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Compact stellar model in Tolman space-time in presence of pressure anisotropy
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In this paper, we develop a new relativistic compact stellar model for a spherically symmetric
anisotropic matter distribution. The model has been obtained through generating a new class
of solutions by invoking the Tolman ansatz for one of the metric potentials grr and a physically
reasonable selective profile of radial pressure. We have matched our obtained interior solution to
the Schwarzschild exterior spacetime over the bounding surface of the compact star. These matching
conditions together with the condition of vanishing the radial pressure across the boundary of the
star have been utilized to determine the model parameters. We have shown that the central pressure
of the star depends on the parameter p0. We have estimated the range of p0 by using the recent data
of compact stars 4U 1608-52 and Vela X-1. The effect of p0 on different physical parameters e.g.,
pressure anisotropy, the subliminal velocity of sound, relativistic adiabatic index etc. have also been
discussed. The developed model of the compact star is elaborately discussed both analytically and
graphically to justify that it satisfies all the criteria demanded a realistic star. From our analysis,
we have shown that the effect of anisotropy becomes small for higher values of p0. The mass-radius
(M-R) relationship which indicates the maximum mass admissible for observed pulsars for a given
surface density has also been investigated in our model. Moreover, the variation of radius and mass
with central density has been shown which allow us to estimate central density for a given radius
(or mass) of a compact star.

I. INTRODUCTION

Compact stars are the ultra-high dense objects exist
in nature where a huge mass gets compacted in a small
region producing the mass density beyond that of the
nuclear density [20, 96, 130]. A compact star is born
through a non equilibrium process of the gravitational
collapse refers collectively to a neutron star, made out
of neutron-rich nuclear matter or, a hybrid star made
of nuclear matter with a quark matter core or, strange
star exclusively composed of quark matter. White dwarfs
which are less dense than neutron stars and black holes
may be included in this compact star category. Compact
stars are unique objects that manifest themselves across
a wide range of multi-messenger signals like electromag-
netic radiation from radio to gamma-rays, cosmic rays,
neutrinos, and gravitational waves. It has been observed
that compact stars may have huge magnetic fields, es-
pecially at the surface. Their extreme density, gravity
and magnetic fields make them exceptional astrophysical
laboratories for exploring the fundamental theories and
interactions of elementary particles and testing general
relativity at extreme conditions. Compact stars are not
only extreme concerning their density but some of them
also possess rotation in the millisecond regime. In fact,
the first compact star has been discovered as pulsars, by
observing pulsating radio signals, for the first time in
1967 [39].
The general theory of relativity (GR) attracts a lot
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of interest in the fields of astrophysics, cosmology and
gravitational-wave astronomy and it potentially leads
to major breakthroughs since its introduction in 1915.
Adoption of GR by the scientific community has in-
creased dramatically in understanding the physics of
compact stellar objects over the years. Following the dis-
covery of quasars in the 1960s, and other very high energy
phenomena in the universe such as gamma-ray bursts
gravitation theory and relativistic astrophysics have gone
through extensive developments in recent decades and
the study of a compact star has got tremendous momen-
tum. In relativistic astrophysics, studies of compact stars
remain a field of active research since it can be used as a
testbed for general relativity as well as particle behavior
in the extreme conditions. Understanding the behav-
ior and properties of stellar structure in the strong-field
regime remains one of the fundamental questions.

Einstein field Equation is the cornerstone of General
Relativity (GR). Exact solutions of the field equations
are essential for describing the physical behavior of an
astrophysical compact object. Unfortunately, the high
nonlinearity associated with the field equations makes the
underlying calculations complicated with mathematical
difficulties. There are very few exact interior solutions of
the field equations satisfying the required general physi-
cal conditions inside the star. Delgaty and Lake [15] have
found 127 solutions out of which only 16 qualify the test
to meets all the conditions required for describing a phys-
ically realistic system. The study of general relativistic
compact stellar objects via finding exact solutions of the
field equations compatible with observational data has re-
mained one of the major research areas in relativistic as-
trophysics. Observational data available with the advent
of gravitational wave astronomy (LIGO, Virgo, KAGRA,
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LISA), as well as to high-angular-resolution observations
of black hole vicinity (EHT, VLTI/GRAVITY) stimulate
many researchers to contribute immensely to the theoret-
ical development of the physics of compact objects.

For a compact star, its mass and radius are consid-
ered as the basic properties. One can connect these with
the microscopic properties of nuclear and quark matter.
This link is made by the equation of state (EOS) of the
matter phase(s) inside the star which relates the pressure
with the energy density of dense matter. For the study of
compact stars, one requires proper understanding of the
equation of state (EOS) corresponding to the material
compositions of the star. The equation of state used to
study the compact star, in particular, for an estimation
of the accurate size, maximum mass and other physical
features. With the knowledge of the EOS with proper
boundary conditions, physical properties (such as mass-
radius relationships) of the star can be analyzed by inte-
grating the equation of hydrostatic equilibrium known as
Tolman-Oppenheimer-Volkoff [82] equations. In particu-
lar, a stiff equation of state produces a large maximum
mass.

In literature, assuming the different form of an equa-
tion of state (EOS) researchers generated many exact
solutions to the field equations for describing a realis-
tic compact object. For example, a linear EOS have
been found to develop stellar structure by many re-
searchers [22, 63, 66, 98, 110, 115]. Exact solutions to
Einstein field equations for an anisotropic sphere admit-
ting a quadratic type of EOS [17, 62, 106], polytropic
type [41, 80, 81, 107, 112] or Van der Waals type EOS
[113] have also been found in the literature.

One of the main difficulty is the uncertainty estima-
tion in the EOS, which is core to the modeling of com-
pact stellar objects and to understand the physical be-
havior of a compact object. Such limitation on EOS,
encourage many researchers to adopt various ad-hoc ap-
proaches for a wide variety scenario of astrophysical sys-
tems. Amongst many alternative techniques, one either
assumes the geometry or the fall-off behavior of density
or pressure of the matter source. Towards this direc-
tion the geometrical approach suggested by Vaidya and
Tikekar [128]and Tikekar [120] having compact three-
spheroidal geometry or Finch-Skea ansatz [18] where
the associated space-time is paraboloidal are very use-
ful for describing a super-dense compact object. Such
alternative methods are useful for the development of
stellar models as shown by many investigators such as
[12, 13, 16, 24, 44, 46, 47, 49, 58, 59, 61, 72, 73, 75–
78, 83, 85, 97, 99–101, 109, 116, 117, 119, 121–125]. Sev-
eral simple but effective approaches to solve the field
equations have been also used where the two metric po-
tentials gtt and grr are in general linked through an equa-
tion. The dependency of the metric potentials describes
as Karmakar embedding class one method, conformally
flat geometry and conformal motion respectively.

