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COMPACT SUMS OF TOEPLITZ PRODUCTS
AND TOEPLITZ ALGEBRA ON THE DIRICHLET SPACE

YOUNG JOO LEE
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Abstract. In this paper we consider Toeplitz operators on the Dirichlet space of the
ball. We first characterize the compactness of operators which are finite sums of products
of two Toeplitz operators. We also characterize Fredholm Toeplitz operators and describe the
essential norm of Toeplitz operators. By using these results, we establish a short exact sequence
associated with the C∗-algebra generated by all Toeplitz operators.

1. Introduction. Let B = Bn be the unit ball in the complex n-space Cn and V be
the Lebesgue volume measure on B normalized so that V (B) = 1. The Sobolev space S is
the completion of the space of all smooth functions f on B for which

‖f ‖ =
{ ∣∣∣∣

∫
B

f dV

∣∣∣∣
2

+
∫
B

(
|Rf |2 + |R̃f |2

)
dV

}1/2

< ∞

where

Rf (z) =
n∑
i=1

zi
∂f

∂zi
(z) , R̃f (z) =

n∑
i=1

zi
∂f

∂zi
(z)

for z = (z1, . . . , zn) ∈ B. Then the Sobolev space S is a Hilbert space with respect to the
inner product

〈f, g〉 =
∫
B

f dV

∫
B

g dV +
∫
B

(
RfRg + R̃f R̃g

)
dV .

The Dirichlet space D is then a subspace of S consisting of all holomorphic functions on B.
Then it is easy to see that the Dirichlet space D is closed in S . We let P be the Hilbert space
orthogonal projection from S onto D . Put

L 1,∞ =
{
ϕ ∈ S : ϕ, ∂ϕ

∂zj
,
∂ϕ

∂z̄j
∈ L∞, j = 1, . . . , n

}

where the derivatives are taken in the sense of distribution. By the Sobolev embedding
theorem([1, Theorem 5.4]), each function in L 1,∞ can be extended to a continuous func-
tion on the closed unit ball B̄. Thus we will use the same notation between a function in
L 1,∞ and its continuous extension to B̄. Also, for ϕ ∈ L 1,∞, we note that Rϕ, R̃ϕ ∈ L∞.
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Given u ∈ L 1,∞, the Toeplitz operator Tu with symbol u is defined on D by

Tuf = P(uf )

for functions f ∈ D . Then Tu is a bounded linear operator on D ; see Proposition 1 of Section
3.

In this paper we first consider operators which are finite sums of products of two Toeplitz
operators. More explicitly, we consider operators L of the form

(1) L =
N∑
j=1

Tuj Tvj ,

where uj , vj ∈ L 1,∞. We then study the problem of when such an operator of the form (1) is
compact on D . On the setting of the smaller Dirichlet space D0 consisting of all holomorphic
functions f in S which have restriction f (0) = 0, the same problem has been studied in [10]
or [12] on the unit disk and in [11] on the unit ball. But we mention that the arguments used
there do not work on our Dirichlet space D .

By using a completely different argument, we prove in this paper that an operator of form
(1) is compact on D if and only if the corresponding sum of products of symbols is equal to
0 on ∂B, the boundary of B; see Theorem 7. Specially, the case of N = 1 in (1) reduces
the compact product problem of when a product of two Toeplitz operators is compact. As
an application of Theorem 7, we show that for pluriharmonic symbols, there is no nontrivial
compact product for n ≥ 2 but there are many for n = 1. Such higher dimensional phenomena
on D0 has been also noticed in [11].

More specially, for a single Toeplitz operator, the corresponding problem will be of par-
ticular interest. On the smaller Dirichlet space D0 of the unit disk, it is known that for a single
Toeplitz operator, it is compact on D0 if and only if it equals 0 on D0; see Proposition 3.1 and
Theorem 3.4 of [12]. On the contrary to this result on D0, our result shows that there exists a
nonzero compact Toeplitz operator on our Dirichlet space D ; see Corollary 8 and its remark.
These results will be collected in Section 3.

Next, in Section 4, we first characterize Fredholm Toeplitz operators and describe the
essential norm of Toeplitz operators on D . We then study the Toeplitz algebra T generated
by all Toeplitz operators. By using a consequence of Theorem 7, we show that there is a short
exact sequence

0 → K → T → C(∂B) → 0

where K is the algebra of all compact operators on D and C(∂B) is the algebra of all contin-
uous functions on ∂B; see Theorem 16. On the smaller Dirichlet space D0 of the unit disk,
the corresponding characterizations have been obtained in [2] where a bit different Toeplitz
operators have been considered.

