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Fig. 1. We propose a compact, diffraction-based snapshot hyperspectral imaging method with a novel diffractive optical element attached to a conventional,

bare image sensor. Our method replaces the common optical elements in hyperspectral imaging (prism, coded mask, relay and imaging lenses) with a single

optical element. Our single DOE-based camera is coupled with a data-driven spectral reconstruction method that can restore faithful spectral information from

spectrally-varying point spread functions. (a) Our fabricated DOE (inset) and a DSLR camera, installed with the DOE for spectral imaging. (b) Reconstructed

hyperspectral image from real input. (c) Spectrally-varying PSFs measured per wavelength. (d) Corresponding captured spectral channels. (e) Spectral plots of

two patches from the captured ColorChecker, compared to the ground truth.

Traditional snapshot hyperspectral imaging systems include various optical

elements: a dispersive optical element (prism), a coded aperture, several

relay lenses, and an imaging lens, resulting in an impractically large form

factor. We seek an alternative, minimal form factor of snapshot spectral

imaging based on recent advances in diffractive optical technology. We there-

upon present a compact, diffraction-based snapshot hyperspectral imaging

method, using only a novel diffractive optical element (DOE) in front of a

conventional, bare image sensor. Our diffractive imaging method replaces

the common optical elements in hyperspectral imaging with a single optical

element. To this end, we tackle two main challenges: First, the traditional

diffractive lenses are not suitable for color imaging under incoherent illu-

mination due to severe chromatic aberration because the size of the point

spread function (PSF) changes depending on the wavelength. By leveraging

this wavelength-dependent property alternatively for hyperspectral imag-

ing, we introduce a novel DOE design that generates an anisotropic shape

of the spectrally-varying PSF. The PSF size remains virtually unchanged,

but instead the PSF shape rotates as the wavelength of light changes. Sec-

ond, since there is no dispersive element and no coded aperture mask, the

ill-posedness of spectral reconstruction increases significantly. Thus, we pro-

pose an end-to-end network solution based on the unrolled architecture of
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an optimization procedure with a spatial-spectral prior, specifically designed

for deconvolution-based spectral reconstruction. Finally, we demonstrate

hyperspectral imaging with a fabricated DOE attached to a conventional

DSLR sensor. Results show that our method compares well with other state-

of-the-art hyperspectral imaging methods in terms of spectral accuracy and

spatial resolution, while our compact, diffraction-based spectral imaging

method uses only a single optical element on a bare image sensor.

CCS Concepts: · Computing methodologies → Hyperspectral imag-

ing.
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1 INTRODUCTION

Hyperspectral imaging has been utilized in various sensing applica-

tions, such as biomedical inspection, material classification, material

appearance acquisition, digital heritage preservation, forensic sci-

ence, etc. [Kim and Rushmeier 2011; Kim et al. 2012b, 2014; Nam

and Kim 2014]. Based on geometrical optics, various hyperspectral

imaging systems have been developed for snapshot imaging of dy-

namic objects and include various optical elements: a dispersive

optical element (prism or diffraction grating), a coded aperture mask,

several relay lenses, and an objective imaging lens. The dimensions

of a typical compressive hyperspectral imager are larger than those

of a conventional camera; for instance, its length is greater than a

meter [Kim et al. 2012a; Lee and Kim 2014; Lin et al. 2014]. Actual

imaging applications are limited to laboratory environments.
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To overcome these limitations of mobility in existing snapshot hy-

perspectral systems, the primary objective of this work is to propose

a novel paradigm for diffraction-based hyperspectral imaging using

a single optical element. Based on recent advances in diffractive

optical technology, we propose a diffraction-based snapshot hyper-

spectral imaging method that replaces the common optical elements

in hyperspectral imaging systems with a thin diffractive optical

element (DOE), which can be attached directly to a conventional,

bare image sensor. Figure 1(a) shows our DOE. It thus circumvents

the need for many optical elements and has a minimal impact on the

form factor, allowing casual users to capture hyperspectral images.

Using a single diffractive imaging lens to capture a hyperspectral

image presents two main technical challenges: First, the tradi-

tional diffractive lenses are not suitable for full-spectrum imaging

under incoherent illumination due to severe chromatic aberration,

which is caused by the physical phenomenon where the size of

an isotropic point spread function (PSF) changes depending on

the wavelength [Heide et al. 2016; Peng et al. 2016; Sitzmann et al.

2018]. Second, since there is no refractive optical element for disper-

sion and no coded aperture mask, spectral cues via a DOE spread

widely, requiring deconvolution of a large kernel for spectral re-

construction. Therefore, the ill-posedness of spectral reconstruction

increases more significantly in the diffractive imaging setup than in

the conventional compressive spectral imaging setup.

To resolve these challenges, we make the following contribu-

tions: First, to minimize the form factor of spectral imaging optics,

we introduce a novel design of a diffractive imaging lens, which com-

bines two main functions of dispersion and imaging for hyperspec-

tral imaging into a single diffractive optical element. We leverage

the wavelength dependency of Fresnel diffraction so that our DOE

design leads to an anisotropic shape of the spectrally-varying point

spread function. Unlike the traditional Fresnel lens, the PSF size of

our DOE remains virtually unchanged, but instead the PSF shape

rotates as the wavelength of light changes. The spectrally-varying

diffracted rotation feature of the anisotropic PSF is used as a critical

cue for spectral reconstruction. Second, we mitigate the increased

ill-posedness of spectral reconstruction caused by the absence of

the common optical elements by devising an end-to-end reconstruc-

tion network. We propose an end-to-end network solution based

on the unrolled architecture of an optimization procedure with a

spatial-spectral prior, specifically designed for deconvolution-based

spectral reconstruction. It reconstructs spectral information faith-

fully from diffracted rotation, instead of applying the traditional

optimization method with a handcrafted prior.

In summary, our three novel contributions are as follows:

• We introduce a diffractive imaging lens that leads to an an-

isotropic shape of the spectrally-varying PSF and we thereby

achieve imaging and dispersion with a single DOE.

• We mitigate the ill-posedness of spectral reconstruction in

our diffractive imaging setup by devising an end-to-end re-

construction network based on the unrolled architecture of

an optimization procedure with a spatial-spectral prior.

• On the basis of our DOE, we propose a compact, diffraction-

based hyperspectral imaging system that consists of a single

optical element on a bare image sensor.

2 RELATED WORK

Hyperspectral imaging. Hyperspectral imaging has been researched

extensively to enable physically meaningful imaging beyond human

vision in the last decade [Kim 2013]. State-of-the-art methods can

be grouped into three different types: spectral scanning, computed

tomography imaging, and snapshot compressive imaging. Based

on a dispersive optical element, such as a prism or a diffraction

grating, scanning-based approaches can capture each wavelength

of light in isolation through a slit: so-called whiskbroom or pushb-

room scanners [Brusco et al. 2006; Porter and Enmark 1987]. While

scanning yields high spatial and spectral resolution, the target sub-

jects are limited to static objects or remote scenes. In contrast, our

method captures a snapshot with continuous dispersion using a sin-

gle diffractive optical element, enabling snapshot spectral imaging.