The first interior solution [95] corresponding to a
spherically symmetric stellar object was given by Karl

Schwarzschild by imposing the isotropic condition on the
Einstein equations. The matter under consideration was
treated to be perfect fluid, which has an equal radial
(pr) and tangential (pt) pressures. Later, Lemaitre in
1933 [54] developed a constant density anisotropic stel-
lar model supported with tangential pressure only. This
model was generalized for variable density by Florides
[19]. In 1972, Ruderman [93] and Canuto [9] pointed
out that at very high-density nuclear matter may be-
come anisotropic in general. From the theoretical point
of view, it is important to include the pressure anisotropy
in the energy-momentum tensor describing the matter
distribution of the system for describing the relativistic
stellar structure. Bowers and Liang [8] generalized the
equations of hydrostatic equilibrium to include the effects
of local anisotropy on relativistic fluid spheres. Their
work suggests that the anisotropy effects on the maxi-
mum equilibrium mass and surface redshift of a compact
star. Interestingly, it was shown by Ivanov [45] that by
considering a compact system to be anisotropic the ef-
fects of shear, electromagnetic field, etc. can be auto-
matically taken into account. The different factors that
have been identified for the justification of the existence
of anisotropy within a stellar interior such as the presence
of a solid core [48], phase transitions [103], a type III su-
perfluid, a pion condensation [94] or the presence of the
electrical field [127], slow rotation [51]. Strong magnetic
fields can also generate an anisotropic pressure inside a
self-gravitating body as pointed out by Weber [129]. It
has been shown that the mixture of two gases can be
represented by effective anisotropic fluid models [1, 55].
On the galactic scale, the existence of the anisotropy has
been pointed out [5]. Several anisotropic models have
been investigated by Maurya and Gupta [69], Maurya
et al. [71], Pandya et al. [84], Bhar et al. [3], Murad
[74], Maharaj and Mafa Takisa [60], Mafa Takisa et al.
[56, 57], Sunzu et al. [104, 105]. General algorithms
for generating static anisotropic solutions was also found
by Lake[53]. Some recent work may be found in Refs.
[28, 29, 50, 64, 65, 67, 68, 70, 108, 111, 114]. A complete
review on anisotropic fluid spheres can be found by the
work of Herrera and Santos [38].

As far as the dynamical evolution of a self-gravitating
system is concerned the anisotropic effects on the evolu-
tion was investigated by Herrera and co-workers [31–33],
Chan et al. [10], Govinder et al. [23], Herrera and Santos
[34], Chan et al. [11], Naidu et al. [79] and Rajah and
Maharaj [87]. Conformally flat solutions corresponding
to anisotropic compact self-gravitating objects were de-
veloped by Herrera et al. [36, 37]. Raposo et al. also
[88] studied on the dynamical properties of anisotropic
self-gravitating fluids in a covariant framework.

Inspired by the previous work done by several re-
searchers, in the present paper we develop a model of a
compact star by assuming a physically reasonable choice
for the radial pressure. Our paper has been organized
as follows. In sect. II Einstein field equations have been
described. Sect. III deals with the solutions of the field
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equation. In the next section (sect. IV) we have matched
our interior solution to the exterior Schwarzschild space-
time at the boundary. The physical attributes and the
stability condition of the model are respectively given in
sect. V and VI. Some discussions and concluding remarks
have been given in sect. VIII.

II. INTERIOR SPACETIME AND EINSTEIN

FIELD EQUATIONS

It is well known that the energy-momentum tensor for
an anisotropic model of the compact object can be de-
scribed by,

T ξ
χ = (ρ+ pt)u

ξuχ + ptg
ξ
χ + (pr − pt)η

ξηχ, (1)

where ηi is the space-like vector and the vector ui repre-
sent fluid 4-velocity and which is orthogonal to ηi with
−uiuj = ηiηj = 1 and uiηj = 0. ρ, pr and pt are the
matter density, radial pressure and tangential pressure
respectively.
In curvature co-ordinate (t, r, θ, φ) for a static spher-
ically symmetry configuration in (3+1)-dimension, the
interior spacetime is described by the line element,

ds2− = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2)

where λ and ν being metric potentials and are the func-
tions of the radial coordinate ‘r’.
Using the Einstein field equations Gµν = κTµν , we get
the following set of equations

κc2ρ =
λ′

r
e−λ +

1

r2
(1− e−λ), (3)

κpr =
1

r2
(e−λ − 1) +

ν′

r
e−λ, (4)

κpt =
1

4
e−λ

[

2ν′′ + ν′2 − λ′ν′ +
2

r
(ν′ − λ′)

]

, (5)

where κ = 8πG
c4

, Gµν being Einstein tensor, G is the uni-
versal gravitational constant and c is the speed of the
light. In the above equations ‘prime’ denotes differen-
tiation with respect to radial co-ordinate r. In this re-
spect we want to mention that the mass function m(r)
inside the radius ‘r’ can be obtained from the relation
e−λ = 1− 2m(r)

r
which can directly follow from eq. (3).

III. CHOICE OF METRIC POTENTIAL AND

NEW ANISOTROPIC SOLUTION

It is well known that the solutions of the field equation
which could describe a compact stellar structure that sat-
isfies all the physically reasonable conditions are a very
difficult job. To reduce the difficulties we apply a geo-
metrical approach by prescribing a suitable form of the
metric function. To solve the above set of Eqs. (3)-(5),
let us take the metric potential grr in the following form:

eλ = 1 + ar2 + br4, (6)
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FIG. 1: Energy density ρ is plotted against r inside the
stellar interior for a possible modelling of the compact

stars Vela X-1 and 4U 1608-52.
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FIG. 2: The metric potentials eν and eλ are plotted
against r inside the stellar interior for a possible
modelling of the compact stars Vela X-1 and 4U

1608-52.

where ‘a’ and ‘b’ are constant parameters having the units
km−2 and km−4 respectively. This metric potential was
proposed by Tolman[126] for describing a compact stellar
object. This metric potential is free from central singu-
larity and monotonic increasing function of r. This type
of ansatz were used earlier by several authors to model
compact star in both GTR and modified gravity [4, 7].
Substituting the expression for the metric potential eλ

from (6) into (3) and assuming G = 1 = c, the matter
density can be obtained as,

8πρ =
3a+ (a2 + 5b)r2 + 2abr4 + b2r6

(1 + ar2 + br4)2
, (7)

To find the other metric potential eν let us assume the
radial pressure in the form

8πpr =
p0(1− ar2)

(1 + ar2 + br4)2
, (8)

where p0 is a non-negative constant. The expression
of pr is reasonable due to the fact that it is monotonic
decreasing function of ’r’ and vanishes at r = 1√

a
. There-

fore, the radius of the star is obtained as R = 1√
a
, which

is a finite quantity. Moreover, it possess a finite value of
central pressure equal to p0/8π for all p0 > 0. The same
type of choice of pressure was earlier used by Sharma and
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FIG. 3: Radial pressure pr, transverse pressure pt and
anisotropic factor ∆ are plotted against r inside the

stellar interior for a possible modelling of the compact
stars Vela X-1 and 4U 1608-52 for p0 = 0.0023,

p0 = 0.0026, p0 = 0.0029 and p0 = 0.0032 by considering
different values of ‘a’ and ‘b’ mentioned in Table II.