2. Preliminaries. In this section we introduce the well known Bergman space
and then investigate some useful connection between projections on the Bergman space and
Dirichlet space.
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For any multi-index α = (α1, . . . , αn) where each αk is a nonnegative integer, we will
write |α| = α1 + · · · + αn and α! = α1! · · ·αn!. We will also write

zα = z
α1
1 · · · zαnn

for z = (z1, . . . , zn) ∈ B. Note that Rzα = |α|zα for every multi-index α.
We let L2 = L2(B, V ) be the usual Lebesgue space and A2 be the well known Bergman

space consisting of all holomorphic functions in L2. Let Q be the Bergman projection which
is the orthogonal projection from L2 onto A2 whose its explicit formula can be written as

Qψ(z) =
∫
B

ψ(w)Bz(w) dV (w) , z ∈ B

for functions ψ ∈ L2. Here Bz is the Bergman kernel given by

Bz(w) = 1

(1 − w · z)n+1 , w ∈ B

where w · z̄ = w1z1 + · · · +wnzn is the Hermitian inner product for points z,w ∈ Cn. Since

Bz(w) =
∑
|α|≥0

(n+ |α|)!
n!α! zαwα , z,w ∈ B

we have

Qψ(z) =
∑
|α|≥0

(n+ |α|)!
n!α! zα

∫
B

wαψ(w) dV (w) , z ∈ B(2)

for functions ψ ∈ L2; see Chapter 2 of [14] for details and related facts.
Each point evaluation is easily verified to be a bounded linear functional on D . Hence,

for each z ∈ B, there exists a unique kernel function Kz ∈ D which has the following
reproducing property:

f (z) = 〈f,Kz〉
for functions f ∈ D . Since ∫

B

|zα|2 dV (z) = n!α!
(n+ |α|)! ,

we have

||zα||2 = |α|2
∫
B

|zα|2 dV (z) = n!|α|2α!
(n+ |α|)!

for each multi-index α with |α| > 0; see Lemma 1.11 of [14]. Note that the set {zα : |α| ≥ 0}
spans a dense subset of D . Thus it can be easily seen that the kernel functionKz on D has the
following explicit formula

Kz(w) = 1 +
∑
|α|>0

(n+ |α|)!
n!|α|2α! z

αwα(3)
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for z,w ∈ B. SinceKz(0) = 1 for all z ∈ B, it follows from the reproducing property and (3)
that

Pψ(z) = 〈ψ,Kz〉
=

∫
B

ψ dV +
∫
B

RψRKz dV

=
∫
B

ψ dV +
∑
|α|>0

(n+ |α|)!
n!|α|α! z

α

∫
B

wαRψ(w) dV (w) , z ∈ B
(4)

for functions ψ ∈ S . Combining the above with (2), we can see

R(Pψ)(z) =
∑
|α|>0

(n+ |α|)!
n!α! zα

∫
B

wαRψ(w) dV (w)

= Q(Rψ) (z)−Q(Rψ) (0) , z ∈ B
(5)

for functions ψ ∈ S .

3. Compact sums of Toeplitz products. In this section, we consider operators hav-
ing the form of finite sums of products of two Toeplitz operators and then characterize such
an operator to be compact on D . In the following, we use the notation

||f ||2 =
(∫

B

|f |2 dV
) 1

2

for functions f ∈ L2. Note that |f (0)| ≤ ||f ||2 for all f ∈ A2; see Theorem 2.1 of [14] for
details.

We start with the boundedness of Toeplitz operators with symbol in L 1,∞.

PROPOSITION 1. For u ∈ L 1,∞, the Toeplitz operator Tu is bounded on D .

PROOF. Let f ∈ D be an arbitrary function. Note that uf ∈ S and

‖f ‖2 ≤ ‖Rf ‖2 ≤ ‖f ‖ .(6)

Hence

|P(uf )(0)| =
∣∣∣∣
∫
B

uf dV

∣∣∣∣ ≤ ||u||∞||f ||2 ≤ ||u||∞||f || .(7)

Also, by (5) and the L2-boundedness of the Bergman projectionQ, we see

‖R(P (uf ))‖2 ≤ ‖Q(R(uf ))‖2 + |Q(R(uf )) (0)|
≤ 2‖Q(R(uf ))‖2

≤ 2‖R(uf )‖2

= 2‖fRu+ uRf ‖2

≤ 2 (‖Ru‖∞ + ‖u‖∞) ‖f ‖ .
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Combining the above with (7), we see that there exists a constant C depending only on u such
that

‖Tuf ‖2 = ‖P(uf )‖2 = |P(uf )(0)|2 + ‖R(P (uf ))‖2
2 ≤ C‖f ‖2

for every f ∈ D , which implies the boundedness of Tu as desired. The proof is complete. �

For each a ∈ B, we let

Ea(z) = RKa(z) =
∑
|α|>0

(n+ |α|)!
n!|α|α! a

αzα, z ∈ B .

Since REa = Ba − 1, we have

||Ea||2 = ||REa ||22 = Ba(a)− 1 = 1 − (1 − |a|2)n+1

(1 − |a|2)n+1

for all a ∈ B. Since ||Ba ||2 = (1 − |a|2)− n+1
2 for all a ∈ B, we have

lim|a|→1

||Ba ||2
||Ea|| = 1 .(8)

In the following, we put

ea(z) := 1

||Ea||Ea(z) , a, z ∈ B
and use the notation

〈ϕ,ψ〉2 =
∫
B

ϕψ̄ dV

for functions ϕ,ψ ∈ L2.

PROPOSITION 2. ea converges weakly to 0 in D as |a| → 1.