Computed tomography imaging spectrometry (CTIS) [Habel et al.

2012; Johnson et al. 2007; Okamoto et al. 1993] was introduced tomit-

igate the limitations of scanning methods. It employs a diffraction

grating with imaging and relay lenses. The grating splits the colli-

mated incident light into diffraction patterns in different directions

while sacrificing the spatial resolution for computed tomography.

Coded aperture snapshot spectral imaging (CASSI) [Gehm et al.

2007; Jeon et al. 2016; Kim et al. 2012a; Wagadarikar et al. 2008]

was introduced for capturing dynamic objects. A dispersive optical

element is coupled with a coded aperture through relay lenses to en-

code spectral or spatial-spectral signatures. The compressive input

is reconstructed later. These two types of snapshot spectral imaging

both require several geometric optical elements to collimate and

disperse light (or modulate light for CASSI), making them bulky and

hard to handle in practice. Recently, Baek et al. [2017] introduced a

compact spectral imaging method to enhance mobility. However,

since the method is still based on geometrical optical elements, it

requires a prism attached in front of a DSLR camera. In contrast,

our method requires only a single diffractive imaging lens in front

of a conventional bare image sensor.

Diffractive optical elements. A diffractive optical element, such as

a diffraction grating, has been commonly used in the traditional hy-

perspectral imagers [Habel et al. 2012; Johnson et al. 2007; Okamoto

et al. 1993] or spectroradiometers owing to its high diffraction effi-

ciency. Recently, Wang and Menon [2015; 2018] introduced several

diffractive filter arrays for multi-color imaging without conven-

tional Bayer-pattern color filters. However, such a diffractive optical

element should be installed through a geometrical optical system

with an additional imaging lens whereas our method requires only

a single optical element for hyperspectral imaging.

Diffractive imaging. Traditional diffractive imaging has been de-

vised for monochromatic (coherent) light of a single wavelength, due

to chromatic aberration. Recently, diffractive RGB imaging methods

have been introduced even for incoherent illumination. Peng et

al. [2018; 2016] introduced achromatic Fresnel lenses that do not

suffer from chromatic aberration by creating an unchanged isotropic

PSF over the full visible spectra. Heide et al. [2016] also presented

diffractive RGB imaging with adjustable optics parameters, such as

focal length and zoom, via mechanical alignment of two diffractive

optics. Asif et al. [2017] introduced a lensless imaging sensor using
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diffraction through a coded aperture. A target object at a fixed dis-

tance can be captured as an RGB image of three channels. Sitzmann

et al. [2018] proposed an end-to-end optimization method of diffrac-

tive optical elements by adopting a gradient-based optimization

framework. They devise a custom achromatic Fresnel optics with

enhanced resolution. To date, for state-of-the-art diffractive imaging,

researchers have focused on RGB imaging to capture all-in-focus

images of full visible spectra with enhanced focus. To the best of our

knowledge, our work is the first diffractive hyperspectral imaging

method that only uses a single diffractive imaging lens on a bare

sensor.

Depth and wavelength dependency of PSF. The point spread func-

tion, created by a diffractive optical element, depends on both wave-

length and depth, changing its shape accordingly. By leveraging the

depth dependency instead, depth imaging and light field imaging

have been introduced, assuming that incident light is coherent with

a single wavelength in general. For instance, Greengard et al. [2006]

found that the PSF spins when depth changes and this property

enables depth imaging under monochromatic illumination. Antipa

et al. [2018; 2016] captured the light field from a snapshot captured

with diffraction. The PSF of the optical element is a caustic pattern,

which depends on depth. Tajima et al. [2017] introduced a Fresnel

zone aperture to capture a light field using the depth dependency

of the PSF even with incoherent light. These methods exploit the

depth dependency of the PSF to capture depth or the light field. In

contrast, we rely on wavelength dependency, enabling snapshot

spectral imaging of objects at various distances. We introduce a

novel diffractive imaging lens with a specific DOE design so that the

depth dependency of the PSF can be converged to a particular shape

beyond a certain depth, targeting conventional imaging scenarios.

Spectral reconstruction. Different from conventional RGB cam-

eras, snapshot spectral imagers capture compressed signals of dense

spectral samples, which need to be reconstructed by a post process.

Since hyperspectral reconstruction is a severely ill-posed problem

(inferring dense spectral information from a monochromatic, en-

coded image), several optimization approaches have been proposed

by defining a data fidelity term and specific image priors, such

as a total variation (TV) l1-norm regularization [Jeon et al. 2016;

Kim et al. 2012a; Kittle et al. 2010] or pretrained dictionary [Lin

et al. 2014]. A common characteristic of these approaches is the

tradeoff between spatial resolution and spectral accuracy in the

reconstructed results. To mitigate this tradeoff, Choi et al. [2017]

proposed a data-driven prior trained using an autoencoder network,

and Choudhury et al. [2017] exploit convolutional sparse coding as

a hyperspectral prior. They reduce the ill-posedness of the problem

by means of data-driven representations of natural hyperspectral

images. However, their reconstruction is not entirely an end-to-

end optimization solution because they trained the natural spectral

prior separately from the image reconstruction framework. In con-

trast, we introduce an entirely end-to-end reconstruction method

for capturing high-fidelity hyperspectral images. Specifically, we

designed an unrolled network architecture with a data-driven prior

that learns spatial-spectral characteristics of spectral images, en-

abling robust end-to-end hyperspectral reconstruction from the

diffracted rotation.

Fig. 2. (a) Schematic diagram of diffractive imaging via a DOE and its PSF.

(b) Our DOE design.

3 DIFFRACTION MODEL

This section covers the foundations of Fresnel diffraction for better

understanding. We describe our diffraction model for diffractive

imaging. Suppose a point light source that emits a wave field, illu-

minates a camera that consists of a diffractive lens and a bare image

sensor at sensing depth z. When imaging the wave field propagated

from the source, a point spread function pλ (x,y) of wavelength λ

represents the intensity image on the sensor.

