and vectors of PV are consistent with those set by
CSCA. *en, we iteratively use equations (8) and (9) to
generate a random solution in the decision space and update
this solution according to equation (1) (Line 6–7). winner
and loser are set as this random solution and updated so-
lution. *e values of the objective function corresponding to
the two solutions are compared, and winner is set as the
better solution. fitwinner represents the objective function
value corresponding to the winner, and we update PV
according to equations (5) and (6) (Line 9).

After that, the optimum in the group and the corre-
sponding fitness value are updated by comparing fitwinner
with G[i] · Fmin. *e global optimum is updated by
communication strategy between groups. *e specific in-
tergroup communication strategy is to cycle the number of
groups, and the following four strategies are executed with
equal probability.

Strategy 1 compared the fitness value of the current
group and the global optimum to determine whether to
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replace it. If there is no need to replace, update the global
optimum according to equation (10). Strategy 2 compares
the optimal value of the current group and the optimal value
of the random group. If the fitness value of the random
group is better, the best value and fitness value of the current
group are replaced with the best value and fitness value of
this random group. Otherwise, the random group is updated
according to equation (11). Strategy 3 and Strategy 4 update
the global optimum according to equations (12) and (13),
respectively. After executing the intergroup strategy, use the
sorting statement to find the worst and the best of optimal
individuals of all groups and update the worst to the best
(Algorithm 2).

4. Experiments

We conduct extensive empirical studies to evaluate the ef-
ficiency and effectiveness of our proposed algorithms for the
dispatching system of public transit vehicles. In specific, we
evaluate the following algorithms:

(1) SCA: the algorithm in [1].

(2) MMSCA: the algorithm in [24].

(3) CSCA: the approach discussed in Section 3.1

(4) MCSCA: the approach discussed in Section 3.2

All algorithms are implemented in MATLAB2018a. All
experiments are conducted on a machine with an Intel (R)
Core (TM) 2.60GHz CPU and 12GB memory running 64-
bit Windows 10. We evaluate the performance of all algo-
rithms on the CEC2013 benchmark functions as follows:

(1) f1 − f5 are unimodal benchmark functions

(2) f6 − f20 are basic multimodal functions

(3) f21 − f28 are composite functions

*ere are four key parameters in the intergroup com-
munication strategy of the MCSCA algorithm, that is, the
mutation factor corresponding to the four formulas. *e
value of the mutation factor will affect the convergence of the
algorithm. If the value of the mutation factor is too small, it
will easily fall into the local optimum, and if the value of the
mutation factor is too large, the algorithm is difficult to
converge. So, Taguchi’s method [58] is used to obtain a
reasonable combination of the four mutation factors. Tagu-
chi’s method detects part of the possible combination of
factors, but not all combinations. *is method uses the
smallest number of trials to detect the best combination. *e
value of F ranges from 0 to 2. So, the level settings of the four
factors are 0.5, 1, and 1.5. A full-factorial analysis needs
34 � 81 experiments. Taguchi’s method adopts the orthogonal
arrays. *erefore, an orthogonal array L9, (34) that contains
only 9 experiments is adopted in our experiment. We con-
ducted ten tests on CEC2013 to find the average value. When
the mutation factors are all 0.5, the effect is the best.

4.1. Comparing CSCA and MCSCA with SCA and MMSCA.
We compare our proposed algorithms, CSCA and MCSCA,
with the existing algorithms, SCA and MMSCA. Here, we

selected 15 figures with obvious optimization effects to show
in Figure 1. Table 1 presents the results in the 28 CEC2013
benchmark functions. Generally, MCSCA outperforms
CSCA; the only difference between these two algorithms is
that MCSCA uses the proposed Multigroup and Multi-
strategy. *anks to the compact technique, the performance
of CSCA is much better than the performance of SCA in
most functions.