PROOF. Let f ∈ D be an arbitrary function. Since ea(0) = 0 and 〈Rf,Ba〉2 = Rf (a),
we see

〈f, ea〉 = 1
||Ea || 〈Rf,Ba − 1〉2 = 1

||Ea || [Rf (a)− Rf (0)]
for all a ∈ B. Recall that

lim|z|→1
(1 − |z|2) n+1

2 |F(z)| = 0

for every F ∈ A2; see [14, Theorem 2.1] and its remark. It follows that

lim|a|→1
〈f, ea〉 = lim|a|→1

(1 − |a|2) n+1
2√

1 − (1 − |a|2)n+1
[Rf (a)− Rf (0)] = 0 ,

so ea converges to 0 weakly in D as |a| → 1. The proof is complete. �

By (6), we see that the identity operator from D into A2 is bounded. Moreover, it is
compact as shown in the following lemma.

LEMMA 3. The identity operator from D into A2 is compact.
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PROOF. Using (6), we see that any bounded sequence in D-norm is bounded in A2-
norm. So, it is locally bounded and then constitutes a normal family. Hence the sequence has
a subsequence converging locally uniformly in B to a function in A2. So, the identity operator
is compact, as desired. The proof is complete. �

As an application of Lemma 3, we remark in passing that for any sequence {fj } converg-
ing weakly to 0 in D , the sequence ||fj ||2 converges to 0 as j → ∞.

Recall that Q is the Bergman projection. The following lemma will be useful in our
proofs.

LEMMA 4. Let u ∈ L 1,∞. If a sequence fj converges to 0 weakly in D , then we have

lim
j→∞Q[R(ufj )](0) = 0 .

PROOF. We first claim that Rfj converges to 0 weakly in A2. To prove this, let ϕ ∈ A2

be an arbitrary function and choose ψ ∈ D such that Rψ = ϕ− ϕ(0). Since Rfj (0) = 0 for
each j , we see

〈Rfj , ϕ〉2 = 〈Rfj ,Rψ + ϕ(0)〉2

= 〈Rfj ,Rψ〉2 + ϕ(0)Rfj (0)
= 〈Rfj ,Rψ〉2

= 〈fj , ψ〉 − fj (0)ψ(0)

for each j . On the other hand, by the remark just after Lemma 3, we have

|fj (0)| =
∣∣∣∣
∫
B

fj dV

∣∣∣∣ ≤
(∫

B

|fj |2 dV
) 1

2 → 0 , j → ∞ .(9)

Since fj converges to 0 weakly by assumption, we see 〈Rfj , ϕ〉2 → 0 as j → ∞ and Rfj
converges to 0 weakly in A2. To complete the proof, we note that

∣∣∣∣
∫
B

(Ru)fj dV
∣∣∣∣ ≤ ||Ru||∞

(∫
B

|fj |2 dV
) 1

2 → 0

as j → ∞ by the remark after Lemma 3 again. It follows that

lim
j→∞Q[R(ufj )](0) = lim

j→∞

∫
B

R(ufj ) dV

= lim
j→∞

∫
B

[(Ru)fj + u(Rfj )] dV
= lim
j→∞〈Rfj , ū〉2

= lim
j→∞〈Rfj ,Qū〉2

= 0

because Rfj converges weakly to 0 in A2. The proof is complete. �
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In our characterization of the compactness for sums of products of two Toeplitz opera-
tors, we will use some known results on the Toeplitz operators on the Bergman space. Thus,
we need to introduce the notion of Bergman space Toeplitz operators.

For a function ϕ ∈ L∞, we let Sϕ denote the Bergman space Toeplitz operator on A2

defined by

Sϕf = Q(ϕf )

for functions f ∈ A2. Clearly Sϕ is a bounded linear operator on A2.
Given a bounded linear operator L on A2, the Berezin transform L̂ of L is the function

on B defined by

L̂(a) =
∫
B

(Lba)ba dV , a ∈ B

where ba denotes the normalized Bergman kernel of A2 given by

ba(z) = 1

||Ba||2Ba(z) , z ∈ B .

See Chapter 2 of [14] for details and related facts.
It is known that L̂ is a continuous function on B. Moreover, it turns out that the Berezin

transform of an operator which is a product of Bergman space Toeplitz operators preserves the
boundary continuity of symbols. More explicitly, it is known that for given symbols ϕ,ψ ∈
L∞ which are continuous on B̄, the Berezin transform ŜϕSψ is continuous up to B̄ and

(10) ŜϕSψ = ϕψ on ∂B

holds; see Proposition 2.1 of [3] for example.
Also, the Berezin transform turns out to provide a compactness criterion for operators

which are sums of products of Bergman space Toeplitz operators. Specially, for symbols
ϕj ,ψj ∈ L∞, it is known that

∑N
j=1 Sϕj Sψj is compact on A2 if and only if

lim|a|→1

[ N∑
j=1

Ŝϕj Sψj

]
(a) = 0 ;

see Theorem A of [8] for more general results. Recall that each function in L 1,∞ can be
extended to a continuous function on B̄. Now, combining these observations with (10), we
have the following characterization.

LEMMA 5. Let ϕj ,ψj ∈ L 1,∞ for j = 1, . . . , N . Then
∑N
j=1 Sϕj Sψj is compact on

A2 if and only if
∑N
j=1 ϕjψj = 0 on ∂B.