Suppose a monochromatic incident wave field u0 at position

(x ′,y′) of the DOE coordinate system with amplitude A, phase ϕ0,

and wavelength λ passes through a diffractive optical element:

u0
(

x ′,y′
)

= A
(

x ′,y′
)

eiϕ0(x ′
,y′)
. (1)

A phase shift ϕh occurs by the DOE. See Figure 2(a). The wave field

u1 after passing through the DOE can be formulated as

u1
(

x ′,y′
)

= A
(

x ′,y′
)

ei(ϕ0(x ′
,y′)+ϕh (x ′

,y′))
. (2)

The amount of phase shift ϕh at point (x ′,y′) is determined by the

height profile of the DOE h (x ′,y′) as

ϕh
(

x ′,y′
)

=

2π

λ
∆ηλh

(

x ′,y′
)

, (3)

where ∆ηλ is the difference between the refractive indices of the

air and the substrate of the DOE per wavelength λ. When the wave

field reaches the imaging sensor, the wave field u2(x,y) on the

sensor plane at depth z from the DOE can be obtained from the field

u1 (x ′,y′) by the Fresnel diffraction law [O’Shea et al. 2003] such

that λ ≪ z:

u2 (x,y) =
eikz

iλz

∬

u1
(

x ′,y′
)

e
ik

2z

{

(x−x ′)2+(y−y′)2
}

dx ′dy′, (4)

where k = 2π/λ is the wavenumber, that is, the spatial frequency

of a wave.

Plane wave assumption. We design our optical system to be fo-

cused at infinity. In this setting, the incident light from a light

source along the optical axis can be described as a plane wave

u0 (x ′,y′) = Aeiϕ0 with constant amplitude A and constant phase

ϕ0. This alleviates the mathematical complexity of designing our

DOE. The wave field u2 incident on the sensor plane then can be

obtained from Equations (2) and (4) as

u2 (x,y) =
eikz

iλz

∬

Aei {ϕ0+ϕh (x ′
,y′)}e

ik

2z

{

(x−x ′)2+(y−y′)2
}

dx ′dy′.

(5)
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The PSF pλ (x,y) is the intensity of the squared value of the wave

field u2. Finally, given a point light, by representing the Fresnel

integral in a Fourier transform, pλ (x,y) is formulated as

pλ (x,y) ∝
�

�

�F
[

Aeiϕh (x
′
,y′)ei

π

λz
(x ′2
+y′2)

] �

�

�

2
. (6)

In Section 8.1, we analyze the behavior of the optical design for

closer objects, and describe the focal range of the camera.

4 HYPERSPECTRAL IMAGING WITH DIFFRACTED

ROTATION

Overview. Different from the traditional hyperspectral imaging

methods, our hyperspectral imaging method consists of a single op-

tical component and a conventional bare image sensor. Our diffrac-

tive optical element replaces common optical elements for hyper-

spectral imaging (a dispersive optical element, a coded aperture,

and relay lenses) with a single DOE. On the other hand, our mini-

mal, optical configuration causes demanding challenges for recon-

structing hyperspectral images from compressive input because

the ill-posedness of spectral reconstruction increases significantly

by the absence of the critical optical elements for hyperspectral

imaging: a dispersive element and a code aperture. We mitigate

the ill-posedness by introducing a novel design of the diffractive

optical element such that the point spread function by our DOE

is variant to spectral wavelength, spinning the anisotropic shape

of the spectrally-varying PSF in an unchanged size. This designed

feature becomes a critical cue for spectral reconstruction later.

4.1 Design of the Diffractive Optical Element

Dissimilar to geometric optics, wherein the focus plane exists at a

position where parallel rays converge to a point, the focus plane of a

diffractive lens exists at a depth point that gives rise to constructive

interference of the incident wave field. A traditional Fresnel lens

customizes its height profile to each radius to ensure constructive

interference occur with a specific wavelength, e.g., 550 nm. The

geometric shape of the height map is isotropic about its center of

the Fresnel lens. When a light source is incoherent with varying

wavelengths, the PSF of the Fresnel lens, shown in Figure 3, changes

as the wavelength of the light source varies.

Design insight. As the traditional Fresnel lens can focus only on a

specific wavelength, the focus blur of visible wavelengths has been

a long-lasting problem in color imaging with diffractive optics. To

achieve hyperspectral imaging with a single optical element, we uti-

lize the focus dependence of the spectrum in an alternative manner.

We devise a new DOE design especially for hyperspectral imaging

that changes the angle of the phase profile for each wavelength

about the DOE center so that the incident wave of each wavelength

focuses along a specific direction to form a spectrally-varying PSF

with an anisotropic shape, which rotates depending on its wave-

length. This designed behavior of our PSF is beneficial for solving

the severely ill-posed deconvolution problem of the 3D spectral

tensor.

Modeling a height field. Suppose that we have a sensor plane at a

focus distance f from the DOE and a light source at optical infinity,

which emits a monochromatic plane wave with a wavelength of λ.

Fig. 3. This figure compares PSFs of a conventional Fresnel lens and our

diffractive lens with different wavelengths by simulation. In the full visible

spectrum, the Fresnel lens can be focused only at a specific wavelength

while our PSF is unchanged in terms of size and shape, but spinning instead.

Note that z in Equations (5) and (6) indicates an arbitrary propaga-

tion depth, but here f means a specific focus distance chosen for the

optical system. Consider the optical phase difference of two rays;

one is a ray that passes through the DOE center along the optical

axis, arriving at the center of the sensor plane, and the other is a

ray that passes through a point on the DOE with the radial distance

r and arrives at the center of the sensor plane. See Figure 2(a).

The phase difference of the two rays is the sum of (a) the phase

differences that occur by the difference of the geometrical paths,

denoted as ∆ϕд and (b) the differences of the phase shifts that occur

by the height map of the DOE, denoted as ∆ϕh . Now ∆ϕд and ∆ϕh
are represented as

∆ϕд =
2π

λ

(

√

r2 + f 2 − f

)

, ∆ϕh =
2π

λ
∆ηλ∆h (r ) , (7)

where ∆ηλ is the difference between the refractive indices of the

substrate and the air, and ∆h(r ) ≔ h(r )−h(0) is the height difference
of the DOE at the radial distance r with respect to the height at

the center. Constructive interference between the two rays requires

that the phase difference satisfies the following equation for some

integer n:

∆ϕд + ∆ϕh = 2πn. (8)

We can then represent the height map h in terms of r , λ and f from

Equations (7) and (8) by phase wrapping at 2π :

∆h (r ) = λ∆ϕh
2π∆ηλ

=

(

2πn − ∆ϕд
)

λ

2π∆ηλ
=

nλ −
(

√

r2 + f 2 − f
)

∆ηλ
. (9)

We then bound the height map ∆h in − λ
∆ηλ

≤ ∆h ≤ 0, which

corresponds to the phase from 0 to 2π of wavelength λ by choosing

integers n for each point. n is set to constrain the height map to the

minimum range.

