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Abstract In the present paper we generate a set of solu-
tions describing the interior of a compact star under f (R, T )

theory of gravity which admits conformal motion. An exten-
sion of general relativity, the f (R, T ) gravity is associated
to Ricci scalar R and the trace of the energy-momentum ten-
sor T . To handle the Einstein field equations in the form of
differential equations of second order, first of all we adopt
the Lie algebra with conformal Killing vectors (CKV) which
enable one to get a solvable form of such equations and sec-
ond we consider the equation of state (EOS) p = ωρ with
0 < ω < 1 for the fluid distribution consisting of normal
matter, ω being the EOS parameter. We therefore analyti-
cally explore several physical aspects of the model to repre-
sent behavior of the compact stars such as—energy condi-
tions, TOV equation, stability of the system, Buchdahl condi-
tion, compactness and redshift. It is checked that the physical
validity and the acceptability of the present model within the
specified observational constraint in connection to a dozen
of the compact star candidates are quite satisfactory.

1 Introduction

Though Einstein’s general theory of relativity has always
proved to be very fruitful for uncovering so many hidden
mysteries of Nature, yet the evidence of late-time accelera-
tion of the Universe and the possible existence of dark mat-
ter has imposed a fundamental theoretical challenge to this
theory [1–7]. As a result, several modified theories on grav-
itation have been proposed from time to time. Among all
these theories, a few of them, namely f (R) gravity, f (T )

gravity and f (R, T ) gravity, have received more attention

a e-mail: amdphy@gmail.com
b e-mail: rahaman@associates.iucaa.in
c e-mail: bkguhaphys@gmail.com
d e-mail: saibal@associates.iucaa.in

than any other. In all these theories instead of changing the
source side of the Einstein field equations, the geometrical
part has been changed by taking a generalized functional
form of the argument to address galactic, extra-galactic, and
cosmic dynamics. Cosmological models based upon modi-
fied gravity theories reveal that excellent agreement between
theory and observation can be obtained [8–11].

In f (R) gravity theory the gravitational part in the stan-
dard Einstein–Hilbert action is replaced by an arbitrary gen-
eralized function of the Ricci scalar R whereas in f (T ) grav-
ity theory the same is replaced by an arbitrary analytic func-
tion of the torsion scalar T . The f (T ) theory of gravity is
more controllable than the f (R) theory of gravity because
the field equations in the former turns out to be the differ-
ential equations of second order whereas in the latter the
field equations in the form of differential equations are, in
general, of fourth order, which is difficult to handle [12].
Many applications of f (T ) gravity in cosmology, theoreti-
cal presentation as well as observational verification, can be
found in Refs. [13–28]. On the other hand, many astrophysi-
cal applications of f (T ) theory of gravity can be observed in
Refs. [12,29–33]. Following the result of Böhmer et al. [12]
in our previous work [34] we successfully described the inte-
rior of a relativistic star along with the existence of a confor-
mal Killing vector field within this f (T ) gravity providing
a set of exact solutions. In connection to f (R) gravity we
observe that there are also several applications with various
aspects on the theory available in the literature [35–37]. A
special and notable application includes the late-time accel-
eration of the Universe, which has been explained using f (R)

gravity by Carroll et al. [35]. For further reviews on f (R)

gravity model one can check Refs. [38–42].
However, the purpose of the present paper is to consider

another extension of general relativity, the f (R, T ) modified
theory of gravity [43] where the gravitational Lagrangian of
the standard Einstein–Hilbert action is defined by an arbitrary
function of the Ricci scalar R and the trace of the energy-
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momentum tensor T . It has been argued that such a depen-
dence onT may come from the presence of an imperfect fluid
or quantum effects. Many cosmological applications based
on f (R, T ) gravity can be found in [44–57].

Though one can find several applications to astrophysi-
cal level based on this theory, yet among those it is worth to
mention Refs. [58–65]. Sharif et al. [58] have discussed the
stability of a collapsing spherical body of an isotropic fluid
distribution considering the non-static spherically symmetric
line element. On the other hand, a perturbation scheme has
been used to find the collapse equation and the condition on
the adiabatic index has been developed for Newtonian and
post-Newtonian eras for addressing the instability problem
by Noureen et al. [59]. Further, Noureen et al. [60] have devel-
oped the range of instability under the f (R, T ) theory for
an anisotropic background constrained by zero expansion.
The evolution of a spherical star by applying a perturbation
scheme on the f (R, T ) field equations has been explored by
Noureen et al. [61], while in the work [62] the dynamical
analysis for gravitating sources along with axial symmetry
has been discussed. Zubair et al. [63] investigated the possi-
ble formation of compact stars in f (R, T ) theory of gravity
using the analytic solution of the Krori and Barua metric
to the spherically symmetric anisotropic star. The effects of
f (R, T ) gravity on gravitational lensing has been discussed
by Ahmed et al. [64]. Moraes et al. [65] have investigated the
spherical equilibrium configuration of polytropic and strange
stars under f (R, T ) theory of gravity.