Before we characterize compact sums of Toeplitz products, we first prove the following
lemma which will be useful. For a ∈ B, we recall

ea(z) = 1

||Ea||Ea(z) , z ∈ B .
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LEMMA 6. Let u, v ∈ L 1,∞ and ζ ∈ ∂B. Then

lim
a→ζ

〈TuTvea, ea〉 = u(ζ )v(ζ ) .

PROOF. Since ea(0) = 0 and REa = Ba − 1 for all a ∈ B, we first note that

〈TuTvea, ea〉 = 〈uTvea, ea〉
= 〈(Ru)Tvea, Rea〉2 + 1

||Ea||2 〈uR(TvEa), Ba − 1〉2
(11)

for all a ∈ B. On the other hand, by (5), we have

R(TvEa) = RP(vEa)
= Q[(Rv)Ea + v(Ba − 1)] −Q[R(vEa)](0)
= SRvEa + SvBa − Sv1 −Q[R(vEa)](0)

and hence

〈uR(TvEa), Ba − 1〉2 = 〈uR(TvEa), Ba〉2 − 〈R(TvEa), ū〉2

= 〈SuSRvEa, Ba〉2 + 〈SuSvBa, Ba〉2 − 〈SuSv1, Ba〉2

−Q[R(vEa)](0)〈u,Ba〉2 − 〈RTvEa, ū〉2

(12)

for all a ∈ B. Since ea converges weakly to 0 in D by Proposition 2, we see Tvea also
converges weakly to 0 as |a| → 1 in D . Also, note ||Rea ||2 = ||ea|| = 1 for all a ∈ B. It
follows from Lemma 3 that

|〈(Ru)Tvea, Rea〉2| ≤ ||Ru||∞||Tvea ||2||Rea||2 = ||Ru||∞||Tvea||2 → 0(13)

as a → ζ . Also, since ||ea||2 → 0 as a → ζ by Lemma 3 again, we see from (8)

1

||Ea||2 |〈SuSRvEa, Ba〉2| = 1

||Ea|| |〈SuSRvea, Ba〉2|

≤ ||SuSRv ||||ea||2 ||Ba ||2
||Ea||

→ 0 , a → ζ

where ||L|| denotes the operator norm of a bounded operator L. Also, we note

1

||Ea||2 〈SuSvBa, Ba〉2 =
( ||Ba||2

||Ea||
)2

〈SuSvba, ba〉2 =
( ||Ba||2

||Ea||
)2

ŜuSv(a)

for all a ∈ B and by (8)

1

||Ea||2 |〈SuSv1, Ba〉2| ≤
√

(1 − |a|2)n+1

1 − (1 − |a|2)n+1 ||SuSv || ||Ba||2||Ea|| → 0
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as a → ζ . Similarly, we see by Lemma 4 and (8)

1

||Ea||2 |Q[R(vEa)](0)〈u,Ba〉2| = 1

||Ea|| |Q[R(vea)](0)〈u,Ba〉2|

≤ |Q[R(vea)](0)|||u||∞ ||Ba||2
||Ea||

→ 0

and

1

||Ea||2 |〈RTvEa, ū〉2| ≤ 1

||Ea|| ||RTvea||2||u||2

≤ 1

||Ea|| ||Tvea||||u||∞

≤ 1

||Ea|| ||Tv||||u||∞
→ 0

as a → ζ . It follows from (12) and (8) that

lim
a→ζ

1

||Ea||2 〈uR(TvEa), Ba − 1〉2 = lim
a→ζ

ŜuSv(a) .

Now, combining the above with (11) and (13), we see

lim
a→ζ

〈TuTvea, ea〉 = lim
a→ζ

ŜuSv(a) = u(ζ )v(ζ )

by (10) because u, v are continuous on B̄. The proof is complete. �

Now, we characterize the compactness for operators which are finite sums of products of
two Toeplitz operators.

THEOREM 7. Let uj , vj ∈ L 1,∞ for j = 1, . . . , N . Then the following statements
are equivalent.

(a)
N∑
j=1

Tuj Tvj is compact on D .

(b)
N∑
j=1

ujvj = 0 on ∂B.

PROOF. First assume (a) and let ζ ∈ ∂B be arbitrary. Since ea converges weakly to 0
in D as a → ζ , we see by Lemma 6,

0 = lim
a→ζ

〈 N∑
j=1

Tuj Tvj ea, ea

〉
=

N∑
j=1

lim
a→ζ

〈Tuj Tvj ea, ea〉 =
N∑
j=1

uj (ζ )vj (ζ )

and (b) follows.
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Now, assume (b) and put

T =
N∑
j=1

Tuj Tvj , S =
N∑
j=1

Suj Svj

for simplicity. Fixing j , we first note that

|Tuj Tvj f (0)| = |P [ujTvj f ](0)| ≤
∫
B

|ujTvj f | dV ≤ ||uj ||∞||Tvj f ||2

and then

|Tf (0)| ≤
N∑
j=1

||uj ||∞||Tvj f ||2(14)

for every f ∈ D . Also, by (5)

R[Tuj Tvj f ] = R[P(ujP (vj f ))]
= Q[R(ujP (vj f ))] −Q[R(ujP (vj f ))](0)
= Q[(Ruj )Tvj f ] +Q[ujRP(vj f )] −Q[R(ujP (vj f ))](0)
= Q[(Ruj )Tvj f ] +Q[ujQ(fRvj )] +Q[ujQ(vjRf )]

