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1. Introduction and preliminaries

We consider a compact (always supposed connected) surface Σ embedded in
the Euclidean space IR3 whose boundary will be represented by ∂Σ. When
the surface has (non zero) constant mean curvature, we abbreviate saying
cmc surface and H-cmc surface when we emphasize the value H of the mean
curvature. The mean curvature in a point is defined by the average of the
two principal curvatures in this point, so, the sphere of radius r > 0 has
1/r as mean curvature in anywhere if the Gauss map is choosen to pointing
inside. Remember that a cmc surface is orientable and so, we may choose a
globally defined Gauss map N on Σ. A cmc surface in Euclidean three-space
can be viewed as a surface where the exterior pressure and the surface tension
forces are balanced. For this reason they are thought of as soap bubbles or
films depending on the considered surface being either closed (that is, compact
without boundary) or compact with non-empty boundary. The study of the
space of H-cmc surfaces with prescribed non-empty boundary Γ has been the
focus of a number of authors. Even in the simplest case, when Γ is a circle of
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radius 1, it is unknown if the two spherical caps (the large cap and the small
one) with radius 1/|H| are the only examples. Heinz [4] found that a necessary
condition for the existence in this situation is that |H| ≤ 1. In another hand,
the Alexandrov reflection method gives that if the surface is included in one of
the two halfspaces determined by the boundary plane, then the surface inherits
the symmetries of its boundary and then, is a spherical cap. For that, it is
interesting to have hypothesis to assure the surface is over the plane containing
the boundary. Partial results have been obtained in [2,3,6,7,8,9].

Related with this subject, we pose the following problem: let Γ be a Jordan
curve lying in the unit sphere

S2(1) = {x = (x1, x2, x3) ∈ IR3 : x2
1 + x2

2 + x2
3 = 1}

and we ask for the shape of a 1-cmc surface with boundary Γ. It is immediate
that Γ determines in S2 two domains which are 1-cmc surfaces, but it is possible
the existence of anothers 1-cmc surfaces with boundary Γ. For instance, the
intersection of a cylinder of radius 1/2, whose axis is tangent to S2(1), with
the ball |x| ≤ 1, has boundary on S2(1), but is not umbilical.

The basic tool in this paper is the often invoked Maximum Principle due
to E. Hopf. To establish it in the context of cmc surfaces, we call that two
surfaces touch at p if they are tangent at some common interior point p, the
orientations in both surfaces agree in p and one of them is above the other one
in a neighbourhood of p respect to the coordinate system given by the tangent
plane in p and the unit normal in p. Then the Maximum Principle can be
stated as follows:

Maximum Principle [5]. Let Σ1,Σ2 be two cmc surfaces with the same
mean curvature. If they touch at a point p, then both surfaces coincide in
some neighbourhood of p.

In relation with the Maximum Principle, it is a basic fact of differential
geometry that if two surfaces Σ1, Σ2 (not necessarily cmc surfaces) touch in
some interior point p and Σ1 is above Σ2 in a neighbourhood of p, then the
mean curvature of Σ2 is less or equal than the mean curvature of Σ1 around
p. We will call this fact Comparison Principle.
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2. The main result

Koiso [6] proved that if Σ is a cmc surface with boundary a Jordan curve Γ
included in a plane P and Σ does not intersect the outside of Γ in P , then
Σ is included in one of the two halfspaces determined by P . We will obtain
a similar result, but in the case that the boundary is included in a sphere.
Firstly, set the following notation

B = {x ∈ IR3; |x| < 1} E = {x ∈ IR3; |x| > 1}

and the upper hemisphere S+ = {x ∈ S2(1);x3 > 0}. If Γ is a Jordan curve
included in S+, it bounds two domains in S2(1). We call the bounded domain
by Γ in S+ the only one of both included in S+. The next theorem is motivated
by the paper of Koiso.

Theorem 1 Let Σ be a 1-cmc surface with ∂Σ a Jordan curve included in the
hemisphere S+. Let Ω be the bounded domain by ∂Σ in S+. If Σ does not
intersect S2(1) −Ω, then Σ = Ω or Σ − ∂Σ ⊂ B or Σ − ∂Σ ⊂ E.

Proof: We suppose that Σ 6= Ω. Then to show the Theorem 1 it is sufficient to
prove that Σ∩Ω = ∅. We will derive a contradiction if we assume that Σ∩Ω 6=
∅. In this case, we define the closed embedded surface F = Σ ∪ (S2(1) − Ω)
and let W be the bounded 3-domain determined by F in IR3. Choose in Σ the
Gauss map N corresponding with the mean curvature H = 1.