Using the technique of CKV one can search for the
inheritance symmetry which provides a natural relation-
ship between geometry and matter through the Einstein
field equation. Several works performed by using this tech-
nique of conformal motion to the astrophysical field can be
found in Refs. [34,66–73]. Interior solutions admitting con-
formal motions also had been studied extensively by Her-
rera et al. [74–77]. An exact solution describing the inte-
rior of a charged quark star had been explored admitting
a one-parameter group of conformal motions by Mak and
Harko [78].

In the present work we shall seek the interior solutions
of the Einstein field equations under the f (R, T ) theory of
gravity along with conformal Killing vectors. Therefore, our
main aim in the present work is to construct a set of stellar
solutions under f (R, T ) theory of gravity by assuming the
existence of conformal Killing vectors (CKVs). The outline
of our investigation is as follows: in Sect. 2 we provide the
basic mathematical formalism of f (R, T ) theory whereas
the CKVs have been formulated in Sect. 3. In Sect. 4 we pro-
vide the field equations under f (R, T ) gravity along with
their solutions using the technique of CKV, whereas in Sect.
5 the exterior Schwarzschild solution and matching condi-
tions are provided. In Sect. 6 we discuss some physical fea-
tures of the model such as energy conditions and the equilib-

rium condition by using the Tolman–Oppenheimer–Volkoff
(TOV) equation, the stability issue, the mass–radius relation,
compactness, and surface redshift. A comparative study for
the physical validity of the model is performed in Sect. 7.
Lastly, in Sect. 8 we make some concluding remarks.

2 Basic mathematical formalism of the f (R,T ) Theory

The action of the f (R, T ) theory [43] is taken as

S = 1

16π

∫
d4x f (R, T )

√−g +
∫

d4xLm
√−g, (1)

where f (R, T ) is an arbitrary function of the Ricci scalar
R and the trace of the energy-momentum tensor T and Lm

being the Lagrangian for matter. Also g is the determinant
of the metric gμν . Here we assume the geometrical units
G = c = 1.

If one varies the action (1) with respect to the metric gμν ,
one can get the following field equations of f (R, T ) gravity:

fR(R, T )Rμν − 1

2
f (R, T )gμν +(gμν � − ∇μ∇ν) fR(R, T )

= 8πTμν − fT (R, T )Tμν − fT (R, T )�μν, (2)

where fR(R, T ) = ∂ f (R, T )/∂R, fT (R, T ) = ∂ f (R, T )/

∂T , � ≡ ∂μ(
√−ggμν∂ν)/

√−g, Rμν is the Ricci tensor, ∇μ

provides the covariant derivative with respect to the symmet-
ric connection associated to gμν , �μν = gαβδTαβ/δgμν and
the stress-energy tensor can be defined as Tμν = gμνLm −
2∂Lm/∂gμν .

The covariant divergence of (2) reads [79]

∇μTμν = fT (R, T )

8π − fT (R, T )

[
(Tμν + �μν)∇μ ln fT (R, T )

+∇μ�μν − (1/2)gμν∇μT
]
. (3)

Equation (3) at once shows that the energy-momentum
tensor is not conserved for the f (R, T ) theory of gravity
unlike in the case of general relativity.

In this paper we assume the energy-momentum tensor to
be that of a perfect fluid, i.e.

Tμν = (ρ + p)uμuν − pgμν, (4)

with uμuμ = 1 and uμ∇νuμ = 0. Also with these conditions
we have Lm = −p and �μν = −2Tμν − pgμν .