Ratanpal [102] for describing a static spherically symmet-
ric anisotropic stellar configuration.
Substituting the expression for the radial pressure pr

mentioned above and the metric potential eλ into ( 4) we
get,

dν

dr
=

p0 r(1 − ar2)

1 + ar2 + br4
+ r(a + br2), (9)

On integrating equation (9) we get,

ν =
1

4

[

2ar2 + br4 − 2p0(a
2 + 2b)

b
√
a2 − 4b

tan−1
( a+ 2br2√

a2 − 4b

)

−ap0
b

log(1 + ar2 + br4)
]

+B, (10)

where B is the constant of integration, which will be
determined from the boundary conditions. Employing
the expression of the metric potentials in Eq. (5) we get
the expression of the transverse pressure pt as,

8πpt =
1

4Ψ3

[

p20r
2(1 − ar2)2 + r2(a+ br2)Ψξ1

−2p0(−2 + 4ar2 ++ξ2)
]

, (11)

where ξ1, ξ2 defined as,

ξ1 = 3a+ (a2 + 5b)r2 + 2abr4 + b2r6,

ξ2 = (a2 + 3b)r4 + a(a2 − 3b)r6 + (2a2 − b)br8 + ab2r10,

Ψ = 1 + ar2 + br4.

The anisotropic factor ∆ = pt − pr is given by,

8π∆ =
r2

4Ψ3

[

A1 +A2r
2 +A3r

4 +A4r
6 +A5r

8

+4ab3r10 + b4r12
]

, (12)

where Ai’s are constants given by,

A1 = 3a2 − 8ap0 + p20,

A2 = 2(2a3 + 4ab+ a2p0 − 5bp0 − ap20),

A3 = a4 + 5b2 − 2a3p0 + 10abp0 + a2(14b+ p20),

A4 = 2b(2a3 + 8ab− 2a2p0 + bp0),

A5 = 2b2(3(a2 + b)− ap0).

The anisotropy factor ∆ measures the anisotropy of the
system and 2∆

r
is termed as the anisotropic force which

will be repulsive in nature if pt > pr and attractive if
the inequalities is in reverse direction. In the coming
sections we shall check the physical features of our pro-
posed model.

IV. EXTERIOR SPACETIME AND MATCHING

CONDITION

To fix the model parameters a, b and D we match our
interior spacetime to the exterior Schwarzschild space-
time at the boundary r = R, where R is the radius of the
star. For our present case the interior and exterior line
element is given by,

ds2− = − exp
{1

4

{

2ar2 + br4 +
2p0(a

2 + 2b)

b
√
a2 − 4b

×

tan−1
( a+ 2br2√

a2 − 4b

)

− ap0
b

log(1 + ar2 + br4)
}

+B
}

dt2 + (1 + ar2 + br4)dr2

+r2(dθ2 + sin2 θdφ2), (13)

ds2+ = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2). (14)

Now using the matching condition at the boundary of
the star, one can get two fundamental form. The first
fundamental from consists in the continuity of the metric
potential across the boundary r = R. Explicitly

eλ
− |r=R = eλ

+ |r=R and eν
− |r=R = eν

+ |r=R. (15)

The second fundamental form gives,

pr(R) = 0, (16)

which determines the size of the compact object. The
second fundamental form tells us that the size of a com-
pact star can not be arbitrarily large, i.e., it is finite.
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Therefore, from first fundamental form we obtain

ln

(

1− 2M

R

)

=
1

4

{

2aR2 + bR4 +
2p0(a

2 + 2b)

b
√
a2 − 4b

×

tan−1
(a+ 2bR2

√
a2 − 4b

)

−ap0
b

log(1 + aR2 + bR4)
}

+B,

(17)
(

1− 2M

R

)−1

= 1 + aR2 + bR4. (18)

Using the expression of radial pressure (8) from the
Eq. (16) we have,

R2 =
1

a
. (19)

Now solving the Eqs. (17)-(19) we get,

a =
1

R2
, (20)

b =
1

R4

[

(

1− 2M

R

)−1

− 2

]

, (21)

B = ln

(

1− 2M

R

)

− 1

4

{

2aR2 + bR4 +
2p0(a

2 + 2b)

b
√
a2 − 4b

×

tan−1
(a+ 2bR2

√
a2 − 4b

)

− ap0
b

log(1 + aR2 + bR4)
}

.

(22)

The above set of equations determines the constants a,
b and B in terms of mass, radius of the compact object.
So we can calculate the model parameters a, b and B
numerically for a particular compact star from its esti-
mated mass and radius data. For our present work we
have estimated the mass and radius for the two compact
stars Vela X-1[89] and 4U 1608-52 [26] which has been
presented in Table I and the values of the constants a, b
are obtained in Table II where as the numerical values of
B is obtained in Table III. One interesting thing we can
note that here a, b do not depends on p0 but B does.

V. ANALYSIS OF THE SOLUTION

A. Nature of pressure and density

The density and pressure at the core of the star is
obtained as,

ρc =
3a

κ
; pc =

p0
κ

. Now it is well known that for a physically acceptable
model, both the central density and central pressure are
non-negative, which gives the following two inequalities:

a > 0; p0 > 0. (23)

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

r HkmL

p r
�
Ρ

4U 1608-52

p0=0.0032
p0=0.0029
p0=0.0026
p0=0.0023

0 2 4 6 8 10
0.08

0.10

0.12

0.14

0.16

0.18

r HkmL

p t
�
Ρ

4U 1608-52

p0=0.0032
p0=0.0029
p0=0.0026
p0=0.0023

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

r HkmL

p r
�
Ρ

Vela X-1

p0=0.0032
p0=0.0029
p0=0.0026
p0=0.0023

0 2 4 6 8 10
0.08

0.10

0.12

0.14

0.16

r HkmL

p t
�
Ρ

Vela X-1

p0=0.0032
p0=0.0029
p0=0.0026
p0=0.0023

FIG. 4: The equation of state parameters are plotted
against radial parameter r for a possible modelling of
the compact star Vela X-1 and 4U 1608-52 for different

values of p0 mentioned in the figures.

It is an important task to find a physically reasonable
bound for the central density p0 which we shall discuss
in the coming sections.
The density and pressure gradients are obtained as,

κ
dρ

dr
= − 2r

Ψ3
(5a2 − 5b+B1r

2 +B2r
4 + 3ab2r6 + b3r8),

κ
dpr
dr

= −2p0
Ψ2

(

2br3 + ar(2 − br4)
)

,

κ
dpt
dr

=
r

2Ψ4
×
[

B3 + 2B4r
2 −B5r

4 − 4B6r
6 + B7r

8

+4bB8r
10 +B9r

12 +B10r
14 +B11r

16
]

,

where B′
is are constants given by,

B1 = a(a2 + 13b),

B2 = 3b(a2 + 4b),

B3 = 3a2 − 16ap0 + p20,

B4 = a3 + 8ab+ 3a2p0 − 14bp0 − 2ap20,

B5 = a4 − 19a2b− 15b2 + a(17a2 − 58b)p0

+2(a2 + b)p20,

B6 = −8ab2 + (a4 + 10a2b − 9b2)p0

+a(−a2 + b)p20,

B7 = b(a4 + 4a2b+ 15b2)− a(a4 + 8a2b + 49b2)p0

+(a4 + 6a2b− 3b2)p20,

B8 = ab(a2 + b)− (a4 + a2b+ 2b2)p0 + abp20,

B9 = b2(b− ap0)
(

b+ a(6a+ p0)
)

,

B10 = 4ab3(b − ap0),

B11 = b4(b− ap0).