Anisotropic spiral design. Unlike the conventional Fresnel lens,

our DOE is designed to make each part correspond to different wave-

lengths to enable spectral reconstruction from spectrally-varying

PSF. A key idea for designing our DOE is as follows: in the polar

coordinates (r , θ ) of the DOE plane, each angular position θ cor-

responds to different wavelengths λ (θ ) so that our DOE has an

anisotropically-shaped height profile. Consider a line from the cen-

ter of the DOE to its edge. Each height profile along the line leads

to constructive interference of a wavelength of λ along the rotation

angle θ . For instance, Figure 2(b) shows our DOE design, whose

height at those different radii with different θs satisfies Equation (9)

with different wavelengths, respectively. Our angular wavelength
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matching is formed as

λ (θ ) =
{

λmin + (λmax − λmin) N
2π θ 0 ≤ θ < 2π

N

λ
(

θ − 2π
N

)

θ ≥ 2π
N

, (10)

which is a periodic function with the period 2π
N and matches linearly

onto the wavelength range of the visible spectrum from 420 nm to

660 nm in each period. The number of periodsN is called the number

of wings since it actually produces a spiral-shaped PSF withN wings.

Now we can write the entire height map ∆h (r , θ ) with this angular

wavelength matching λ (θ ) as follows:

∆h (r , θ ) =
nλ (θ ) −

(

√

r2 + f 2 − f
)

∆ηλ
, (11)

h (r , θ ) = h (0, 0) + ∆h (r , θ ) , (12)

whereh (0, 0) is set as the maximum height determined by the height

resolution of DOE fabrication. Figure 2 shows our DOE height map

designed with three wings (N = 3) and its spectrally-varying PSFs.

The spiral shape of the period is symmetrical about the center of the

120-degree rotation. We found that setting N = 3 in Equation (10)

gives the best reconstruction accuracy.

When thewavelength increases, the size of the PSF barely changes

and its shape rotates clockwise about its center. These PSFs have a

very clear spectral cue, diffracted rotation of the anisotropic shape.

Also, the size consistency and anisotropy of the PSFs are expected

to improve the accuracy of the reconstruction process. Figure 3

compares a traditional Fresnel lens and our DOE with their PSFs

with different wavelengths1. Refer to Section 7 for an evaluation in

terms of spectral reconstruction.

4.2 Spectral Image Formation

Our main objective is to capture hyperspectral images using a con-

ventional RGB image sensor with our diffractive lens under natural

incoherent illumination. Therefore, our image formation includes

the camera response function through color filters, but the quantum-

efficiency function for a monochromatic sensor can be used alter-

natively. Suppose that we want to capture a hyperspectral image

Iλ (x,y) from a captured RGB image on the sensor Jc (x,y) with a

spectrally-varying point spread functionpλ(x,y) and that the sensor
has the sensor spectral sensitivity function Ωc (λ) for each color

channel c ∈ {r ,д,b}. The captured image Jc can be represented as

Jc (x,y) =
∭

Ωc (λ) Iλ (µ,ν )pλ (x − µ,y − ν )dµdνdλ. (13)

The spectral image formation model can be simply expressed as

Jc (x,y) =
∫

Ωc (λ) (Iλ ∗ pλ) (x,y)dλ, (14)

where ∗ is defined as the convolution operator.

We can write the image formation model in a discrete vector-and-

matrix form. Let I ∈ RWHΛ×1 be the original hyperspectral image

vector and J ∈ RWH3×1 be the captured RGB image vector, where

W , H , and Λ are the width, height, and the number of wavelength

channels of a spectral image, respectively. We can represent the

1We simulate PSFs using a reference simulation tool of diffraction, LightPipes (http:
//www.okotech.com/lightpipes).

Fig. 4. Overview of our network architecture that consists of unfolded L-

time iterations as a chain of the subnetwork architecture that includes a

prior network (Figure 5). We learn parameters in an end-to-end manner.

Fig. 5. Network architecture of the prior network, based on U-net. Our

network consists of the feature encoding and the decoding parts with skip-

connections with soft-thresholding.

sensor sensitivity Ωc (λ) and the convolution by the PSF pλ (x,y)
as matrices Ω ∈ RWH3×WHΛ and P ∈ RWHΛ×WHΛ, respectively.

The measurement matrix Φ ∈ RWH3×WHΛ is the product of Ω

and P. We then represent the continuous image formation model in

Equation (14) in a discrete matrix form:

J = ΦI. (15)

5 SPECTRAL RECONSTRUCTION FROM DIFFRACTION

Our spectral reconstruction problem is to solve a combined mixture

of two subproblems: First, when capturing the input data, each spec-

tral channel is convolved with its spectrally-varying point spread

function. Therefore, a non-blind deconvolution needs to be con-

sidered to reconstruct clear spectral channels. Second, the blurred

spectral channels of the entire visible spectrum are also projected

to three color channels of the image sensor (or one channel for

a monochromatic sensor). The combination of these two inverse

problems significantly increases the ill-posedness of spectral recon-

struction. State-of-the-art spectral reconstruction methods take a

data-driven approach [Choi et al. 2017; Lin et al. 2014] that mainly

learns the prior information of natural spectral images and then

formulates an optimization problem separately to reconstruct hy-

perspectral images with a handcrafted prior. They are not fully

end-to-end solutions and also require heavy computational costs for

the optimization process. In this work, we devise a complete end-

to-end reconstruction method based on the optimization procedure

with a spatial-spectral prior to account for spectral deconvolution

with the rotating PSF.

5.1 Optimization Problem

SinceWH3 ≪WHΛ in Equation (15), our hyperspectral image re-

construction problem is a severely under-determined system. There

could be many solutions that satisfy the input measurement. To

reconstruct a hyperspectral image Î ∈ RWHΛ×1, an objective func-

tion of spectral reconstruction requires a prior of spectral images in

ACM Trans. Graph., Vol. 38, No. 4, Article 117. Publication date: July 2019.

http://www.okotech.com/lightpipes
http://www.okotech.com/lightpipes


117:6 • Jeon, Baek, Yi, Dun, Fu, Heidrich, and Kim

addition to the data term as follows:

Î = argmin
I

∥J − ΦI∥22 + R (I) , (16)

where R(·) represents an unknown prior function of spectral images.

As this regularization term is not often necessarily differentiable

in optimization, we decouple the data term and the regularization

term by reformulating Equation (16) as a constrained optimization

problem by introducing an auxiliary variable V ∈ RWHΛ×1:

(Î, V̂) = argmin
I,V

∥J − ΦI∥22 + R (V) s.t. V = I. (17)

The half-quadratic splitting (HQS) method can convert Equation (17)

into an unconstrained optimization problem:

(Î, V̂) = argmin
I,V

∥J − ΦI∥22 + ς ∥V − I∥22 + R (V) , (18)

where ς is the penalty parameter. Equation (18) can be solved by

splitting it into two subproblems:

I(l+1) = argmin
I

∥J − ΦI∥22 + ς







V
(l ) − I










2

2
, (19)

V(l+1)
= argmin

V

ς







V − I(l+1)









2

2
+ R (V) , (20)

where I(l ) and V(l ) are the solutions for the l-th HQS iteration.