−Q(uj )Q(R(vj f ))(0)−Q[R(ujP (vj f ))](0)
= SRuj Tvj f + Suj SRvj f + Suj Svj (Rf )

−Q(uj )Q(R(vj f ))(0)−Q[R(ujP (vj f ))](0)
for every f ∈ D . Thus,

R(Tf ) =
N∑
j=1

SRuj Tvj f +
N∑
j=1

Suj SRvj f + S(Rf )

−
N∑
j=1

Q(uj )Q(R(vj f ))(0)−
N∑
j=1

Q[R(ujP (vj f ))](0)
(15)

for every f ∈ D . Now, in order to prove (a), let fk be a sequence converging weakly to 0
in D . Then, we need to show that ||Tfk|| → 0 as k → ∞. For each j , since Tvj fk also
converges weakly to 0 in D , we note that ||fk||2 and ||Tvj fk ||2 converge to 0 as k → ∞ by
Lemma 3. Thus, by (14), we see

lim
k→∞ |Tfk(0)| ≤ lim

k→∞

N∑
j=1

||uj ||∞||Tvj fk ||2 = 0 .(16)

Also, by Lemma 4, we see Q(R(vj fk))(0) and Q[R(ujTvj fk)](0) converge to 0 as k → ∞
for each j . Also, since Rfk converges weakly to 0 in A2 and S is compact by assumption (b)
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and Lemma 5, we see ||S(Rfk)||2 → 0 as k → ∞. It follows from (15) that

||R(Tfk)||2 ≤
N∑
j=1

||SRuj ||||Tvj fk||2 + ||fk||2
N∑
j=1

||Suj SRvj || + ||S(Rfk)||2

+
N∑
j=1

||Q(uj )||2|Q(R(vj fk))(0)| +
N∑
j=1

|Q[R(uj Tvj fk))](0)| ,

which converges to 0 as k → ∞. Now, combining this observation with (16), we see

lim
k→∞ ||Tfk||2 = lim

k→∞
(|Tfk(0)|2 + ||R(Tfk)||22

) = 0

and hence T is compact on D as desired. The proof is complete. �

As a simple application of Theorem 7, we have the following corollary which will be
used in the description of the Toeplitz algebra T in Section 4.

COROLLARY 8. For u, v ∈ L 1,∞, the semi-commutator TuTv − Tuv and commutator
TuTv − TvTu are always compact on D .

Since the Toeplitz operator with symbol 1 is the identity operator, we have the following
characterization of compact Toepltz operators.

COROLLARY 9. For u ∈ L 1,∞, Tu is compact on D if and only if u = 0 on ∂B.

On the smaller Dirichlat space D0 of the unit disk B1, it is known that for a Toeplitz
operator with symbol u, it is compact on D0 if and only if it equals 0 on D0 if and only if
u = 0 on ∂B1; see Proposition 3.1 and Theorem 3.4 of [12]. In view of Corollary 9, one might
ask whether the same is true on our Dirichlet space D . But the answer is no. For example,
the Toeplitz operator T1−|z|2 is compact on D by Theorem 7, but it is easy to see that T1−|z|2
is not equal to 0. Indeed,

T1−|z|21 =
∫
B

(1 − |w|2) dV (w) �= 0 .

This fact will be also used in the description of the Toeplitz algebra T .
As another application of Theorem 7, we consider the compact product problem of when

compactness of a product of two Toeplitz operators on D implies the triviality of one of sym-
bols. The example T1T1−|z|2 = T1−|z|2 shows that the compact product problem fails for
general symbols. But our result below shows that the problem can be solvable for plurihar-
monic symbols. Recall that a twice continuously differentiable function u on B is said to be
pluriharmonic if

∂2u

∂zi ∂̄zj
= 0 , i, j = 1, . . . , n

on B. For n ≥ 2 and two pluriharmonic functions u, v which are continuous on ∂B, it is
known that uv = 0 on ∂B if and only if either u = 0 or v = 0; see Corollary 3.5 of [4] for
more general result. Thus, the following is a simple consequence of Theorem 7.
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COROLLARY 10 (n ≥ 2). Let u, v ∈ L 1,∞ be pluriharmonic functions. Then TuTv is
compact on D if and only if either u = 0 or v = 0.

We also remark in passing that Corollary 10 can not be extended to the one dimensional
case in general. To see an example, consider two harmonic symbols u, v which are nonzero
on the unit disk B1 and uv = 0 on ∂B1. Then TuTv is compact by Theorem 7, but neither u
nor v is identically zero.

But, for a single Toeplitz operator with pluriharmonic symbol, we have the following
characterization for full range of dimensions.

COROLLARY 11. Let u ∈ L 1,∞ be a pluriharmonic function. Then the following are
equivalent.

(a) Tu is compact on D .
(b) u = 0 on B.
(c) Tu = 0 on D .

PROOF. Since a pluriharmonic symbol which vanishes on ∂B vanishes on B, implica-
tion (a) ⇒ (b) follows from Theorem 7. Also, since (b) ⇒ (c) ⇒ (a) is clear, we complete the
proof. �

4. Toeplitz algebra. In this section, we characterize Fredholm Toeplitz operators and
describe the essential norm of a Toeplitz operator. Also, we establish a short exact sequence
associated with the Toeplitz algebra T .