Now at the center of the star,

κρ′′ = −10(a2 − b) < 0, (24)

κp′′r = −4ap0 < 0, (25)

κp′′t =
3a2 − 16ap0 + p20

2
< 0. (26)
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From Eq. (24), we have,

b < a2, (27)

and Eq. (25) is automatically satisfied. Eq. (26) implies,

p0 ∈ (0.189a, 15.81a). (28)

The equation of state parameters ωr and ωt are given by,

ωr =
pr
ρ

=
p0(1 − ar2)Ψ

ξ1
,

ωt =
pt
ρ

=
1

4Ψξ1

[

p20r
2(1 − ar2)2Ψ++ϕ

]

,

Where,

ϕ = p0(4− a4r8 − 3a3ξ3 − a2ξ4 − ar2ξ5 + br4ξ6)

+r2(a+ br2)Ψξ1,

ξ3 = r6(2 + br4),

ξ4 = r4 + 11br8 + 3b2r12,

ξ5 = 4 + br4(−2 + br4)(6 + br4),

ξ6 = −2 + br4(7 + br4).

B. Mass function and redshift

Introducing the relation between the mass function
m(r) and the metric potential eλ, e−λ = 1 − 2m

r
, the

expression for mass function can be obtained as,

m(r) =
r3(a+ br2)

2(1 + ar2 + br4)
. (29)

Using the formulae of the compactness factor u(r) and
surface redshift (zs)

u(r) =
m

r
,

1 + zs(R) =
1

√

1− 2u(R)
,

the expression of these two quantities in our present
model are obtained as,

u(r) =
r2(a+ br2)

2(1 + ar2 + br4)
,

zs =
√

1 + aR2 + bR4 − 1,

where ‘R’ being the radius of the star. The gravitational
redshift is obtained as,

Z =
1√
eν

− 1,

=

[

exp
{

2ar2 +
1

4

[2p0(a
2 + 2b)

b
√
a2 − 4b

tan−1
( a+ 2br2√

a2 − 4b

)

+br4 − ap0
b

log(1 + ar2 + br4)
]

+B
}

]− 1
2

− 1.

Now the central value of the gravitational redshift is ob-
tained as,

Z0 =
1

√

[

exp
{

1
4

[

2p0(a2+2b)

b
√
a2−4b

tan−1
(

a√
a2−4b

)]

+B
}

]

− 1.

The gradient of the gravitational redshift is obtained as,

dZ

dr
= − 1

2
√
eν

[

r
p0(1− ar2)

1 + ar2 + br4
+ r(a + br2)

]

.

Now at the center of the star dZ
dr

= 0, and

(

d2Z

dr2

)

r=0

= − (a+ p0)

2

√

e
B+

(a2+2b)p0 tan−1

(

a√
a2

−4b

)

2b
√

a2
−4b

< 0.

It verifies that the gravitational redshift has maximum
value at the center of the star.

C. Mass-radius relationship

We have generated the mass-radius (M −R) relation-
ship for our developed model as shown in Fig. 5. The
mass-radius relationship obtained for an assumed surface
density 8.5 × 1014 gm/cc. The chosen surface density is
roughly close to that considered by Sharma and Maharaj
[98]. The maximum mass allowed in this model is found
to be 2.7M⊙ with the corresponding radius of value 8.9
km. This limit on maximum mass for a neutron star is
approximately 3.2M⊙ [91].

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RHkmL

M
HM
�
L

FIG. 5: Mass-radius relationship.

D. Radius-Central density and mass-central

density relation

For compact objects we have plotted the variation of
the radius and mass with the central density in Fig. 6.
This plot allows us to determine the central density of
compact star once the radius or the mass of the corre-
sponding star is known. Similar type of study can be
found in the work of Deb et al. [14].
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TABLE I: The observed and estimated mass and radius for a possible modelling of the compact star 4U 1608-52 [26]
and Vela X-1 [89].

Compact Star M/M⊙ R(km) M/M⊙ R(km)

(observed) (observed) (estimated) (estimated)

4U 1608-52 1.74 ± 0.14 10.811 ± 0.197 1.74 10.6

Vela X-1 1.77 ± 0.08 10.852 ± 0.108 1.77 10.8

TABLE II: The numerical values of a, b central density (ρc) and surface density (ρs) are obtained for a possible
modelling of the compact star 4U 1608-52 [26] and Vela X-1 [89].

Compact Star a b ρc ρs

units km−2 km−4 gm.cm−3 gm.cm−3

4U 1608-52 0.00889996 −4.8392 × 10−6 1.43346 × 1015 4.54525 × 1014

Vela X-1 0.00857339 −4.70387 × 10−6 1.38086 × 1015 4.36711 × 1014

0 2 4 6 8 10 12 14
0.0

0.5
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Ρc´1014Hgm�ccL

M
�M
�

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

Ρc´1014Hgm�ccL

R
Hk

m
L

FIG. 6: Variation of radius and mass with central
density.

E. Energy Conditions

It is well known that for a compact star model, the en-
ergy conditions should be satisfied and in this subsection
we are in a position to study about it. For an anisotropic
compact star, all the energy conditions like, Weak Energy
Condition (WEC), Null Energy Condition (NEC), Strong
Energy Condition (SEC) and dominant energy conditions
(DEC) are satisfied if and only if the following inequali-
ties hold simultaneously for every points inside the stellar
configuration.
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FIG. 7: NEC, WEC, SEC and DEC are plotted against
the radius r for a possible modelling of the compact star

Vela X-1 and 4U 1608-52 for different values of p0
mentioned in the figures.

WEC : Tµνt
µtν ≥ 0 or ρ ≥ 0, ρ+ pi ≥ 0 (30)

NEC : Tµν l
µlν ≥ 0 or ρ+ pi ≥ 0 (31)

DEC : Tµνt
µtν ≥ 0 or ρ ≥ |pi| (32)

SEC : Tµνt
µtν − 1

2
T λ
λ t

σtσ ≥ 0 or ρ+
∑

i

pi ≥ 0,

(33)
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where i takes the value r and t for radial and transverse
pressure. tµ and lµ are time-like vector and null vector
respectively and T µνtµ is nonspace-like vector. To check
all the inequality stated above we have drawn the profiles
of l.h.s of (30)-(33) in fig 7 in the interior of the compact
star PSR J 1614-2230 and 4U1608-52. The figure shows
that all the energy conditions are well satisfied by our
present model of compact star.

VI. STABILITY ANALYSIS

In this section we want to check the stability of the
present model with the help of (i) causality condition,
(ii) relativistic adiabatic index (iii) Harrison-Zeldovich-
Novikov’s stability condition and (iv) tov equation.

A. Causality Condition

For a compact star model, the radial and transverse
velocity of sound is obtained as,

V 2
r =

dpr
dρ

, V 2
t =

dpt
dρ

.