Since the measurement matrix of the spectral imager is very

large, calculation of the inverse part of the equation requires heavy

computational cost. To mitigate the cost issue, we take the gradient

descent method alternatively to solve Equation (19). Solving it once

provides sufficient convergence to a local optimal [Dong et al. 2018].

In this way, the solution of Equation (19) can be expressed as

I(l+1) = I(l ) − ε
[

Φ⊺

(

ΦI(l ) − J

)

+ ς
(

I(l ) − V(l )
)]

= Φ̄I(l ) + εI(0) + εςV(l )
,

(21)

where Φ̄ = [(1 − ες) 1 − εΦ⊺Φ] ∈ RWHΛ×WHΛ and ε is the gradient

descent step size. For each optimization iteration stage, it updates the

hyperspectral image I(l+1) with three parts. The first part calculates

gradients of the measurement matrix by multiplying I(l ) with Φ̄. The
second part comes from I(0) = Φ⊺Jweighted by the parameter ε . The

third part computes the prior termweighted by ες . This optimization

iteration is repeated L times.

5.2 Hyperspectral Prior Network

As the HQS algorithm separates the measurement matrix Φ from

the unknown regularizer R (·), the prior term in Equation (20) can

be represented in the form of a proximal operator. Here, instead

of using a handcrafted image prior like the TV-l1 norm [Choi et al.

2017], we instead define a network function S(·) for hyperspec-
tral images, which yield the auxiliary variable of the image prior:

V(l+1)
= S(I(l+1)) by solving Equation (20) in a form of a neural

network with soft-thresholding, following ISTA-Net [Zhang and

Ghanem 2018]. Figure 5 shows the architecture of the hyperspectral

prior network.

We devise this prior network architecture with two main objec-

tives: First, the network should learn both spatial and spectral prior

of spectral images. Second, the network should reconstruct spec-

tral images from diffracted rotation of the PSF. To account for the

spectral deconvolution with a relatively large kernel, we adopt the

U-net [Ronneberger et al. 2015] to utilize a multi-scale architecture

to cover a large receptive field. In our network, the first convolu-

tional layer uses 3 × 3 × Λ filters to produce a tensor with a feature

size of Γ, where Λ is set to 25 and Γ is set to be larger than 64 to

enforce the sparsity of spectral gradients. The network then gener-

ates multi-scale features with a contracting path with max-pooling

and an expansive path with up-convolution layers. For each level,

two convolutional layers encode spatial-spectral features. With skip

connections, the scaled features are concatenated with upper scale

features. Finally, we produce a tensor of original hyperspectral cube

size with a convolutional layer with 3 × 3 × Γ filters.

5.3 Optimization-based Unrolled Network

Recently, state-of-the-art optimization-based unrolled network ar-

chitectures [Dong et al. 2018; Wang et al. 2019; Zhang and Ghanem

2018; Zhang et al. 2017] were proposed by adopting, for instance,

the traditional ADMM and ISTA methods in a neural network form,

and they outperform existing methods for image restoration. Our

method also adapts this recent advance in neural network research

in our hyperspectral reconstruction problem but with three main

differences: First, the ill-posedness of our spectral reconstruction

problem is significantly higher than that of the other image restora-

tion problems because our rotating PSF occupies a larger area than

an ordinary PSF. To address these characteristics, we design our

spatial-spectral prior network with the U-Net architecture to make

the perceptive field wide and also combine it with soft-thresholding

to achieve local gradient smoothness. Second, instead of using a

handcrafted sparsity prior, we learn the unknown spatial-spectral

prior directly from spectral images. To do so, we formulate our

optimization problem such that it is differentiable using the HQS for-

mulation, which is solved with the Tikhonov regularization [Zhang

et al. 2017]. Lastly, we use the l1-norm loss function when training

the network in order to compensate for the absence of the sparsity

prior in our network. Figure 4 provides an overview of our network

architecture.

We train the full network by end-to-end learning including the

weight parameters of the spectral prior network and the optimiza-

tion parameters: the gradient descent step size parameter ε and

the penalty parameter ς . Note that all these parameters are learned

separately for each stage through L number of iterations, following

Wang et al. [2019], because the optimization parameters should be

updated adaptively as the input quality of each stage increases.

6 IMPLEMENTATION DETAILS

DOE fabrication. Our 16-level hyperspectral DOE is fabricated by

iteratively applying photolithography and reactive-ion etching (RIE)

techniques [Heide et al. 2016]. The substrate is a 0.5mm thick 4-inch

fused silica wafer with both sides polished. In the photolithography

step, we use a pre-designed binary mask and ultra-violet illumina-

tion to transfer the desired patterns to a photoresist layer formed

on the substrate by spin-coating. To ensure high resolution in the

pixelated patterns, we create masks with 1µm resolution by a high

resolution direct laser writer. After chemical development, we can
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Fig. 6. (a) is a microscopic 3D profile of our fabricated DOE, measured

by a Zygo NewView 7300 profiler. It is mounted on a custom-built 3D-

printed structure at 50mm focal length. (b) shows measured PSFs of our

fabricated DOE in the wavelength range from 420nm to 650nm. Intensities

are normalized for visualization.

generate the desired pattern areas on the fused silica, which is ex-

posed to air. In the RIE step, we apply plasma gases in a vacuum

chamber to etch these exposed areas to specific depths. Auxiliary

layers are then removed chemically afterwards. Each iteration of

the photolithography and subsequent RIE procedures doubles the

number of stairs in the microstructure, and hence we can obtain 16

levels by four iterations. The depth interval for each stair is 100 nm

in our hyperspectral DOE. The maximum height of our DOE at its

center is 0.5mm. Theoretical analysis and experimental results have

shown that 16-level DOEs can offer sufficient diffraction efficiency

for wide-spectrum imaging applications [Heide et al. 2016; Peng

et al. 2015, 2016; Sitzmann et al. 2018; Swanson 1991]. Figure 6(a)

shows a fabricated DOE. Our measured PSFs in Figure 6(b) present

good agreement with our synthetic PSFs shown in Figure 3.

Spectral calibration. We built our prototype camera by installing

the fabricated DOE (its diameter is 1mm and its focal length is

50mm) in front of a Canon EOS 5D Mark III having resolution of

5760× 3840 and pixel pitch of 6.22 um. A custom-design 3D-printed

holder is fabricated to firmly attach the DOE to the camera. We use

demosaicked RGB signals as input, captured without adaptive white

balancing so that we carefully chose the target spectral range of the

reconstruction as 25 spectral channels from 420 nm to 660 nm with

10 nm bandwidth each in consideration of the spectral response

function for the DSLR camera [Baek et al. 2017]. In our image forma-

tion (Equation (15)), we directly calibrate the measurement matrixΦ,

the product of the camera function Ω and the spectrally-varying

PSF P.