We let B denote the C∗-algebra consisting of all bounded operators on D . Also, let K
be the algebra of all compact operators on D . An operator L ∈ B is said to be Fredholm if
L+ K is invertible in the quotient algebra B/K. Recall that L ∈ B is Fredholm if and only if
there exist L1, L2 ∈ B such that L1L− I, LL2 − I ∈ K. Also, if there exists a sequence {fj }
of unit vectors in D for which fj → 0 weakly and ||Lfj || → 0 as j → ∞, then L can’t be
Fredholm; see Chapter 6 of [6] for example.

We characterize Fredholm Toeplitz operators.

THEOREM 12. Let u ∈ L 1,∞. Then Tu is Fredholm on D if and only if u has no zero
on ∂B.

PROOF. First suppose Tu is Fredholm on D and assume u(ζ ) = 0 for some ζ ∈ ∂B.
Note that

||uea||2 =
∣∣∣∣
∫
B

uea dV

∣∣∣∣
2

+ 〈R̃(uea), R̃(uea)〉2 + 〈R(uea),R(uea)〉2(17)

for all a ∈ B. Since ea converges weakly to 0 in D as a → ζ by Proposition 2, we note
||ea||2 → 0 as a → ζ by Lemma 3. Thus, we have

lim
a→ζ

∣∣∣∣
∫
B

uea dV

∣∣∣∣
2

≤ lim
a→ζ

||u||2∞
∫
B

|ea|2 dV = 0(18)
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and similarly

∣∣〈R̃(uea), R̃(uea)〉2
∣∣ = ∣∣〈eaR̃u, eaR̃u〉2

∣∣ ≤ ||R̃u||2∞
∫
B

|ea|2 dV → 0(19)

as a → ζ . Now, to estimate 〈R(uea),R(uea)〉2, we first note

|〈eaRu, eaRu〉2| ≤ ||Ru||2∞||ea||22
and

|〈eaRu, uR(ea)〉2| ≤ 1

||Ea||
∫
B

|ea(Ru)u(Ba − 1)| dV

≤ ||uRu||∞||ea||2 ||Ba ||2 + 1

||Ea||
for all a ∈ B. Also, by a simple calculation, we see

|〈uR(ea), uR(ea)〉2| = 1

||Ea||2 〈u(Ba − 1), u(Ba − 1)〉2

≤ 1

||Ea||2
(〈uBa, uBa〉2 + 2|〈uBa, u〉2| + |〈u, u〉2|

)

≤
( ||Ba||2

||Ea||
)2

〈S|u|2ba, ba〉2 + 2||u||2∞||Ba||2 + ||u||2∞
||Ea||2

≤
( ||Ba||2

||Ea||
)2

Ŝ|u|2(a)+
3||u||2∞||Ba||2

||Ea||2
for all a ∈ B. Since ||ea||2 → 0 as |a| → 1 and

〈R(uea),R(uea)〉2 = 〈eaRu, eaRu〉2 + 〈eaRu, uR(ea)〉2

+ 〈uR(ea), eaRu〉2 + 〈uR(ea), uR(ea)〉2

for all a ∈ B, the above observations together with (8) show

lim
a→ζ

〈R(uea),R(uea)〉2 ≤ lim
a→ζ

Ŝ|u|2(a) = |u(ζ )|2

by (10) because |u|2 is continuous on B̄. Now, combining the above with (17), (18) and (19),
we see

lim
a→ζ

||Tuea||2 = lim
a→ζ

||P(uea)||2 ≤ lim
a→ζ

||uea||2 ≤ |u(ζ )|2 = 0

because u(ζ ) = 0. Since the sequence {ea} of unit vectors converges weakly to 0 in D , Tu
can’t be Fredholm on D . Hence u has no zero on ∂B.

Now, to prove the converse implication, assume u has no zero on ∂B. Then Su is Fred-
holm on A2 by Theorem 1.2 of [13]. Suppose Tu is not Fredholm on D . Thus, there is
a sequence {kj } of unit vectors in D converging weakly to 0 for which ||Tukj || → 0 or
||T ∗

u kj || → 0 as j → ∞; see [6, Chapter 6] for example. First suppose ||Tukj || → 0 as
j → ∞. Since Su is Fredholm on A2, there exists a bounded operator M on A2 such that
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MSu − I is compact on A2. Put tj = Rkj . Then we recall tj → 0 weakly on A2 and note
from (9)

lim
j→∞ ||tj ||22 = lim

j→∞(||kj ||
2 − |kj (0)|2) = lim

j→∞ ||kj ||2 = 1 .

Since MSu − I is compact on A2, we have 〈(MSu − I)tj , tj 〉2 → 0 as j → ∞ and hence

lim
j→∞〈MSutj , tj 〉2 = lim

j→∞ ||tj ||22 = 1 .