Firstly, we prove that N points towards W . For that, we take the function
f(x) = |x|2 for x ∈ Σ and let p ∈ Σ be the point where f atteins its maximum.
Because Σ ∩ Ω 6= ∅, f(p) ≥ 1 and the point p can choose to be an interior
point of Σ (even if Σ ⊂ E). Then N(p) = ±p/|p|. If we put a sphere of
radius 1 tangent to Σ at p and included in the domain {x ∈ IR3; |x| ≥ |p|}, the
Maximum Principle gets N(p) = −p/|p|, see Figure (with H = 1, the Gauss
map of that sphere points inside). Therefore N(p) points towards W and so,
N points to W .

Now we treat the case that Σ ⊂ E. In any point z ∈ Ω∩Σ, we compare Ω
with Σ. If NΩ is the unit normal field of Ω to have H = 1, then NΩ(z) = −z
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and therefore NΩ(z) points to W (in this case, B ⊂ W ). Thus Ω and Σ touch
in z and thanks to the Maximum Principle we get a contradiction.

Therefore, we are going to suppose that Σ ∩ B 6= ∅. Now we show that
(Σ∩B)∩{x ∈ IR3;x3 ≤ 0} is empty. In another case, set r = (r1, r2, r3) ∈ Σ∩B,
r3 ≤ 0, the point where the third coordinate function x3 atteins its minimum
in the subset Σ∩B. Then N(r) = ±a, where a = (0, 0, 1). But since N points
towards W , ∂Σ ⊂ S+ and W , close to S2(1) − S+, is included in B, we have
N(r) = −a. Now we compare Σ with a sphere of radius 1 tangent to Σ at
the point r and included in the halfspace {x ∈ IR3;x3 ≤ r3}. If we orient
this sphere to have 1 as mean curvature, the Gauss map of that sphere points
inside and then its value es −a, i.e., it agrees with N in the point r. Then the
sphere and Σ touch in r, getting the Maximum Principle a new contradiction.

Therefore Σ∩B ⊂ {x ∈ IR3;x3 > 0}. Now we consider the family {Cs; s ∈
(0, 1]} of small spherical caps included in {x ∈ IR3;x3 ≥ 0}, with constant
mean curvature s and boundary the equator ∂S+. The Gauss map in Cs points
down (respect the direction a). Since Σ is compact and Σ ∩ B is included in
the upper halfspace x3 > 0, there exists ε > 0 such that Cs ∩ (Σ − ∂Σ) = ∅
for any s ∈ (0, ε). We increase s → 1 to intersect Cs with Σ at the first time
t ≥ ε. Notice that t < 1 because Σ ∩ B 6= ∅. Then Ct and Σ are tangent in
some common interior point q. Because the lower domain determined by Ct in
S2(1) is included in W , the Gauss map of Ct points towards W and therefore,
the Gauss maps of Σ and Ct agree in q (see Figure). But it is impossible, since
the mean curvature of Ct is t < 1, strictely less than the mean curvature of Σ
(equal to one) and with the fact that Ct is locally above Σ, in contradiction
with the Comparison Principle.

Figure 1:
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The proof of the Theorem 1 generalizes immediately to (non zero) constant
mean curvature compact, connected hypersurfaces embedded in IRn+1 (≡ cmc
hupersurfaces) with several components in the boundary. For that, let Sn(1)
be the Euclidean n-dimensional sphere of radius 1 in IRn+1, S+ the upper
hemisphere of Sn(1) and B and E the inside and outside of Sn(1). Let Σ be a
cmc hypersurface of IRn+1 and Γ1 ∪ . . .∪ Γk the decomposition into connected
components of ∂Σ. If ∂Σ is included in S+, we call the bounded domain Ω by
∂Σ in S+ to the union of the bounded domains by Γi in S+, i = 1, . . . , k. With
this notation, we have by connection

Theorem 2 Let Σ be a cmc hypersurface with boundary ∂Σ = Γ1 ∪ . . . ∪ Γk

included in S+. If Σ does not intersect Sn(1) − Ω, then or Σ − ∂Σ ⊂ B or
Σ − ∂Σ ⊂ E or k = 1 and Σ = Ω.

After a homothety, the Theorem 2 gives the following result on the problem
posed in the Introduction to characterize the spherical caps as the only cmc
hypersurfaces in IRn+1 with boundary a (n−1)-dimensional Euclidean sphere.

Corollary 3 Let Γ be a round (n − 1)-dimensional sphere of radius less than
one and included in Sn(1) and Σ a 1-cmc hypersurface with boundary Γ. If Σ
does not intersect the large spherical cap of Sn(1) determined by Γ, then Σ is
the small spherical cap of radius 1 or Σ − ∂Σ is included completely in E.

Proof: We can assume that Γ is included in the upper hemisphere S+. If Ω is
the small spherical cap determined by Γ in Sn(1), the Theorem 2 gives that Σ
is Ω or Σ−∂Σ is included in E or included in B. But the last case is impossible
from a result of Barbosa in [1].
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