Using the above formulae, for our present model, the
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FIG. 8: V 2
r , V 2

t and V 2
t − V 2

r are plotted against r for
p0 = 0.0023, p0 = 0.0026, p0 = 0.0029 and p0 = 0.0032
respectively for different values of ‘a’ and ‘b’ mentioned
in Table II for a possible modelling of the compact stars

Vela X-1 and 4U 1608-52.

radial and transverse velocity of sound are calculated as,

V 2
r =

p0Ψ

ζ

(

2br2 + a(2− br4)
)

, (34)

V 2
t =

1

4Ψζ

[

C3 − 2C4r
2 + C5r

4 + 4C6r
6 + C7r

8

−C8r
10 + C9r

12 + C10r
14 + C11r

16
]

, (35)

where

ζ = 5a2 − 5b+ C1r
2 + C2r

4 + 3ab2r6 + b3r8,

and C′
is are constants given by,

C1 = a(a2 + 13b),

C2 = 3b(a2 + 4b),

C3 = −3a2 + 16ap0 − p20,

C4 = a3 + 8ab+ 3a2p0 − 14bp0 − 2ap20,

C5 = a4 − 19a2b − 15b2 + a(17a2 − 58b)p0

+2(a2 + b)p20,

C6 = −8ab2 + (a4 + 10a2b− 9b2)p0 + a(−a2 + b)p20,

C7 = a5p0 + 8a3bp0 + 49ab2p0 + 3b2(−5b+ p20)

−a4(b + p20)− 2a2b(2b+ 3p20),

C8 = 4b
(

ab(a2 + b)− (a4 + a2b+ 2b2)p0 + abp20
)

,

C9 = b2(−b+ ap0)
(

b+ a(6a+ p0)
)

,

C10 = 4ab3(−b+ ap0),

C11 = b4(−b+ ap0).

Now at the point r = 0, the square of radial and trans-
verse velocity of sound are obtained as,

V 2
r =

3ap0
5(a2 − b)

, V 2
t = −3a2 − 20ap0 + p20

20(a2 − b)
.

Moreover, at the center of the star,

V 2
t − V 2

r = −3a2 − 8ap0 + p20
20(a2 − b)

. (36)

Now by using Le Chatelier’s principle we have the
speed of sound must be positive inside the stellar inte-

rior, i.e., 0 <
p′

r

ρ′
,
p′

t

ρ′
. We also know that for a physically

acceptable model, the velocity of the sound (both radial
and transverse) should be less than the speed of the light

i.e., both
p′

r

ρ′
,
p′

t

ρ′
< 1 which is known as the causality

condition. Here ρ′ and p′r represent differentiation with
respect to r. Combining the above two inequalities we
have, 0 ≤ V 2

r , V 2
t ≤ 1.

To find a potentially stable region, in 1992, Her-
rera proposed a method which is known as “cracking
method”. This method tells us that a stellar model will
be potentially stable if the square of radial velocity of
sound exceeds the square of transverse velocity of sound
everywhere within the stellar model, otherwise the stellar
model will be potentially unstable i.e.,

V 2
t − V 2

r

{

< 0 for 0 ≤ r ≤ R ⇒ potentially stable

> 0 for 0 ≤ r ≤ R ⇒ unstable.
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Now at the center of the star, V 2
t − V 2

r < 0 gives,

−3a2 − 8ap0 + p20
20(a2 − b)

< 0 (37)

Using, Eq. (27) from Eq. (37), we further obtain the fol-
lowing inequality:

3a2 − 8ap0 + p20 > 0.

The above inequality gives,

p0 6∈ (0.3944a, 7.6055a). (38)

Combining (28) and (38), we further get,

p0 ∈ (0.18975a, 0.3944a)∪ (7.6055a, 15.8102a).(39)

Hence we have obtained a range for p0 that could describe
a physically reasonable stellar structure.

B. Relativistic Adiabatic index

The adiabatic index determines the stability of a com-
pact object and for an anisotropic stellar configuration it
is defined as,

Γr =
ρ(r) + pr(r)

pr(r)

dpr(r)

dρ(r)
. (40)
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FIG. 9: Adiabatic Index is plotted against r inside the
stellar interior for a possible modelling of the compact
star Vela X-1 and 4U 1608-52 for different values of p0

mentioned in the figures.

For our model we have

Γr =
3a+ p0 + (a2 + 5b)r2 +D1r

4 +D2r
6

p0(1 − ar2)Ψ
V 2
r ,

where D1 and D2 are constants given by,

D1 = 2ab− a2p0 + bp0 ; D2 = b(b− ap0).

Any stellar configuration will maintain its stability if adi-
abatic index Γr > 4/3 [27]. For our solution, the adia-
batic index Γr takes the value more than 4/3 throughout
the interior of the compact star, as evident from Fig. 9.

C. Tov equation

Now we are ready to check the stability of our present
model under three different forces viz gravitational force
Fg, hydrostatics force Fh and anisotropic force Fa. The
effect of the above three forces can be described by the
conservation equation given by

∇µTµν = 0, (41)

known as TOV equation. Now using the expression given
in (1) into (41) one can obtain the following equation:

− ν′

2
(ρ+ pr) +

2

r
(pt − pr) = p′r. (42)

The eqn. (42) can be written as,

Fg + Fh + Fa = 0, (43)

where the expression for Fg, Fh and Fa are obtained
as:

Fg = −ν′

2
(ρ+ pr)

=
r

2κΨ3

{(

a+ p0 + (a2 + b− ap0)r
2 + 2abr4

+b2r6
)

×
(

3a+ p0 + (a2 + 5b− ap0)r
2

+2abr4 + b2r6
)}

, (44)

Fh = −dpr
dr

=
2p0
κΨ2

(

2br3 + ar(2 − br4)
)

, (45)

Fa =
2∆

r
=

r

8κΨ3

[

A1 +A2r
2 +A3r

4 +A4r
6 +A5r

8

+4ab3r10 + b4r12
]

. (46)

The three different forces acting on the system are shown
in fig. 10 for the compact stars Vela X-1 and 4U 1608-52
for different values of p0.

D. Harrison-Zeldovich-Novikov’s stability

condition

Depending on the mass and central density of the star,
Harrison et al. [30] and Zeldovich-Novikov [131] proposed
the stability condition for the model of compact star.
From their investigation they suggested that for stable
configuration ∂M

∂ρc
> 0, where M, ρc denotes the mass

and central density of the compact star.
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TABLE III: The numerical values of central pressure (pc) in dyne·cm−2 unit, surface anisotropy in dyne·cm−2 unit,
central radial velocity (Vr(0)), surface radial velocity (Vr(R)), central transverse velocity (Vt(0)), surface transverse

velocity (Vt(R)) for a possible modelling of the compact star 4U 1608-52 [26].

p0 pc ∆s = pt(R) Vr(0) Vr(R) Vt(0) Vt(R) Γr(0)

0.0023 1.11134 × 1035 6.64583 × 1034 0.382269 0.305075 0.314703 0.185608 1.84249

0.0026 1.2563 × 1035 6.26024 × 1034 0.406435 0.324362 0.360459 0.212585 1.86155

0.0029 1.40126 × 1035 5.87465 × 1034 0.429243 0.342564 0.400895 0.236505 1.88061

0.0032 1.54621 × 1035 5.48905 × 1034 0.450899 0.359847 0.437487 0.258218 1.89967
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FIG. 10: Different forces are plotted against radial
parameter r for a possible modelling of the compact

star Vela X-1 and 4U 1608-52 for different values of p0
mentioned in the figures.
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FIG. 11: Variation of mass (M/M⊙) and
∂M
∂ρc

with

respect to the central density ρc for a possible modelling
of the compact star Vela X-1 and 4U 1608-52.