Also, since ||kj ||2 → 0 as j → ∞ by Lemma 3, we have

|〈MQ(Ru)kj , tj 〉2| ≤ ||M||||Ru||∞||kj ||2||tj ||2 → 0

as j → ∞. It follows that

〈MQ[R(ukj )], tj 〉2 = 〈MQ[(Ru)kj ], tj 〉2 + 〈MQ(utj ), tj 〉2

= 〈MQ(Ru)kj , tj 〉2 + 〈MSutj , tj 〉2

→ 1

(20)

as j → ∞. Also, note Q[R(ukj )](0) → 0 by Lemma 4 and 〈M1, tj 〉2 → 0 because tj → 0
weakly on A2 as j → ∞. It follows from (5) and (20) that

〈MR(Tukj ), tj 〉2 = 〈MR[P(ukj )], tj 〉2

= 〈MQ[R(ukj )], tj 〉2 −Q[R(ukj )](0)〈M1, tj 〉2

→ 1

(21)

as j → ∞. On the other hand, since ||Tukj || → 0 and ||tj ||2 → 1, we see

|〈MR(Tukj ), tj 〉2| ≤ ||MR(Tukj )||2||tj ||2 ≤ ||M||||Tukj ||||tj ||2 → 0

as j → ∞, which contradicts to (21).
Also, by the similar argument, we can see that the case ||T ∗

u kj || → 0 yields a contradic-
tion. Hence Tu is Fredholm on D . The proof is complete. �

Recall that the essential spectrum σe(L) of L ∈ B is defined to be the spectrum of L+K
in B/K. Thus the following is a simple consequence of Theorem 12.

COROLLARY 13. For u ∈ L 1,∞, we have σe(Tu) = u(∂B).

In conjunction with Corollary 9, we compute the essential norm of a Toeplitz operator
on D . Given L ∈ B, the essential norm ||L||e of L is defined as the norm of L + K in the
quotient algebra B/K. That is,

||L||e = inf
K∈K

||L+K|| .

The following gives a formula of the essential norm of a Toeplitz operator.

THEOREM 14. Given u ∈ L 1,∞, we have ||Tu||e = maxη∈∂B |u(η)|.
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PROOF. Put ρ = maxη∈∂B |u(η)| for simplicity. Choose a point ζ ∈ ∂B such that
|u(ζ )| = ρ. For any K ∈ K, since ea converges weakly to 0 in D as |a| → 1 by Proposition
2, we note that

||Tu +K|| ≥ lim
a→ζ

|〈(Tu +K)ea, ea〉|
= lim
a→ζ

|〈Tuea, ea〉|
= |u(ζ )|

by Lemma 6 (with v = 1), thus ρ ≤ ||Tu||e holds.
Now, we prove the reverse inequality. By Lemma 1.2 of [9], there is an orthonormal

sequence {fj } in D for which ||Tufj || → ||Tu||e as j → ∞. In particular, since the sequence
{fj } converges weakly to 0 in D , {fj } converges uniformly to 0 on every compact subsets of
B. Let ε > 0 be arbitrary. Using Lemma 3, we can choose an integer j1 ≥ 0 such that∫

B

|fj |2 dV < ε

for every j > j1. On the other hand, since u is continuous on B̄, there exists r ∈ (0, 1) such
that |u(z)| ≤ ρ + ε for every r < |z| < 1. Fix t ∈ (r, 1). Then

lim
j→∞

∫
|z|≤t

|fj |2 dV = 0 .

Writing

fj (z) =
∑
α

ajαz
α

for the Taylor series expansions of fj , we note
∫

|z|≤t
|fj |2 dV =

∑
|α|≥0

|ajα|2
∫

|z|≤t
|zα|2 dV =

∑
|α|≥0

|ajα|2
t2|α|+2n

|α| + n

∫
∂B

|ζ α|2 dσ

and ∫
|z|≤r

|Rfj |2 dV =
∑
|α|>0

|ajα|2|α|2 r
2|α|+2n

|α| + n

∫
∂B

|ζ α|2 dσ

=
∑
|α|>0

|ajα|2
t2|α|+2n

|α| + n
|α|2

( r
t

)2|α|+2n
∫
∂B

|ζ α|2 dσ

for each j . Since |α|2 (
r
t

)2|α|+2n → 0 as |α| → ∞, the observations above show that

lim
j→∞

∫
|z|≤r

|Rfj (z)|2 dV (z) = 0 .

Thus, there exists an integer j2 ≥ 0 such that∫
|z|≤r

|Rfj |2 dV < ε
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for every j > j2. Since ||fj || = 1 for each j , we have
∫
B

|uRfj |2 dV =
∫

|z|≤r
|uRfj |2 dV +

∫
|z|>r

|uRfj |2 dV

≤ ||u||2∞
∫

|z|≤r
|Rfj |2 dV + (ρ + ε)2

∫
|z|>r

|Rfj |2 dV

≤ ||u||2∞ε + (ρ + ε)2

for every j > j2. Thus, letting C = max{||u||∞, ||Ru||∞, ||R̃u||∞}, we see

||Tufj || ≤ ||ufj ||

=
[ ∣∣∣∣

∫
B

ufj dV

∣∣∣∣
2

+
∫
B

(
|(Ru)fj + uRfj |2 + |(R̃u)fj |2

)
dV

] 1
2

≤ 2C

(∫
B

|fj |2 dV
) 1

2 +
(∫

B

|uRfj |2 dV
) 1

2

≤ 2C
√
ε + ||u||∞√

ε + (ρ + ε)

for every j > max{j1, j2} and ε > 0, which means that limj→∞ ||Tufj || ≤ ρ. Now, recalling
limj→∞ ||Tufj || = ||Tu||e, we have ||Tu||e ≤ ρ, as desired. The proof is complete. �

On the Hardy space or Bergman space, it is known that the adjoint operator of a Toeplitz
operator with symbol u is another Toeplitz operator with symbol ū. We don’t know whether
the same is true on the Dirichlet space. But we show T ∗

u −Tū is compact on D as shown in the
following lemma which will be used in our description of Toeplitz algebra T . The notation
T ∗
u denotes the adjoint operator of Tu.