As shown in Table 1, compared with the SCA algorithm,
the MCSCA achieves better results in 16 benchmark
functions. Compared with MMSCA, the proposed MCSCA
algorithm performs better on 17 benchmark test functions.
Compared with CSCA, the MCSCA algorithm is better in all
benchmark functions. Among the unimodal benchmark
functions, our MCSCA approach over f1, f2, and f5 can
achieve the best accuracy compared to that of SCA and
MMSCA algorithms. From Figure 1, we can see that the
convergence speed in our MCSCA algorithm increases
significantly. Among the eight composite functions, for f26
and f28, the MMSCA algorithm is better optimized. For the
remaining six composite functions, the MCSCA algorithm is
better optimized. *e reason for the significant optimization
effect is the intergroup communication strategy of MCSCA,
which uses the idea of differential evolution.*e basic idea of
the communication strategy between groups is to use the
difference between the two group optimal values to affect the
current group optimal value or the global optimal value. It
increases the randomness of the solution. After intergroup
communication is complete, the worst individual in all
groups is found by a ranking statement and replaced with the
global optimum. *is method speeds up convergence.

4.2. Comparison with the Existing Compact Methods. To
further verify the effectiveness of the algorithm, this paper
also compares it with three other compact algorithms, in-
cluding CBA, PCABC, and CPSO. *e number of iterations
is one thousand. Each algorithm is tested 30 times for the
average. *e experimental results are shown in Table 2.

It can be seen that the MCSCA algorithm has better
solution accuracy compared to CBA, CPSO, and PCABC,
except for f1. CBA and CPSO approach only add compact
ideas to the original SCA algorithm, which saves memory
but is easy to fall into a local optimum and converge ahead of
time. *e PCABC, like the MCSCA algorithm, adds
grouping ideas to the compact algorithm.

But the intergroup communication strategy of the
MCSCA algorithm uses the idea of differential evolution and
multiple strategies. It updates the group optimum to in-
crease the diversity of population solutions and updates the
global optimum to maintain the strong local optimization
ability of the original algorithm and avoid the instability of
the algorithm caused by the introduction of the rand
strategy. *us, the MCSCA algorithm has a more pro-
nounced optimization effect.

According to the comparison results of the two phases of
experiments, the MCSCA algorithm shows strong com-
petitiveness compared with other algorithms of the same
type. To further study the feasibility and effectiveness of this
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Figure 1: Continued.
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Figure 1: Convergence plots for optimization in the CEC2013 benchmark functions. (a) f1, (b) f2, (c) f5, (d) f8, (e) f9, (f ) f10, (g) f14, (h) f15,
(i) f16, (j) f19, (k) f22, (l) f23, (m) f24, (n) f25, and (o) f27.

Input: Parameters d, Np, ub, and lb
Output: Global optimum best and its fitness value Fmin
(1) for i� 1:d do

(2) initialize µ� 0, σ � λ� 10;
(3) initialize best� ub, Fmin� inf ;
(4) end for
(5) while t<Max Generation do

(6) Get x1 from PV via equations (8), (9);
(7) Update x1 to get x2 via equation (1);
(8) [winner, loser] � compete (x1 ,x2 );
(9) for i� 1:d do

(10) Update PV via equations (5), (6);
(11) if fitwinner < Fmin then

(12) best� winner; Fmin� fitwinner ;
(13) end if

(14) end for
(15) end while

ALGORITHM 1: CSCA.
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algorithm in practical applications, this paper applies the
algorithm to the dispatching system of public transit
vehicles.

4.3. Comparing MCSCA with DE and DE Variants. *e in-
tergroup communication strategy of the proposed algorithm
uses a differential evolution mechanism. So, in order to fully
demonstrate the effectiveness of the proposed method, this
paper also compares the proposed algorithm with DE and
DE variants, including JADE, SHADE, and LSHADE
[59–61]. *e test results are shown in Table 3. JADE algo-
rithm incorporates parameter adaptation and greedy com-
pilation strategies in the traditional DE algorithm. SHADE
uses a historical memory of recently successful parameter
sets based on JADE. LSHADE linearly reduces the pop-
ulation size based on SHADE.