To calibrate spectrally-varying PSFs, we build an experimental

setup where a solid-state plasma light source (Thorlabs HPLS-30-04)

is covered with a Thorlabs high-precision pinhole of 1mm diameter

at a distance of 8.03m from the camera in a dark room such that

the point light is captured within less than a pixel with a focal

length of 50mm. The spectral power distribution is measured by a

spectroradiometer (SpectraScan 655). The incident light is filtered by

a Varispec visible liquid crystal tunable filter with 10 nm intervals

and captured by the camera with varying exposures. Later, the

intensity of the captured PSFs is adjusted with exposure scalers.

Figure 6(b) shows examples of captured spectrally-varying point

spread functions.

Network architecture. For training, we used 238 hyperspectral im-

ages, publicly available from the Harvard [Chakrabarti and Zickler

2011], ICVL [Arad and Ben-Shahar 2016], and KAIST datasets (58

images, 150 images, and 30 images, respectively). To achieve scale

invariance, we augmented the input datasets by scaling them to two

additional resolutions (half and double) following [Simonyan and

Zisserman 2015]. This results in a training dataset of 714 hyperspec-

tral images. To enhance the sensitivity to noise in reconstruction,

we added synthetic Gaussian noise with a standard deviation of

0.005. For testing, we excluded 10 images in the KAIST dataset from

the training process for evaluation of the reconstruction accuracy

in this paper. With real input, the resolution of the real camera is

scaled by half to make it compatible to that of the trained network.

Each hyperspectral image includes 25 wavelength channels in a

range from 420 nm to 660 nm.

We implement our neural network architecture design of spectral

reconstruction (Section 5) using TensorFlow [Abadi et al. 2016]. We

sampled 30,000 tensor patches of size 256×256×25 from the aug-

mented dataset for training the network. We optimize the spectral

reconstruction problem (Equation (18)) using the stochastic gradi-

ent method with the ADAM optimizer [Kingma and Ba 2014]. The

batch size is set to 16 with a learning rate of 10−3 for gradient de-
scent. The learning rate is adaptively reduced by half in every 10

epochs. With Γ=64 feature channels and four levels in the U-net, it

took approximately 30 hours to train the network, using a machine

equipped with a workstation of Intel i7-3770 CPU 3.40GHz with

32GB of memory and an NVIDIA Titan Xp GPU with 12GB of

memory. We downscale the input image and the point spread func-

tion to half the size to match the GPU’s memory size. It took about

3.22 seconds to reconstruct a hyperspectral image with 1440×960
resolution through inference using our network.

7 RESULTS

7.1 Comparison with Other Spectral Imaging Systems

We compare our proposed system with two existing hyperspec-

tral cameras, DD-CASSI [Gehm et al. 2007] and a prism-based sys-

tem [Baek et al. 2017]. To compare the spectral accuracy, we sim-

ulated the image formation models of the three systems with ten

testing images from a hyperspectral image dataset [Choi et al. 2017].

The DD-CASSI result is reconstructed by TwIST [Bioucas-Dias and

Figueiredo 2007] and the prism method is reconstructed by the

authors’ implementation. Table 1 shows the average peak signal-to-

noise ratio (PSNR), structural similarity (SSIM), and spectral angle

mapping (SAM) [Kruse et al. 1993] error indices for the test dataset

of ten hyperspectral images (not used for training). Figure 7 shows

that our system provides the most accurate reconstruction results

in terms of both spatial and spectral accuracy, while our diffraction-

based spectral imaging method uses only a single optical element

on a bare sensor.

7.2 Comparison with Other Spectral Reconstructions

As mentioned above, we excluded ten hyperspectral images from

the KAIST dataset when training our reconstruction network. We

made use of these ten images to evaluate the spectral accuracy of

our reconstruction method, compared with that of three existing
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Fig. 7. We compare our system with two different existing hyperspectral imaging systems, DD-CASSI [Gehm et al. 2007] and a prism-based system [Baek

et al. 2017] with ten ground-truth spectral images.

Fig. 8. We compare the results of our reconstruction method with three existing methods (TVAL3 [Li et al. 2009], autoencoder [Choi et al. 2017] and

ISTA-Net [Zhang and Ghanem 2018]) using ten test hyperspectral images, which are not used in the training network. Four methods reconstruct spectral

images from input images (convolved with spectrally-varying PSFs).

Table 1. Average similarity to the ground truth in PSNR and SSIM, and

SAM errors of three different spectral imaging systems with ten test spectral

images. Bold text indicates the highest accuracy.

System DD-CASSI Baek2017 Ours

PSNR (dB) 28.44 29.67 35.88

SSIM 0.84 0.80 0.93

SAM 0.24 0.24 0.12

methods: TVAL3 [Li et al. 2009], autoencoder [Choi et al. 2017],

and ISTA-Net [Zhang and Ghanem 2018]. The TVAL3 method is an

optimization-based algorithm with total variation as a sparsity prior

while the autoencoder and ISTA-Net method utilize deep learning

networks for the hyperspectral reconstruction. For the TVAL3 and

autoencoder methods, we fed our image formation model (Equa-

tion (15)) into their optimization frameworks with the input mea-

surements of RGB images convolved with spectrally-varying PSFs.

For the ISTA-Net method, we trained the network model with the

same dataset that we used for training our network. We applied

our image formation model to ISTA-Net to produce results. Note

that the sparse coding-based spectral reconstruction method [Lin

et al. 2014] was excluded in this experiment because it is not directly

applicable to our PSF-based configuration due to the large size of

the spectrally-varying PSFs.
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Fig. 9. We captured three natural scenes using our real prototype camera shown in Figure 6(a). We reconstructed hyperspectral images using the calibrated

PSFs of real input. The spectral plots compare our reconstruction results with the ground truth measured by a spectroradiometer.

Figure 8 demonstrates that our reconstruction method outper-

forms the other methods in terms of both spatial and spectral reso-

lution of reconstructed reflectances. Table 2 shows average PSNR,

SSIM and SAM indices for the test dataset of ten hyperspectral im-

ages.We found that in particular, the autoencoder method can recon-

struct traditional compressive CASSI input (with a coded aperture)

well, as shown in the original paper. However, their reconstruction

results become suboptimal with the DOE-based input because this

spectral reconstruction with the DOE is different from the original

formation, but it is a deconvolution problem with a large kernel

function of the PSF. Refer to the supplemental material for more

spectral image results.

Table 2. Average reconstruction similarity to the ground truth in PSNR

and SSIM, and SAM errors of four spectral reconstruction methods with

the same test dataset. Bold text indicates the highest accuracy.

Method TVAL3 Autoencoder ISTA-Net Ours

PSNR (dB) 32.06 28.22 33.37 35.88

SSIM 0.88 0.81 0.88 0.93

SAM 0.18 0.26 0.19 0.12

7.3 Evaluation of the Real System

Spectral accuracy. We evaluate the spectral accuracy of hyperspec-

tral images of a natural scene with a ColorChecker under daylight,

captured by our real camera prototype (shown in Figure 6(a)). Fig-

ure 10(a) shows a hyperspectral image and its 600 nm channel and

compares spectral power distributions of red, green and blue patches

with reference measurements by the professional spectroradiometer

(used in calibration). The spectra of three primary patches recon-

structed by our method closely match the ground truth spectra.