As proposed by Harko et al. [43], we have taken the func-
tional form of f (R, T ) as f (R, T ) = R + 2χT , where
χ is a constant. We note that this form has been extensively
used to obtain many cosmological solutions in f (R, T ) grav-
ity [11,44–46,54–56]. After substituting the above form of
f (R, T ) in (2), one can get [44,45]
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Gμν = 8πTμν + χT gμν + 2χ(Tμν + pgμν), (5)

where Gμν is the Einstein tensor.
One can easily get back to the general relativistic result

just by setting χ = 0 in Eq. (5). Moreover, for f (R, T ) =
R + 2χT , Eq. (3) reads

(8π + 2χ)∇μTμν = −2χ

[
∇μ(pgμν) + 1

2
gμν∇μT

]
. (6)

Again substituting χ = 0 in Eq. (6) one can easily verify that
the energy-momentum tensor is conserved as in the case of
general relativity.

3 The conformal Killing vector (CKV)

To search a natural relationship between geometry and matter
through Einstein’s general relativity one can use symmetries.
Symmetries that arise either from a geometrical viewpoint
or physical relevant quantities are known as collineations.
The greatest advantageous collineations is the conformal
Killing vectors (CKV). Those vectors also provide a deeper
insight into the spacetime geometry. From a mathematical
viewpoint, conformal motions or conformal Killing vectors
(CKV) are motions along which the metric tensor of a space-
time remains invariant up to a scale factor. Moreover, the
advantage of using the CKV is that it facilitates the genera-
tion of exact solutions to the field equations. Also using the
technique of CKV one can easily reduce the highly nonlinear
partial differential equations of Einstein’s gravity to ordinary
differential equations.

The CKV is defined as

Lξ gi j = ξi; j + ξ j;i = ψgi j , (7)

where L is the Lie derivative operator, which describes the
interior gravitational field of a stellar configuration with
respect to the vector field ξ and ψ is the conformal fac-
tor. One can note that the vector ξ generates the conformal
symmetry and the metric g is conformally mapped onto itself
along ξ . However, Böhmer et al. [80,81] argued that neither
ξ nor ψ need to be static even though a static metric is con-
sidered. We also note that (i) if ψ = 0 then Eq. (7) gives
the Killing vector, (ii) if ψ = constant it gives a homothetic
vector, and (iii) if ψ = ψ(x, t) then it yields conformal vec-
tors. Moreover, for ψ = 0 the underlying spacetime becomes
asymptotically flat which further implies that the Weyl tensor
will also vanish. All these properties reflect that CKV has an
intrinsic property providing deeper insight of the underlying
spacetime geometry.

Under the above background, let us therefore consider
that our static spherically symmetric spacetime admits an
one-parameter group of conformal motion. In this case the
metric can be opted as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (8)

which is conformally mapped onto itself along ξ . Here ν and
λ are metric potentials and functions of the radial coordinate
r only.

Here Eq. (7) implies that

Lξ gik = ξi;k + ξk;i = ψgik, (9)

with ξi = gikξ k .
From Eqs. (8) and (9), one can find the following expres-

sions [75–78]:

ξ1ν′ = ψ,

ξ4 = constant,

ξ1 = ψr

2
,

ξ1λ′ + 2ξ1
,1 = ψ,

where 1 and 4 stand for the spatial and temporal coordinates
r and t , respectively.

From the above set of equations one can get

eν = C2
2r

2, (10)

eλ =
[
C3

ψ

]2

, (11)

ξ i = C1δ
i
4 +

[
ψr

2

]
δi1, (12)

where C1, C2, and C3 all are integration constants.

4 The field equations and their solutions in f (R,T )

gravity

For the spherically symmetric metric (8) one can find the
non-zero components of the Einstein tensors as

G0
0 = e−λ

r2 (−1 + eλ + λ′r), (13)

G1
1 = e−λ

r2 (−1 + eλ − ν′r), (14)

G2
2 = G3

3 = e−λ

4r
[2(λ′ − ν′) − (2ν′′ + ν′2 − ν′λ′)r ], (15)

where primes stand for derivations with respect to the radial
coordinate r .

Substituting Eqs. (4), (13), and (14) in Eq. (5) one can get

− 1 + eλ + λ′r = �(r)[8πρ + χ(3ρ − p)]. (16)

−1 + eλ − ν′r = �(r)[−8πp + χ(ρ − 3p)], (17)

with �(r) ≡ r2/e−λ.
Now using Eqs. (10), (11), (16), and (17) one can obtain

−2ψψ ′

rC2
3

− ψ2

r2C2
3

+ 1

r2 = [8πρ + χ(3ρ − p)]. (18)
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− 3ψ2

r2C2
3

+ 1

r2 = [−8πp + χ(ρ − 3p)]. (19)

To solve Eqs. (18) and (19) let us assume the equation of
state of fluid distribution consisting of normal matter as

p = ωρ, (20)

where ω is the equation of state parameter, with 0 < ω < 1.
Inserting Eq. (20) in Eqs. (18) and (19) we, respectively,

get

ρ = − 1

εC2
3r

[
2ψψ ′ + 1

r
(ψ2 − C2

3 )

]
(21)

and

ρ = − 1

αr2

[
3ψ2

C2
3

− 1

]
, (22)

where ε and α are given by ε = [8π + χ(3 − ω)] , α =
[−8πω + χ(1 − 3ω)], respectively.