According to the data in Table 3, compared with the
DE algorithm and improved DE algorithms, the MCSCA
algorithm has better results than these algorithms in 13
functions. But the effect on other benchmark functions is
not the best. Compared with the original DE algorithm,
the MCSCA algorithm is only unsatisfactory in the effects
of f17. *e main reason for this effect is that the MCSCA
algorithm divides the population into groups and adopts
a variety of intragroup communication strategies. Dif-
ferent communication strategies focus on different goals.
*is method can accelerate the convergence speed

without falling into the local optimum while reducing
memory.

5. MCSCA Algorithm on the Dispatching
System of Public Transit Vehicles

Public transportation is an important part of urban
transportation. Good bus dispatching is of great signifi-
cance for improving the urban transportation environ-
ment, improving the travel conditions of citizens, and
improving the economic and social benefits of bus com-
panies. Optimal bus dispatching is a rhythmic and repet-
itive driving plan. It organizes a large number of vehicles on
a prescribed route and is made according to the number,
direction, and time of passenger flow after studying the
rules of passenger flow. It is a complex nonlinear dynamic
optimization problem.

Before describing the optimal scheduling of buses, the
following assumptions need to be made:

(1) *e application is aimed at the dispatch of public
transportation vehicles on a certain route in the
urban public transportation system

(2) *e model is built considering only the one-way case
of this route

(3) *e buses of this route are of the same vehicle type

(4) When each bus of this route passes through various
stations, there are no passengers left

Input: Parameters d, Np, ub , lb, and g
Output: Global optimum globalbest and its fitness value globalfmin

(1) Set the number of groups g, each group is Gi;
(2) initialize G[i] · PV , G[i] · best and G[i] · Fmin of each group;
(3) Initialize globalbest�G[1] · best, globalfmin�G[1] · Fmin;
(4) while t<MaxGerneration do

(5) for i� 1:g do
(6) Get x1 , x2 via equations (8). (9) and (1);
(7) [winner, loser, fitwinner] � compete (x1 ,x2 );
(8) for i� 1:d do

(9) Update G[i] · PV via equations (5), (6);
(10) end for

(11) if fitwinner <G[i] · Fmin then
(12) G[i] · best�winner; G[i] · Fmin� fitwinner;
(13) end if
(14) Update globalbest and globalfmin;
(15) if rand<0.25 then
(16) Execute Strategy 1;
(17) else if rand<0.5 then
(18) Execute Strategy 2;
(19) else if rand<0.75 then
(20) Execute Strategy 3;
(21) else
(22) Execute Strategy 4;
(23) end if
(24) end for

(25) Change the worst individual to the best individual by the sorting statement;
(26) end while

ALGORITHM 2: MCSCA.
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(5) In the same time period, two adjacent buses have the
same time interval

(6) Passengers arriving at the station at each time period
obey even distribution

(7) *e bus has a certain running time between two
adjacent stops

(8) *e ticket price is the same throughout the journey

Under the above assumptions, the optimal dispatching
problem of a certain route is described as follows.

In a dispatching problem of public transportation, it is
known that a bus route with a total mileage of L has J stations
in total, and the operating time of vehicles in one day is
[tearly, tnight]. *e operating time can be divided into K time
periods. *e departure interval of the k-th time period is Δtk.
*e bus models of this route are the same and arrive at the
station on time. *e bus fare for each passenger is n. *e
problem needs to consider both the operating profit of the bus
company and the service level of the bus company (the length
of waiting time for passengers). According to the passenger
flow and operating conditions of each station in a day, it
solves the vehicle operating timetable of this route, that is, the
departure time interval of each period of operating time.