For our present model,

∂M

∂ρc
=

12πR3
(

1 + b(R4 −R6)
)

(3 + 3bR4 + 8πR2ρc)2
. (47)

Above expression of ∂M
∂ρc

is positive and hence the stabil-

ity condition is well satisfied. The variation of the mass
function as well as ∂M

∂ρc
with respect to the central density

is depicted in fig. 11.

E. Linearized stability analysis

We have already matched the interior space-time con-
tinuously to an exterior schwarzschild vacuum solution
with pr = 0 at the junction interface Σ, with junction
radius R.
Now by using the standard Darmois-Israel formalism
[42, 43] and with the help of Lanczos equations the sur-
face stresses can be obtained, as follows :

σ = − 1

4πR

[

√

1− 2M

R
+ Ṙ2

−
√

1

(1 + aR2 + bR4)
+ Ṙ2

]

, (48)

and

P =
1

8πR

[1− M
R

+ Ṙ+RR̈
√

1− 2M
R

+ Ṙ2

−
(1 + aR2 + bR4)−1 + Ṙ2 1−bR4

1+aR2+bR4 +RR̈
√

(1 + aR2 + bR4)−1 + Ṙ2

]

(49)

Where σ and P represent the surface density and tan-
gential surface pressure of the internal forces on the junc-
tion surface.
We now proceed with the surface mass of the thin shell

is given by

ms = 4πR2σ. (50)

When one substitutes Eq. (48) into Eq. (50), one can
get

ms = −R

[

√

1− 2M

R
+ Ṙ2 −

√

Ṙ2 + (1 + aR2 + bR4)−1

]

,

(51)
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TABLE IV: The numerical values of central pressure (pc) in dyne·cm−2 unit, surface anisotropy in dyne·cm−2 unit,
central radial velocity (Vr(0)), surface radial velocity (Vr(R)), central transverse velocity (Vt(0)), surface transverse

velocity (Vt(R)) for a possible modelling of the compact star Vela X-1 [89].

p0 pc ∆s = pt(R) Vr(0) Vr(R) Vt(0) Vt(R) Γr(0)

0.0023 1.11134 × 1035 6.2321 × 1034 0.38895 0.311366 0.328293 0.200689 1.84302

0.0026 1.2563 × 1035 5.84535 × 1034 0.413539 0.33105 0.373797 0.227046 1.86275

0.0029 1.40126 × 1035 5.45861 × 1034 0.436746 0.349628 0.414194 0.250647 1.88248

0.0032 1.54621 × 1035 5.07186 × 1034 0.45878 0.367267 0.450859 0.272209 1.90222

Now, differentiating twice the expression in (50), and tak-
ing into account the radial derivative of σ′, we can obtain,

(ms

2R

)′′
= Υ− 4π σ′η, (52)

where the parameters η and Υ are given by,

η =
P ′

σ′ , Υ =
4π

R
(σ + P) + 2π RΞ′. (53)

The expression found above will play an important role in
stability analysis of static solutions. Here the parameter
η is used to determine the stability of the system. η can
be interpreted as the square of velocity of sound on the
shell and it lies in the range 0 < η ≤ 1. For our present
model,

Ξ =
aR+ 2bR3

4π + 4aπR2 + 4bπR4

√

Ṙ2 + (1 + aR2 + bR4)−1.

Now we are going to check for the stability analysis of
the solution. In order to study the dynamical stability
of the stellar model we consider a linear perturbation
around those static solutions.
Rearranging (48), we get,

Ṙ2 + V (R) = 0, (54)

with V (R) given by

V (R) = 1−m(R) +M

R
−
(

ms(R)

2R

)2

−
(

M −m(R)

ms(R)

)2

.

(55)
Note that the potential function V (R) helps us to de-
termine the stability region for the thin shell under the
linear perturbation. By considering the Taylor series ex-
pansion around the static solution R0, up to second order
we get,

V (R) = V (R0) + (R−R0)V
′(R0) +

(R −R0)
2

2
V ′′(R0)

+O[(R−R0)
3], (56)

where prime corresponding to a derivative with respect to
R. According to the standard method we are linearizing
around the static radius R = R0, we must have V (R0) =
0 and V ′(R0) = 0. Now, V ′(R0) = 0 gives the following
relation

(

ms(R0)

2R0

)′
= Φ =

R0

ms(R0)

[

−
(

m(R0) +M

R0

)′

−2

(

M −m(R0)

ms(R0)

)(

M −m(R0)

ms(R0)

)′
]

. (57)

With this definition the second derivative V ′′(R0) can be
written as

V ′′(R0) = −
(

m+M

R0

)′′
− 2

[

(

ms

2R0

)′
]2

−2

(

ms

2R0

)(

ms

2R0

)′′
− 2

[

(

M −m

ms

)′
]2

−2

(

M −m

ms

)(

M −m

ms

)′′
. (58)

Thus, for a static configuration V (R0) = 0, V ′(R0) = 0.
Now from (54) and (56), we get,

Ṙ2 +
1

2
V ′′(R0) (R−R0)

2
+O[(R −R0)

3] = 0, (59)

To ensure the stability of static configuration at R = R0,
we must have, V ′′(R0) > 0. For the sake of simplicity we
rearrange the Eq. (59), which turns out

⇒ V ′′ = Π− 2Φ2 − ms

R0
(Υ− 4π σ′η)

∣

∣

∣

R0

. (60)

where,

Π = −
(

m+M

R0

)′′
− 2

[

(

M −m

ms

)′
]2

−2

(

M −m

ms

)(

M −m

ms

)′′
. (61)

(For details calculations please refer ref [2].)
Now by assuming η(R0) = η0 and using Eq. (60) for

V ′′(R0) > 0 we have

η0
dσ2

dR

∣

∣

∣

R0

>
σ

2π

[

Υ+
R0

ms

(2Φ2 −Π)

]

= Ω (say). (62)
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From the above inequality we get the following two cases,

η0 > Ω

(

dσ2

dR

∣

∣

∣

R0

)−1

, if
dσ2

dR

∣

∣

∣

R0

> 0, (63)

η0 < Ω

(

dσ2

dR

∣

∣

∣

R0

)−1

, if
dσ2

dR

∣

∣

∣

R0

< 0. (64)

Now to make a comment regarding the stability region

of the stellar configuration, the profile of
dσ2

0

dR0
is plotted

in fig 12. So, we can conclude that the stability region is

given by eq. (64) since
dσ2

0

dR0
< 0 for our present paper.

VII. CALCULATION OF TIDAL LOVE

NUMBER OF COMPACT NEUTRON STAR

WITH ANISOTROPIC PRESSURE

Gravitational perturbation are very much important,
though very much difficult to handle, since they convey
information about the structure of the gravitational field
equations. So let’s start by trying to answer these ques-
tion: Given a metric for instance Schwarzschild geom-
etry or metric of a compact neutron star, how does a
small perturburtation in the metric evolve? Here small
perturbation means anything- a wave, a celestial body,
a falling particle - that disturb the background metric
slightly. Mathematically consider a background metric
(0)gµν(x

ν)- metric of a neutron star. With small pertur-
bation hµν(x

ν), the modified new metric can be written
as

gµν (x
ν) =(0) gµν (x

ν) + hµν (x
ν) , (65)

where the background geometry of spacetime of a
spherical static star can be written as

(0)ds2 =(0) gµνdx
µdxν

= −eν(r)dt2 + eλ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

.