Now equating the above two expressions of the density ρ

we have found the following differential equation in ψ :

−
(

2

C2
3

)
rψψ ′ −

(
β

C2
3

)
ψ2 + σ = 0. (23)

Solving Eq. (23) one can obtain the following solution set:

ψ2 =
[
kC2

3r
−β + C2

3σ

β

]
, (24)

ρ =
[
−3kr−β − 3σ

β
+ 1

]
×

(
r−2

α

)
, (25)

p = ω

[
−3kr−β − 3σ

β
+ 1

]
×

(
r−2

α

)
, (26)

where β and σ are given by β =
[

8πω+8χ+24π
ω(8π+3χ)−χ

]
, σ =[

ω(8π+2χ)+2χ+8π
ω(8π+3χ)−χ

]
, respectively, and k is an integration con-

stant.

5 The exterior Schwarzschild solution and matching
conditions

The well-known static exterior Schwarzschild solution is
given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2
(

dθ2 + sin2θdφ2
)

. (27)

For the continuity of the metric namely gtt and grr across
the boundary i.e. r = a we have the following equations:

C2
2 = 1

a2

(
1 − 2M

a

)
, (28)

(
ka−β + σ

β

)
=

(
1 − 2M

a

)
. (29)

Also at the boundary (i.e. r = a) the pressure p = 0.
Hence we have

(
−3ka−β − 3σ

β
+ 1

)
= 0. (30)

The constantC2 can be determined from Eq. (28). But Eqs.
(29) and (30) are not independent equations. Thus, we have
only one independent equation with two unknowns, namely
the integration constant k and χ . So, in principle, these equa-
tions are redundant to solve for k and χ .

6 Physical features of the model under f (R,T ) gravity

6.1 Energy conditions

To check whether all the energy conditions are satisfied or
not for our model under f (R, T ) gravity we should consider
the following inequalities:

(i) NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

(ii) WEC : ρ + pr ≥ 0, ρ ≥ 0, ρ + pt ≥ 0,

(iii) SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0.

Here for our model of an isotropic fluid distribution (i.e. pr =
pt = p) we see from Fig. 2 that all the solutions are physically
valid. However, the behavior of density and pressure is shown
in Fig. 1.

6.2 TOV equation

From the equation for the non-conservation of the energy-
momentum tensor in f (R, T ) theory (6) one can obtain
the generalized Tolman–Oppenheimer–Volkoff (TOV) equa-
tion [65] for an isotropic fluid distribution (i.e. pr = pt = p)
as

−ν′

2
(ρ + p) − dp

dr
+ χ

8π + 2χ
(p′ − ρ′) = 0. (31)

If one puts χ = 0 then one can get the usual form of TOV
equation in the case of general relativity. The above TOV
equation describes the equilibrium of the stellar configuration
under the joint action of three forces, viz. the gravitational
force (Fg), the hydrostatic force (Fh), and the additional force
(F� ) due to the modification of the gravitational Lagrangian
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Fig. 1 Variations of density ρ (km−2) and pressure p (km−2) are
shown with respect to the radial coordinate r (km)

Fig. 2 Variations of ρ (km−2), ρ + p (km−2), and ρ + 3p (km−2) are
shown with respect to the radial coordinate r (km)

of the standard Einstein–Hilbert action. So for equilibrium
condition one can eventually write it in the following form:

Fg + Fh + F� = 0, (32)

where

Fg = −ν′

2
(ρ + p),

Fig. 3 The three different forces, viz. the gravitational force (Fg), the
hydrostatic force (Fh), and the additional force (F�) are plotted against
r (km)

Fh = −dp

dr
,

F� = χ

8π + 2χ
(p′ − ρ′).