*e purpose of the optimal bus dispatching system is to
balance the interests of both the bus company and the
passengers, from the perspective of the bus company and the
passengers. From the perspective of the bus company, in
order to ensure the lowest operating cost of the bus com-
pany, it is necessary to control the number of departures of
the bus company. From the perspective of the passengers, it
is necessary to consider that the long waiting time of the
passengers will make the passengers impatient. *erefore,
the following objective function is established:

F Δtk( ) � αC1L∑k
k�1

Tk
Δtk

+ βC2 ∑k
k�1
∑J
j�1
mk

ρkjΔt2k
2

 . (14)

*e objective function can be written as

F Δtk( ) � αf1 Δtk( ) + βf2 Δtk( ), (15)

f1 Δtk( ) � C1L∑k
k�1

Tk
Δtk

, (16)

f2 Δtk( ) � C2 ∑k
k�1
∑J
j�1
mk

ρkjΔt2k
2

 , (17)

where α is the weighting coefficient of the consumption of
the bus company, β is the weighting coefficient of the
consumption of the passengers, f1(Δtk) represents the
objective function cost of the bus company, and f2(Δtk)
represents the objective function of passenger loss. In
equation (16), L is the total kilometers of the route, K is the
number of time period, k is the time period, Tk represents
the time length of the period, Δtk is the departure interval of
the k period, and C1 is the cost of consumption per bus per
kilometer. In equation (17), J is the number of stations, j is
the station, and C2 is the cost of loss per passenger waiting
for a unit of time.mk is the total number of departures in the
k-th period and it is equal to the ratio of the length of the
period to the departure interval. ρkj is the passenger arrival
rate at the j-th station in the k-th period, and it is equal to the
ratio of the number of passengers on the j-th station in the
k-th period to the length of time.

Table 1: Performance evaluation for CSCA, MCSCA, SCA, and
MMSCA over CEC2013.

Function MCSCA MMSCA SCA CSCA

f1 1.0012e+ 04 1.1018e + 04 1.5563e + 04
1.1834e
+ 05

f2 1.5879e+ 08 1.7454e + 08 2.4311e + 08
2.1502e
+ 09

f3 8.9088e + 12 5.9098e + 10 5.3981e+ 10
1.2261e
+ 17

f4 4.6156e + 04 4.6370e + 04 4.5172e+ 04
2.7359e
+ 05

f5 1.8310e+ 03 2.0867e + 03 2.1676e + 03
4.1026e
+ 04

f6 278.9563 15.6414 206.0107
2.5995e
+ 04

f7 320.5652 − 605.5122 − 533.9551 1.3614e
+ 06

f8 − 679.0443 − 679.0068 − 678.9740 − 678.8082
f9 − 560.8198 − 560.1837 − 558.7135 − 554.2032
f10 1.2036e+ 03 1.2840e + 03 1.5836e + 03