Fig. 10. Quantitative evaluation of our real hyperspectral imaging system

with the fabricated DOE, shown in Figure 6. (a) shows reconstructed hy-

perspectral image (displayed as an sRGB image) and a spectral channel of

600 nm. It compares red, green and blue patches’ spectra with the ground

truth. (b) demonstrates the spatial accuracy of our reconstruction. We com-

pare the modulation transfer functions of the input image and the output

reconstruction using the square region.
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Spatial resolution. Figure 10(b) compares the input image of the

green channel to the reconstructed image of the 550 nm wavelength.

The MTF function is improved significantly after our spectral re-

construction process.

Casual hyperspectral imaging. Our system is compact, consisting

of only a thin diffractive lens and a bare sensor. Thereby, our system

enables casual hyperspectral imaging of indoor and outdoor scenes,

as shown in Figures 1 and 10. Also, Figure 9 shows additional results

for three scenes. For each real input, we present the reconstructed

hyperspectral images (displayed as an sRGB image) with 25 spectral

channels. We compare our spectral measurements with the ground-

truth data measured by the spectroradiometer.

Fresnel lens vs. our DOE. We compare a traditional Fresnel lens

and our diffractive lens with respect to hyperspectral imaging. Two

different input images are simulated using these two diffractive

lenses, and then they both are reconstructed as hyperspectral im-

ages using our reconstruction network: One network is trained

with the isotropic PSFs of the Fresnel lens, and the other network is

trained with the anisotropic PSFs of our DOE. Since the Fresnel lens

produces differently sized PSFs per wavelength, it could provide

cues for spectral reconstruction. Our reconstruction network can

estimate spectral images from the ordinary Fresnel lens because our

spatial-spectral prior network can learn the wavelength-dependent

characteristics of the Fresnel-lens PSFs. However, as shown in Fig-

ure 11, the spectral information reconstructed from the Fresnel

input does not closely match the ground-truth data. The wavelength-

dependent change of the isotropic PSF size is not fully sufficient for

reconstructing spectral images with high accuracy. In contrast, our

anisotropic spectrally-varying PSF enables spectral reconstruction

with high accuracy.

Fig. 11. The first row compares our reconstruction results using a tradi-

tional Fresnel lens and our diffractive lens with the ground truth, and the

second row shows the spectral plots of the results. Our DOE allows for more

accurate spectral reconstruction.

8 DISCUSSION

8.1 Spatial Variation of PSF

Depth dependency. As described in Sections 3 and 4.1, we designed

the DOE height profile, assuming that a plane wave emitted by the

point source at optical infinity causes constructive interference at

the center of the sensor plane and that the PSF is depth invariant.

However, this assumption is impractical for real-world imaging sce-

narios. We thereby verify that our DOE actually causes constructive

interference at the sensor center with a point source at a finite depth

Z , which emits a spherical wave.

Suppose a point light source at a depth Z illuminates our camera

that consists of the DOE and the sensor at sensing depth z. The

spherical wave fieldu0 emitted by the source incident to the DOE can

be represented by substituting the amplitude A ∝ 1/
√

x2 + y2 + Z 2

and phase ϕ0 = k
(

√

x ′2 + y′2 + Z 2 − Z
)

in Equation (1) as follows:

u0
(

x ′,y′;Z
)

∝ 1
√

x ′2 + y′2 + Z 2
e
ik

(√
x ′2
+y′2
+Z 2−Z

)

. (22)

Here we can assume
√

x ′2 + y′2 + Z 2 ≈ Z since the aperture size

is negligibly smaller than the depth practically. The x ′,y′-variance

of the field u0 then becomes: u0(x ′,y′;Z ) ∝ 1
Z e

ik (
√
x ′2
+y′2
+Z 2−Z ).

The wave fieldu1 just after passing through the DOE is also obtained

by adding the phase ϕh as

u1
(

x ′,y′;Z
)

∝ 1

Z
e
i
{

k
(√

x ′2
+y′2
+Z 2−Z

)

+ϕh (x ′
,y′)

}

. (23)

The wave field u2 on the sensor plane can be obtained from u1 by

the Fresnel diffraction law shown in Equation (4). Finally, the depth

dependent PSF pλ (x,y;Z ) is obtained from u2 and formulated as

pλ (x,y;Z ) ∝
�

�

�

�

F
[

1

Z
e
i
{

k
(√

x ′2
+y′2
+Z 2−Z

)

+ϕh (x ′
,y′)

}

ei
π

λz
(x ′2
+y′2)

] �

�

�

�

2

.

(24)

The depth dependent PSF shown in Equation (24) also contains a

special case for a plane wave, shown in Equation (6). If the aperture

size is significantly smaller than the depth, the point source is rela-

tively close to optical infinity (Z ≈ ∞), and
(

√

x ′2 + y′2 + Z 2 − Z
)

≪ ϕh (x ′,y′) holds in Equation (24); Equation (24) can then be ap-

proximated as Equation (6).

Here this equation holds our assumption well when the depth Z

is relatively large enough, causing constructive interference at the

sensor center. However, if Z is relatively smaller than assumed,

the PSF shape changes with an unintended shape without making

constructive interference.We therefore determine a range of depthZ

that satisfies our assumption of the depth invariance experimentally.

We simulate PSF changes using our DOE at different depths from

0.5m to optical infinity (Figure 12). This figure shows PSF shapes and

the SSIM indices between PSFs at varying depths and the reference

PSF at optical infinity. It verifies that for depth larger than about

1.0m, the depth variance of the PSF becomes negligible; i.e., the PSF

of our DOE mainly depends on the wavelength of light.

Therefore, in our experiment we can consider PSF variance only

with wavelength λ and denote the PSF as

pλ (x,y) = pλ (x,y;∞) . (25)

Position dependency. The PSF is mainly determined by the imag-

ing setup, specifically the DOE and the sensing distance f . However,

it also depends on the position of the point source. Actually, both

the x,y position and the depth of the point source affects the PSF.
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Fig. 12. The depth invariance of DOE is observed when the depth is longer

than 1m; i.e., the structural similarity of PSFs increases significantly (higher

than 0.9). The aperture diameter is 1mm and the wavelength of light is

550 nm.

Fig. 13. The PSFs at different positions from the reference center to the end

of the vertical FOV are compared within the valid field of view of 27 degrees.

The position variance of the PSF is negligible with our optical configuration.