In the present conformally symmetric model of an
isotropic fluid distribution with the EOS p = ωρ the TOV
equation (31) can be written as

−ν′

2
(ρ + p) − dp

dr
+ χ

8π + 2χ
(ω − 1)ρ′ = 0. (33)

From Fig. 3 we notice that the static equilibrium has been
attained under the mutual action of the three forces Fg, Fh

and F� . Also it is observed from the figure that Fg and F�

are essentially of the same nature—quantitatively as well as
qualitatively.

6.3 Stability

6.3.1 Sound speed

According to Herrera [82] for a physically acceptable model
the square of the sound speed, i.e. v2

s = dp
dρ

, within the matter
distribution should be in the limit [0,1]. In our model of an
isotropic matter distribution we see that v2

s = dp
dρ

= ω =
1/3 < 1. Hence our model maintains stability.
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Fig. 4 Profile of the mass function M(r) (km) is shown with respect
to the radial coordinate r (km)

6.3.2 Adiabatic index

The dynamical stability of the stellar model against an
infinitesimal radial adiabatic perturbation, which was intro-
duced by Chandrasekhar [83], has also been tested in our
model. This stability condition was developed and used on
the astrophysical level by several authors [84–86].

The adiabatic index is defined by

γ =
(

ρ + p

p

)(
dp

dρ

)
. (34)

For a stable configuration γ should be > 4
3 within the

isotropic stellar system. However, we have analytically cal-
culated the value of the adiabatic index as γ = 4

3 which is
the critical value of 4

3 [83,87,88].

6.4 Mass–radius relation

The mass function within the radius r is given by

M(r) =
∫ r

0
4πr ′2ρdr ′ = 4π

α

[
−3kr (−β+1)

(−β + 1)
− 3σr

β
+ r

]
.

(35)

The profile of the mass function has been depicted in Fig.
4, which clearly shows that, for r → 0, M(r) → 0, implying
the regularity of the mass function at the center.

Fig. 5 Compactnessu(r) is plotted with respect to the radial coordinate
r (km)

According to Buchdahl [89], in the case of a static spher-
ically symmetric perfect fluid distribution the mass to radius
ratio ( 2M

r ) should be ≤ 8
9 . Also Mak et al. [90] derived a

more simplified expression for the same ratio. In our present
model, one can check that Buchdahl’s condition is satisfied
(see Fig. 4).

6.5 Compactness and redshift

The compactness of the star u(r) is defined by

u(r) = M(r)

r
= 4π

α

[
− 3kr−β

(−β + 1)
− 3σ

β
+ 1

]
. (36)

The profile of the compactness of the star is depicted in
Fig. 5.

The redshift function Zs is defined by

Zs = (1 − 2u)−
1
2 − 1 =

[
1 − 8π

α

(
− 3kr−β

(−β + 1)
− 3σ

β
+ 1

)]− 1
2

− 1.

(37)

The profile of the redshift function of the star is depicted
in Fig. 6.

7 A comparative study for physical validity of the model

Based on the model under investigation let us carry out a
comparative study between the data of the model parameters
with that of the compact star candidates. This will provide
the status of the presented model as to whether it is valid for
observed data set within the allowed constraint. As we do
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Fig. 6 Surface redshift (Zs) is plotted with respect to the radial coor-
dinate r (km)

not get the radius of the star theoretically by putting p = 0
at some radius, therefore, all plots are drawn up to a highest
calibrating point of radius 13 km along the r -axis, which
is sufficient to get information as regards the nature of the
compact star.

We have prepared Table 1 where the symbols are used as
follows: D = observed radius, Mobs = observed mass and Mpre

= predicted mass. Here in the calculation of Mpre we have
exploited the observed radius D, the predicted radius being
unable to be determined in the present model as mentioned
in the previous paragraph. It is to note that we have drawn
all figures assuming χ = 4 only except the Fig. 4 for all χ .

Note that from the proposed model for χ = 1–10 (exclud-
ing 5 and 6, which do not provide physically interesting
results) we have found the masses of the compact stars which,
in general, are closely equal to the observed values of most
of the stars. However, for some values of χ the model data
seems not to provide very significant results for some of the
compact stars. It is also interesting to note that in Fig. 4 we
have the curve for χ = 3 and the straight line parallel to the
r -axis for Cen X − 3 total mass. So, the intersection of the
two gives the radius as a representative one. However, the
other curves for other values of χ have no relation with the
straight line parallel to the r -axis. We also observe from Table
1 that for different χ all the predicted values of Buchdahl’s
ratios fall within the range of observed values of the Buch-
dahl ratios (2M/R ≤ 8/9 ∼ 0.88). On the other hand, the
observed and predicted values of the redshift are also very
promising as is evident from Table 1 for all the low mass
compact stars under investigations. Ta
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8 Discussions and conclusions