(66)

For the linearized metric perturbation hαβ , using the
method as in [90], [6], we restrict ourselves to static
l = 2, m = 0 even parity perturbation. With these as-
sumptions the perturbed metric becomes

hαβ = diag
[

H0(r)e
ν , H2(r)e

λ, r2K(r), r2 sin2 θK(r)
]

Y2m(θ, φ),

(67)

Because of these external perturbation the equalibrium
configuration of a star gets deformed tidally. As a cose-
quence spherically symmetric star develpes a quadrapole
moment Qij . And Qij can be related with the linear
order external tidal field εij as [40]

Qij = −Λ εij, (68)

where Λ is the tidal deformability of the neutron star
and it is related to the tidal love number k2 as Λ =
2

3
k2 R

5 [40].

Now for the spherically static metic (66), the stress-
energy tensor is given as

(0)T ξ
χ = (ρ+ pt)u

ξuχ + ptg
ξ
χ + (pr − pt) η

ξηχ. (69)

Furthermore the energy momentum tensor is per-
turbed by a perturbation tensor δT ξ

χ. The perturbed
tensor is defined by

T ξ
χ =(0) T ξ

χ + δT ξ
χ, (70)

where the non-zero components of T ξ
χ are

T t
t = − dρ

dpr
δpr(r)Y (θ, φ) − ρ(r), (71)

T r
r = δpr(r)Y (θ, φ) + pr(r), (72)

T θ
θ =

dpt
dpr

δpr(r)Y (θ, φ) + pt(r), (73)

T φ
φ =

dpt
dpr

δpr(r)Y (θ, φ) + pt(r). (74)

Note that in Eq. (71)-(74), and hereafter, we use
p ≡ pr to denote the radial pressure. With these per-
turbed quantities we can write down the perturbed Ein-
stein Field Equations

Gξ
χ = 8πT ξ

χ, (75)

where the Einstein tensor Gξ
χ is calculated using the

metric gχξ.
From the various components of background Einstein

field equation (0)Gξ
χ = 8π(0)T ξ

χ, we can have the following
things (which will be used later on):

(0)Gt
t = 8π(0)T t

t

⇒ λ′(r) =
8πr2eλ(r)ρ(r)− eλ(r) + 1

r
, (76)

(0)Gr
r = 8π(0)T r

r

⇒ ν′(r) =
8πr2pr(r)e

λ(r) + eλ(r) − 1

r
. (77)

Also we know that ∇(0)
ξ T ξ

χ = 0. Choosing ξ = r, by
expanding and solving the equation, we can find the ex-
pression as
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FIG. 12:
dσ2

0

dR0
has been shown against R0

p′r(r) =
1

2r
[−4pr(r) + 4pt(r)− rpr(r)ν

′(r)− rρ(r)ν′(r)] .

(78)

Now from the various components of perturbed Ein-
stein equation (75), we get the following relations

Gθ
θ −Gφ

φ = 0 ⇒ H0(r) = H2(r) = H(r), (79)

Gθ
r = 0 ⇒ K ′ = H ′ +Hν′, (80)

Gθ
θ +Gφ

φ = 8π(T θ
θ + T φ

φ ) ⇒ δp =
H(r)e−λ(r) (λ′(r) + ν′(r))

16πr dpt

dpr

.

(81)

Using the identity

∂2Y (θ, φ)

∂θ2
+cot(θ)

∂Y (θ, φ)

∂θ
+csc2(θ)

∂2Y (θ, φ)

∂φ2
= −6Y (θ, φ)

, eqn (76), (77) ,(78) ,(80), (81) we have the master equa-
tion for H(r) as

− 1

e−λ(r)Y (θ, φ)

[

Gt
t −Gr

r

]

= − 8π

e−λ(r)Y (θ, φ)

[

T t
t − T r

r

]

⇒ H ′′(r) +RH ′(r) + SH(r) = 0 (82)

Where,

R = −
[−eλ(r) − 1

r
− 4πreλ(r)(pr − ρ(r))

]

(83)

S = −
[

16πeλ(r)
(

pr

(

eλ(r) − 2
)

− pt(r) − ρ(r)
)

+ 64π2r2p2re
2λ(r) +

4eλ(r) + e2λ(r) + 1

r2

+
−4π dρ

dpr
eλ(r)(pr + ρ(r)) − 4πeλ(r)(pr + ρ(r))

dpt

dpr

]

(84)

eλ(r) = 1 + ar2 + br4, a = 1/R2, b =
1
R4

[

(

1− 2M
R

)−1 − 2
]

. M & R are mass and ra-

dius of the star respectively. And the expression for
pr, pt & ρ are given in the equation (7),(8),(11) respec-

tively.

Outside the star, considering Schwarzschild metric and
by setting ρ = 0, pr = 0, pt = 0, eλ = 1/(1 − 2M/r),
equation (82) becomes:

−H ′′(r) +

(

1

2M − r
− 1

r

)

H ′(r) +
2H(r)

(

2M2 − 6Mr + 3r2
)

r2(r − 2M)2
= 0 (85)
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Solution to the equation (85) is

H(r) =
3c1r(2M − r)

M2
+

c2
(

−2M
(

2M3 + 4M2r − 9Mr2 + 3r3
)

− 3r2(r − 2M)2 log
(

r
M

− 2
)

+ 3r2(r − 2M)2 log
(

r
M

))

2M2r(2M − r)
(86)

Where c1 & c2 are integration constant which yet to be
determined. In order to get these constants, let’s expand
the equation (86).

H(r) = −3c1r
2

M2
+

6c1r

M
− c2

(

8M3
)

5r3
+O

(

(

1

r

)4
)

(87)

Now in the star’s local asymptotic rest frame (asymp-
totically mass-centered Cartesian coordinates) at large r
the metric coefficient gtt is given by [118], [40]

(1− gtt)

2
= −M

r
− 3Qij

2r3

(

ninj − 1

3
δij
)

+O(
1

r3
)

+
1

2
Eijxixj +O(r3), (88)

where ni = xi/r. Matching the asymptotic solution
from equation (87) to the expansion from equation (88)
and using the equation (68) we have

c1 = −M2E
3

, c2 =
15Q
8M3

(89)

We now solve for k2 in terms of H and its derivative at
the star’s surface r = R using equations (89) and (86),
and use equation k2 = 3

2ΛR
−5 to obtain the expression

for tidal love number

k2 = [8(1− 2C)2C5(2C(y − 1)− y + 2)]/X (90)

Where,

X = 5(2C(C(2C(C(2C(y + 1) + 3y − 2)− 11y + 13) + 3(5y − 8))− 3y + 6)

+3(1− 2C)2(2C(y − 1)− y + 2) log

(

1

C − 2

)

− 3(1− 2C)2(2C(y − 1)− y + 2) log

(

1

C

))

(91)

Here C = M
R

and y depends on r, H and it’s derivatives

y =
rH ′(r)

H(r) R

. (92)

To get the numerical value of k2 for a particular star,
first of all we have to find the numerical value of y. To do
this let’s modify master differential equation (82) using
the equation (92) as [86]

ry ′ + y2 + (rR− 1)y + r2S = 0 (93)

At C → 0 we expect k2 → 0 and hence y(0) = 2. Also
one can check numerically that at C = 1/2 the tidal
love number vanishes for all value of y. It is because
the tidal deformability of any order l, both electric and
magnetic, vanish in the Black hole limit. In other words,
the multipolar structure of a black hole is not affected
by the tidal field. This can be view as a corollary of the
no-hair theorem, and recently it has been proved beyond

the perturbative level [25].