We assume that the spatial variance of the PSF, the variation that

occurs by the x,y position, is negligibly small. To evaluate the im-

pact of the spatial position on the shape of the PSF, we compared

the PSFs at different positions from the reference center to the end

of the vertical field of view (∼27 degrees) of our real prototype. As
shown in Figure 13, the SSIM values of PSFs at different positions

decrease gradually when the position becomes further from the

optical center. The worst SSIM at the outside perimeter is still 0.91,

and therefore we can assume that the impact of position on the PSF

shape is negligible.

8.2 Comparison to Existing Compact Spectral Imaging

Baek et al. [2017] proposed the first compact snapshot spectral

imaging method that captures spectral images from dispersion over

edges. They installed a prism in front of a conventional DSLR cam-

era so that the form factor of the system is significantly smaller than

that of previous spectral imaging systems. However, their method

is based on the traditional image formation of geometrical optics

and several chains of optimizations with a hand-crafted sparsity

prior, resulting in low performance in computation. In contrast, we

propose a new paradigm for spectral imaging with the diffractive

image formation model for designing the spectrally-varying PSF

and we solve the inverse problem of spectral reconstruction by sub-

stituting the traditional optimization procedure with an unrolled

neural network based on optimization with the data-driven spectral

prior. While both methods share the same objective, namely com-

pact hyperspectral imaging, they are based on completely different

principles.

8.3 Limitations

In this section, we further evaluate our method in the presence of

suboptimal conditions.

Edge property. Our reconstruction quality depends on the edge

frequency of an input image. If a scene does not have enough edge

information, the reconstruction quality degrades as shown in Fig-

ure 14(a). Also, our reconstruction remains relatively stable with

increasingly higher frequency patterns; however, it starts to degrade

when the edge structure is smaller than the PSF.

Illumination environments. We tested our real prototype under

different illumination environments other than daylight: solid-state

plasma illumination, which has many high-frequency changes. Fig-

ure 14(b) shows a corresponding result. Our reconstruction method

fails to recover these high-frequency spectral changes from the

plasma illumination for two reasons: First, our spectrally-varying

PSF can discriminate the spectral power distribution with a lim-

ited resolution. Second, most of our training datasets are mainly

captured under daylight illumination. More training datasets with

various types of illumination can mitigate this limitation, which

should be explored in future work. Although our method fails to

recover these high-frequency spectral changes, we can approximate

its low-frequency spectral component.

Fig. 14. (a) If large areas of the real input image lack edge details, our

spectral reconstruction quality degrades. (b) If scene illumination includes

high-frequency spectral changes, our reconstruction method fails to recover

these high-frequency spectral changes.

Spectral accuracy tradeoff. There is a tradeoff between the spec-

tral resolution and the spectral range in our PSF, because we need

to cover 300 nm of visible wavelength within a 120-degree angle

segment (repeated in three times). Furthermore, the reconstruction

accuracy of our method is improved with a relatively small size of

PSF due to the complexity of the 3D-tensor deconvolution problem,

while it sacrifices light efficiency. We capture all the real scenes with

exposure of 1/6 second.

Diffraction efficiency. We found that there is an image-quality gap

between the results produced by the synthetic and real DOE in our

method. Similar to state-of-the-art imaging methods with diffractive

optics [Peng et al. 2016], our real-DOE results suffer from milky

haze (shown in Figures 9 and 10). As described in Section 6, we use

a laboratory-scale foundry of diffractive optics to manufacture our

DOE with only 16 discrete levels and potential fabrication errors,

and thus there is a physical gap between the real fabrication and

the design of our DOE on a microscale. We speculate that the low
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resolution and the fabrication error of the DOE height field cause

the low diffraction efficiency of the fabricated DOE, resulting in

milky artifacts in the real results. We anticipate that an alternative

fabrication method, such as nano-imprinting, would reduce the gap

between the synthetic and real results, potentially improving the

image quality in a real system.

9 CONCLUSION

We have presented a compact, diffraction-based hyperspectral imag-

ing method that requires only a thin diffractive optical lens in front

of a conventional, bare image sensor in a compact form factor. We

have fabricated our DOE to build a prototype camera to capture var-

ious natural scenes with real input. We have demonstrated how our

diffraction-based spectral imaging method outperforms previous

hyperspectral imaging methods.

As we have seen, our method is sensitive to sensor noise and the

edge properties of the scene or the illumination of high-frequency

spectral changes; its performance may drop. Our results with real

input show milky artifacts due to the low diffraction efficiency of

the 16-level DOE. Addressing these issues is an interesting avenue

for future work.
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APPENDICES

A NOTATION TABLE

Table 3 provides the symbols and notation used in the paper.

Symbol Description

W
av
e
fi
el
d

x ′,y′ DOE plane coordinates

x,y Sensor plane coordinates

A (x ′,y′) Amplitude of a wave field

ϕ0 (x ′,y′) Phase of a wave field before passing through the DOE

ϕh (x ′,y′) Phase shift for a incident wave caused by the DOE

∆ϕh (x ′,y′) Phase difference between two paths

caused by the DOE height-level difference

∆ϕд Phase difference by geometric path difference

u0 (x ′,y′) Wave field on the DOE before passing through it

u1 (x ′,y′) Wave field on the DOE after passing through it

u2 (x,y) Wave field on the sensor plane

λ Wavelength

λmin Minimum visible wavelength, 420nm

λmax Maximum visible wavelength, 660nm

k Wavenumber, k = 2π/λ
η Refractive index of glass

S
y
st
em

q
u
an
ti
ti
es

Z Depth of a point light source

f Sensing distance, focal length

h (x ′,y′) Height level of a DOE in Cartesian coordinate

h (r , θ ) Height level of a DOE in polar coordinate.

∆h (x ′,y′) Height level difference of the DOE w.r.t. the center,

in Cartesian coordinate. ∆h (x ′,y′) = h (x ′,y′)-h(0, 0)
∆h (r , θ ) Height level difference of the DOE w.r.t. the center,

in polar coordinate. ∆h (r , θ ) = h (r , θ )-h(0, 0)
N Number of wings of height map (or PSF)

pλ (x,y;Z ) Depth dependent PSF

pλ (x,y) Depth invariant PSF

Ωc (λ) Sensor spectral sensitivity for each channel c
Im

ag
e
fo
rm

at
io
n

W Image width

H Image height

Λ Number of spectral channels for images

Iλ (x,y) Original hyperspectral image

Îλ (x,y) Reconstructed hyperspectral image

Jc (x,y) Captured RGB image

I Original hyperspectral image as aWHΛ × 1 matrix

J Captured RGB image as aWH3 × 1 matrix

Ω Sensor sensitivity as aWH3 ×WHΛ matrix

P Convolution by the PSF as aWHΛ ×WHΛ matrix

Φ ΩP, aWHΛ ×WHΛ matrix

N
et
w
o
rk

ς Penalty parameter

ϵ Gradient descent step size parameter

V Auxiliary variable

l Iteration number of optimization

Γ Feature size of a prior network

Table 3. Symbols and notation used in the paper.
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