As discussed in the introductory section, it is argued by Böh-
mer et al. [12] that the f (T ) theory of gravity with torsion
scalar is more controllable than the f (R) theory of grav-
ity with Ricci scalar because the field equations in the for-
mer turn out to be the differential equations of second order,
whereas in the latter the field equations are in the form of
differential equations of fourth order and thus are difficult to
handle. On the other hand, the present work on f (R, T ) [43]
is based on another extension of general relativity, which
is associated to Ricci scalar R and the trace of the energy-
momentum tensor T .

At this juncture one may be curious to perform a com-
parison between the results of our previous work [34] on
f (T ) gravity and the present work with f (R, T ) gravity.
However, we are at present very interested to present the
model behavior of compact stars under the f (R, T ) theory
of gravity assuming the existence of CKV. In connection to
the features and hence validity of the model we have explored
several physical aspects based on our findings and all these
have been reflected to be very interesting advocacy in favor
of physically acceptance of the model. Let us now summarize
some of these important results as follows:

(i) Density and pressure In the present investigation the
pressure p and the density ρ blow up as r → 0 (Fig. 1). This
clearly indicates that the core of the star is highly compact
and our model is valid for the region outside of the core. We
are unable to estimate the surface density as we do not find
any cut on the r -axis (i.e. the radius of the star) in the profile
of the pressure.

(ii) Energy conditions In our study we have found
through graphical representation that all the energy condi-
tions, namely NEC, WEC, SEC are satisfied within the pre-
scribed isotropic fluid distribution consisting normal matter
(Fig. 2).

(iii) TOV equationThe plot for the generalized TOV equa-
tion reveals that static equilibrium has been attained by three
different forces viz. the gravitational force (Fg), the hydro-
static force (Fh), and the additional force (F� ) (Fig. 3).

(iv) Stability of the model Following Herrera [82] it has
been observed that the squares of the sound speed remains
within the limit [0,1] admitting the condition of causality and
hence our model is potentially stable.

We have also studied dynamical stability of the stellar
model against the infinitesimal radial adiabatic perturbation
where the adiabatic index γ has been calculated analytically
as 4

3 , which is the critical value for stable configuration [83,
87,88].

(v) Buchdahl condition The mass function within the
radius r has been plotted in Fig. 4, which shows that, for
r → 0, M(r) → 0, implying the regularity of the mass
function at the center.

According to Buchdahl [89], in the case of a static spher-
ically symmetric perfect fluid distribution the mass to radius
ratio ( 2M

r ) should be ≤ 8
9 . In the present model, we note that

Buchdahl’s condition is satisfied.
(vi) Compactness and redshift The profile of the com-

pactness of the star has been drawn in Fig. 5 whereas the
redshift function Zs of the star has been depicted in Fig. 6.
The features as revealed from these figures are physically
reasonable.

As one of the major concluding remarks we would like to
highlight one special observation that in the present model
the profile of the density and the pressure (Fig. 1) reveals that
both the density and the pressure suffer from a central singu-
larity. Therefore we are unable to make any exact comment
on the core of the star, though Figs. 1 and 5 also indicate a
high compactness of the core. On the other hand, according
to the profile of the mass function (Fig. 4) it maintains the
regularity at the center.

Another interesting point can be observed from the
assumed data for ω = 1/3, which represents an equation of
state (EOS) for radiation. However, in the present investiga-
tion we have tried to explore other values of the EOS param-
eter ω but those do not work well. This seems to indicate that
our model suits better for radiating compact stars. In favor
of this unique result one can go through some supporting
literature [94,96–100]. But this also immediately raises the
problem of the energy conservation in the model. As is well
known, in the f (R, T ) gravity theory the energy-momentum
tensor is not conserved [see Eq. (3)]. This means we may have
two probable alternatives: (i) either we must fully investi-
gate and present the energy “conservation” equations for the
present model and discuss their possible interpretation as
describing radiation emission from the star, (ii) otherwise by
maintaining the problem of conservation we have to give up
the claim for radiating compact stars in our study assuming
that the case for ω = 1/3 is just a coincidence out of other
several choices of ω. These intriguing issues may be taken
into consideration in a future project.
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