1.5415e
+ 04

f11 90.0472 − 10.3529 12.7879 928.8658

f12 227.4888 85.8620 106.4320
1.3068e
+ 03

f13 321.5240 193.1019 196.4991
1.4176e
+ 03

f14 5.9463e+ 03 7.2369e + 03 7.2578e + 03
9.1906e
+ 03

f15 6.8223e+ 03 7.5356e + 03 7.9090e + 03
9.3590e
+ 03

f16 201.7178 202.8841 202.9772 204.9818

f17 944.1183 819.8032 876.3162
3.7177e
+ 03

f18 1.0708e + 03 935.6093 949.7953
4.2394e
+ 03

f19 3.6962e+ 03 7.9335e + 03 2.0738e + 04
3.1437e
+ 06

f20 614.7672 614.4340 614.3648 615

f21 2.1325e+ 03 2.6757e + 03 2.7754e + 03
9.3564e
+ 03

f22 7.6664e+ 03 8.5483e + 03 8.7796e + 03
1.1109e
+ 04

f23 8.3404e+ 03 9.0079e + 03 8.9873e + 03
1.0256e
+ 04

f24 1.3035e+ 03 1.3196e + 03 1.3216e + 03
1.3885e
+ 03

f25 1.3992e+ 03 1.4321e + 03 1.4338e + 03
1.4979e
+ 03

f26 1.5405e + 03 1.4144e+ 03 1.4243e + 03
1.6308e
+ 03

f27 2.6168e+ 03 2.7104e + 03 2.7086e + 03
2.8722e
+ 03

f28 5.2591e + 03 4.2623e+ 03 4.4768e + 03
1.3878e
+ 04
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Besides, there is a hidden constraint. If the bus company
wants to achieve a profitable goal, it must make the total fare
collected by the bus company greater than the bus com-
pany’s minimum consumption cost. *at is, the following
formula must be satisfied:

n ×
∑Kk�1∑Jj�1 ukj∑Kk�1 Tk/Δtk)>C1L,( (18)

where ukj is the passenger arrival rate at the j-th station in
the k-th period.

*e code part of the constraint condition adopts the
penalty function method. *e penalty function is a com-
monly used method to deal with constraint conditions. It
transforms constrained optimization problems into un-
constrained optimization problems. If the fare collected by
the bus company is less than its minimum consumption
cost, the departure interval is increased, so that the con-
sumption of the bus company is reduced. *e departure
interval is inminutes. If the condition is not met in one cycle,
the time interval of a time period is randomly selected again
and incremented by 1.

Assuming that there are 10 stations on the bus route, the
total kilometers of the route is 8 km and the operating hours
of the bus company are from 6 am to 9 pm every day. *e
variable x represents the departure interval. *e passenger
flow of each station in each time period is shown in Table 4.

*e other parameters of the MCSCA algorithm are set as
follows: C1 �1, C2 � 1, n� 1, and the max of iteration equals

200. *is application performs 10 optimization tests for the
settings of 3 different parameters α and β and compares with
SCA and MMSCA algorithms.

Situation 1. Let α� 0.2, β� 0.8, the operation result is
min(F(Δtk)) � 3037.2, Δtk � (2, 3, 4, 2, 3), and the unit is the
minute. We obtained the optimized results’ comparison as
shown in Table 5 and curves of the objective function value
as shown in Figure 2.

Situation 2. Let α� 0.5, β� 0.5, the operation result is
min(F(Δtk)) � 3506.75, Δtk � (2, 2, 3, 2, 4), and the unit is
the minute. We obtained the optimized results’ comparison
as shown in Table 6 and curves of the objective function
value as shown in Figure 3.

Situation 3. Let α� 0.8, β� 0.2, the operation result is
min(F(Δtk)) � 2743.4033, Δtk � (3, 4, 6, 3, 7), and the unit is
the minute. We obtained the optimized results’ comparison
as shown in Table 7 and curves of the objective function
value as shown in Figure 4.

*e simulation result shows that, in the morning peak
and evening peak, the passenger flow is large, and the
departure frequency is higher, and when the passenger
flow is low, the departure frequency is also reduced. *e
optimization result basically conforms to the actual
situation. In actual application, the value of α and β
depends on whether the decision-maker is more inclined
to benefit the bus company or the consumer. *e purpose

Table 2: Performance evaluation for MCSCA, CBA, PCABC, and CPSO over CEC2013.