After solving the the differential equation (93) using
initial value y(0) = 2, equation (83) & eqn (84), we can
calculate k2 from the equation (90).

In the fig. 13 the variation of y w.r.t. p0 are shown for
four different compact stars. In the figure 14 the variation
of tidal love number k2 against the central pressure p0
are shown for four different compact objects. We found
that tidal love number k2 decreases monotonically with
increasing p0. Here the maximum range of p0 is 0.3944 a
as in the equation (39). Where as the minimum range
of p0 varies for different compact stars. The minimum
possible value of p0 for some compact star is given in the
table V.
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FIG. 13: y is plotted over p0 for four different compact
star SAXJ1748.9− 2021, 4U1608− 52, V elaX − I,

KS1731− 260. The value of M & R of these stars are
take from the paper [92]. Only allowed range of p0 are

considered.

TABLE V: The numerical value of Mass, Radius,
minimum and maxium range of p0 for different compact
star. a = 1/R2. Numerical values of mass and radius

are taken from [92]

Name min. p0 max. p0 M(M⊙) R km

SAX J1748.9-2021 0.27305a 0.3944a 1.81 ± 0.25 11.7± 1.7

4U 1608-52 0.30750a 0.3944a 1.74 ± 0.14 10.811 ± 0.19

Vela X-I 0.318500a 0.3944a 1.77 ± 0.08 10.852 ± 0.1

KS 1731-260 0.30755a 0.3944a 1.61 ± 0.35 10± 2.2

VIII. DISCUSSION

In our present paper we proposed a new model of com-
pact star in the background of general theory of relativity.
In this work we have focused on the compact object 4U
1608-52 and Vela X-1 whose estimated masses and radii
are obtained in Table I. Our present model satisfies the
following conditions:

• Regularity of metric potential: Both the metric po-
tentials eν , eλ are regular i.e., free from all kinds
of singularity inside the stellar interior. eλ|r=0 =

1, eν |r=0 = exp

[

2p0(a
2+2b)

b
√
4b−a2

tan−1
(

a√
4b−a2

)

+B

]

.

• The matter density, both radial and transverse
pressures take maximum value at the center of the
star and gradually decreases towards the bound-
ary, i.e., all are monotonic decreasing functions of
r and at the same time they do not suffer from any
kinds of singularity. Both the pressures depend on
dimensionless quantity p0 and the central pressure
increases for the increasing values of p0.

• The anisotropic factor vanishes at the center of
the star and ∆ > 0 for 0 ≤ r ≤ R. For posi-
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FIG. 14: Tidal love number k2 is plotted against p0 for
compact star SAXJ1748.9− 2021, 4U1608− 52,

V elaX − I, KS1731− 260. The value of M & R of
these stars are take from the paper [92]. Only allowed

range of p0 are considered.

tive anisotropic factor makes the system more sta-
ble and it helps to construct more compact object
[21]. The equation of state parameters are plotted
against ‘r’ inside the stellar interior in fig. 4 and
one can note that 0 < ωr, ωt < 1.

• We have verified that all the energy conditions are
satisfied by our model with the help of graphical
representation and the model is stable under the
effect of the three different forces. From the fig.
10 we see that the gravitational force is attractive
but both the anisotropic and hydrostatic forces are
repulsive and the combine effect of these two forces
is counterbalanced by the gravitational force which
makes the system in static equilibrium. One in-
teresting thing we can also notice that Fh and Fa

intersects at some point inside the fluid sphere. The
causality conditions and the the Herrera’s cracking
conditions are also satisfied as well. Our model is
potentially stable as well since V 2

t − V 2
r < 0 every-

where inside the fluid sphere.

• We have obtained a reasonable bound for the di-
mensionless quantity p0 from the physical analysis
and we have shown that it depends on ’a’.

• We have successfully demonstrated the possibil-
ity that the anisotropic stars could be ultra com-
pact objects due to the additional support from
anisotropy and could be sources of gravitational
wave echoes. In this model, we have calculated
tidal deformability of the anisotropic stars and
show how the tidal love number varies with the
compactness factor of a star. As an interesting con-
sequence, we can see that in the black hole limit the
love number vanishes. Also, the existence of the
non zero value of tidal love number at zero com-
pactness factor agrees with some of the recent find-
ings.
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• Generating function: Lake [52] proposed an al-
gorithm based on the choice of a single mono-
tone function subject to boundary conditions which
generates all regular static spherically symmetric
perfect-fluid solutions of Einstein equations. Her-
rera et al. [35] extended this work to the case of
locally anisotropic fluids and proved that two func-
tions instead of one is required to generate all pos-
sible solutions for anisotropic fluid. To find these
two generating function we first consider pressure
anisotropy for our present model given as,

pt − pr =
e−λ

κ

[−λ′ν′

4
+

ν′2

4
+

ν′′

2
− λ′ − ν′

2r

−ν′

r
+

eλ − 1

r2

]

. (94)

Now by introducing DB transformation

x = r2, V (x) = e−λ, and y(x) = eν ,

the Eqn. (94), transform to,

dV

dx

(

1 + x
ẏ

y

)

+ V
[(

2
ÿ

y
− ẏ2

y2

)

x− 1

x

]

= κ∆− 1

x
,(95)

The above equation can be denoted as,

dV

dx
+ F (x)V = S(x), (96)

which is linear equation of x. The integrating factor
of the above equation is,

e
∫

F (x)dx

and the solution of the above equation is,

V (x) = e−
∫

F (x)dx

∫

S(x)e
∫

F (x)dxdx+ k,

where k is the constant of integration and

F (x) =

(

2 ÿ
y
− ẏ2

y2

)

x− 1
x

1 + x ẏ
y

, (97)

S(x) =
κ∆− 1

x

1 + x ẏ
y

. (98)

From the above discussion it is clear that the model
of the compact star stands on two functions F (x)
and S(x), where as F (x) and S(x) depends on y(x)
and ∆. Therefore for our model the two generating
functions are therefore,

y(x) = exp
[1

4

{

2ax+ bx2 +
2p0(a

2 + 2b)

b
√
a2 − 4b

×

tan−1
( a+ 2bx√

a2 − 4b

)

− ap0
b

log(1 + ax+ bx2)
}

+B
]

, (99)

∆ =
x

4Ψ3

[

A1 +A2x+A3x
2 +A4x

3 +A5x
4

+4ab3x5 + b4x6
]

. (100)
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