Function MCSCA CBA PCABC CPSO

f1 1.0012e+ 04 5.8592e+ 04 5.4265e+ 04 8.2174e+ 03

f2 1.5879e+ 08 4.6005e+ 08 7.1326e+ 08 3.4631e+ 08
f3 8.9088e+ 12 3.4373e+ 21 2.7048e+ 15 1.9944e+ 15
f4 4.6156e+ 04 6.8506e+ 04 1.0192e+ 05 1.0063e+ 05
f5 1.8310e+ 03 5.4879e+ 03 1.5106e+ 04 1.5106e+ 04
f6 278.9563 1.8592e+ 04 7.4003e+ 03 5.5797e+ 03
f7 320.5652 2.8640e+ 04 3.5116e+ 04 576.36333
f8 − 679.0443 − 678.7539 − 678.9390 − 678.7612
f9 − 560.8198 − 542.1405 − 557.5668 − 556.9122
f10 1.2036e+ 03 1.1691e+ 04 6.9226e+ 03 1.7629e+ 03
f11 90.0472 598.9505 468.3890 325.8092
f12 227.4888 675.6116 600.3618 402.0084
f13 321.5240 938.8861 702.9930 496.6388
f14 5.9463e+ 03 6.6365e+ 03 8.0827e+ 03 8.3116e+ 03
f15 6.8223e+ 03 6.1357e+ 03 8.2723e+ 03 9.0474e+ 03
f16 201.7178 203.1301 203.3737 204.0167
f17 944.1183 1.2152e+ 03 1.3819e+ 03 1.1049e+ 03
f18 1.0708e+ 03 1.2951e+ 03 1.4863e+ 03 1.2152e+ 03
f19 3.6962e+ 03 7.5477e+ 05 1.1702e+ 06 1.2111e+ 06
f20 614.7672 615 614.9994 615
f21 2.1325e+ 03 3.2044e+ 03 3.4450e+ 03 2.7068e+ 03
f22 7.6664e+ 03 1.1060e+ 04 9.5938e+ 03 1.0378e+ 03
f23 8.3404e+ 03 9.6684e+ 03 9.6065e+ 03 1.0629e+ 03
f24 1.3035e+ 03 1.8042e+ 03 1.3712e+ 03 1.3198e+ 03
f25 1.3992e+ 03 1.5600e+ 03 1.4826e+ 03 1.4109e+ 03
f26 1.5405e+ 03 2.3145e+ 03 1.4961e+ 03 1.5641e+ 03
f27 2.6168e+ 03 4.3918e+ 03 2.8685e+ 03 2.7369e+ 03
f28 5.2591e+ 03 1.0705e+ 04 7.6122e+ 04 7.9081e+ 04
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of designing three sets of different weight values is to
prove that MCSCA has a better optimization effect in any
case.

According to Tables 5–7, regardless of the values of α and
β, the average value of the convergence accuracy of the
MCSCA algorithm on this application is significantly better
than the SCA algorithm and the MMSCA algorithm. And

the difference between the best value and the worst value is
significantly smaller than the other two algorithms. It in-
dicates that the MCSCA is more stable. According to
Figures 2–4, not only has theMCSCA algorithm a significant
advantage in convergence accuracy but also the convergence
speed is significantly better than the SCA algorithm and the
MMSCA algorithm.

Table 3: Performance evaluation for MCSCA, DE, JADE, SHADE, and LSHADE over CEC2013.

Function MCSCA DE JADE SHADE LSHADE

f1 1.0012e+ 04 1.8334e + 04 1.6936e + 04 1.3601e + 04 1.1211e + 04
f2 1.5879e + 08 2.2830e + 08 2.4714e + 08 1.8775e + 08 1.5016e+ 08
f3 8.9088e + 12 2.0809e + 12 2.0411e + 11 1.5216e+ 11 9.3578e + 11
f4 4.6156e+ 04 5.3020e + 04 5.5735e + 04 4.6472e + 04 5.1199e + 04
f5 1.8310e + 03 3.8654e + 03 3.5120e + 03 2.7086e + 03 1.7677e+ 03

f6 278.9563 1.4409e + 03 1.0112e + 03 1.2955e + 03 351.1929
f7 320.5652 2.2144e + 03 581.7276 204.7736 235.5335
f8 − 679.0443 − 678.9891 − 679.0055 − 679.0331 − 679.0418
f9 − 560.8198 − 560.0210 − 559.3174 − 561.1851 − 561.0092
f10 1.2036e+ 03 2.1623e + 03 2.1844e + 03 1.5209e + 03 1.8154e + 03
f11 90.0472 120.7334 114.3473 73.1779 80.3474
f12 227.4888 246.6691 247.9068 182.5079 173.5435
f13 321.5240 334.2122 292.0396 283.9232 330.5799
f14 5.9463e+ 03 7.1437e + 03 7.2404e + 03 6.5639e + 03 6.5771e + 03
f15 6.8223e+ 03 7.3093e + 03 7.5481e + 03 7.4742e + 03 7.6433e + 03
f16 201.7178 202.6536 202.5590 202.4048 202.3882
f17 944.1183 880.5067 828.7338 893.9824 908.6225
f18 1.0708e + 03 1.0352e + 03 1.0004e + 03 1.0181e + 03 986.8915
f19 3.6962e+ 03 7.3193e + 03 9.0551e + 03 6.2207e + 03 6.2646e + 03
f20 614.7672 614.8392 614.74552 614.4299 614.6522
f21 2.1325e+ 03 2.6780e + 03 2.5064e + 03 2.3300e + 03 2.2905e + 03
f22 7.6664e+ 03 8.5134e + 03 8.8210e + 03 8.1707e + 03 8.5568e + 03
f23 8.3404e+ 03 9.1687e + 03 9.0751e + 03 8.9719e + 03 8.9474e + 03
f24 1.3035e + 03 1.3004e + 03 1.3059e + 03 1.3007e + 03 1.2964e+ 03

f25 1.3992e + 03 1.4012e + 03 1.4021e + 03 1.3996e + 03 1.3985e+ 03
f26 1.5405e + 03 1.5791e + 03 1.5341e + 03 1.5403e + 03 1.5075e+ 03

f27 2.6168e + 03 2.6780e + 03 2.6312e + 03 2.6169e + 03 2.6157e+ 03
f28 5.2591e+ 03 8.5134e + 03 5.3486e + 03 5.5304e + 03 5.3490e + 03

Table 4: Number of passengers at various time sections and various stations.

Time S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

6 : 00–8:30 506 168 417 209 26 23 20 19 10 2
8 : 30–12 : 00 330 165 187 174 67 66 141 140 40 12
12 : 00–16 : 00 127 64 60 58 116 110 158 132 20 6
16 : 00–19 : 00 344 172 254 224 177 178 162 150 70 24
19 : 00–21 : 00 60 32 45 43 17 14 45 42 15 3

Table 5: Optimized results’ comparison in α� 0.2 and β� 0.8.

Algorithm Average value Best value Worst value

MCSCA 3155.6667 2902.8 3408.4
SCA 3624.5055 2902.8 4198.8
MMSCA 3216.8 2862.8 3575.2
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Figure 3: Curves of objective function F value in α� 0.5, β� 0.5.
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Figure 2: Curves of objective function F value in α� 0.2, β� 0.8.

Table 6: Optimized results’ comparison in α� 0.2 and β� 0.8.

Algorithm Average value Best value Worst value

MCSCA 3562.9946 3474 3671.4464
SCA 3678.7678 3474 3987
MMSCA 3601.9887 3525 3662.5

Table 7: Optimized results’ comparison in α� 0.2 and β� 0.8.

Algorithm Average value Best value Worst value

MCSCA 3562.9946 3474 3671.4464
SCA 3678.7678 3474 3987
MMSCA 3601.9887 3525 3662.5
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6. Conclusion

In this paper, we developed a compact-based SCA algorithm,
CSCA, which can reduce the number of optimized variables
and the required running memory. To improve the per-
formance of our approach, we further proposed the MCSCA
algorithm, which combines grouping strategy to speed up
the convergence speed. Extensive empirical studies on
benchmark CEC2013 demonstrate the effectiveness of our
approach and the efficiency of our techniques. Furthermore,
applying the MCSCA algorithm to the dispatching system of
public transit vehicles can get a minimum cost value than
that of SCA and MMSCA algorithms, which further testify
the effectiveness and superiority of the proposed MCSCA
algorithm. A possible future work is considered to continue
the improvement of the SCA algorithm and apply it to more
practical engineering problems.
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