LEMMA 15. For u ∈ L 1,∞, T ∗
u − Tū is compact on D .

PROOF. First note that

〈(T ∗
u − Tū)f, g〉 = f (0)

∫
B

ug dV − ḡ(0)
∫
B

uf dV + 〈Rf, gRu〉2 − 〈fRū,Rg〉2

for every f, g ∈ D . Also, note that
∣∣∣∣f (0)

∫
B

ug dV

∣∣∣∣ ≤ ||f ||2||u||∞||g||2 ,

∣∣∣∣ḡ(0)
∫
B

uf dV

∣∣∣∣ ≤ ||g||2||u||∞||f ||2
and

|〈Rf, gRu〉2| ≤ ||Rf ||2||g||2||Ru||∞ ,

|〈fRū,Rg〉2| ≤ ||f ||2||Rg||2||Rū||∞
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for all f, g ∈ D . Now, to prove the compactness of T ∗
u −Tū, let fj be any sequence converging

weakly to 0 on D . By the observations above with f = fj and g = (T ∗
u − Tū)fj , we see

||(T ∗
u − Tū)fj ||2 ≤ 2||u||∞||fj ||2||gj ||2

+ ||Ru||∞||Rfj ||2||gj ||2 + ||fj ||2||Rū||∞||Rgj ||2
(22)

where gj = (T ∗
u − Tū)fj . Note that gj → 0 weakly in D as j → ∞. Hence, by Lemma 3,

we see ||fj ||2 and ||gj ||2 converge to 0 as j → ∞. Also, since a weakly convergent sequence
is bounded in norm and ||Rfj ||2 ≤ ||fj || for each j , we see ||Rfj ||2 is bounded. Also,
||Rgj ||2 is bounded by the same reason. Now, combining the observations above with (22),
we see ||(T ∗

u − Tū)fj || → 0 as j → ∞ and hence T ∗
u − Tū is compact on D as desired. The

proof is complete. �

Now, we establish a short exact sequence associated with Toeplitz algebra T .

THEOREM 16. The following statements hold.

(a) The commutator ideal of T is the same as the ideal K of all compact operators on D .
(b) The quotient algebra T /K is *-isometrically isometric to C(∂B). That is, the se-

quence

0 → K → T → C(∂B) → 0

is short exact.

PROOF. We first show that the algebra T is irreducible. To show this, we will use the
similar idea as in [5, Lemma 1] where the Bergman or Hardy space case was considered.
Suppose T is reducible. Then there exists a nontrivial orthogonal projection P0 for which
P0Tϕ = TϕP0 for all ϕ ∈ L 1,∞. Put f = P01. Then

P0ϕ = P0Tϕ1 = TϕP01 = Tϕf = ϕf(23)

for all holomorphic functions ϕ ∈ L 1,∞. In particular, we have P0Kz = Kzf for all z ∈ B.
Putting

ka(z) = 1

||Ka||Ka(z) a, z ∈ B,
we see from the reproducing property

P0ka(z) = 〈P0ka,Kz〉 = 〈ka, P0Kz〉 = 1

||Ka || 〈Ka, fKz〉

= 1

||Ka||f (a)Kz(a) = 1

||Ka ||f (a)Ka(z) = f (a)ka(z)

for all a, z ∈ B. Hence f (a) belongs to the spectrum of P0 for all a ∈ B. Sine P0 is a
projection, its spectrum must be contained in {0, 1} and hence f (B) ⊂ {0, 1}. Thus f = 0 or
f = 1. Now, (23) shows that P0ϕ = Tf ϕ for all holomorphic polynomial ϕ. Note that the set
of all holomorphic polynomials is dense in D . Hence P0 = Tf on D . Now, since f = 0 or
f = 1, we have P0 = 0 or P0 = I , which is a contradiction because P0 is nontrivial. Hence
T is irreducible.
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Now, as mentioned at the remark just after Corollary 9, the Toeplitz operator T1−|z|2 is
a nonzero compact operator on D . So T contains a nonzero compact operator. By Theorem
5.39 of [7], we have K ⊂ T . Hence the commutator ideal of T contains the commutator ideal
of K, which is the same as K. On the other hand, the commutator of two Toeplitz operators
is compact by Corollary 8, which implies that K contains the commutator ideal of T , thus (a)
holds.

Now, by noting T ∗
u − Tū ∈ K by Lemma 15, one can see that {Tu + K : u ∈ L 1,∞} is a

C∗-algebra. Define the symbol map ξ : {Tu+K : u ∈ L 1,∞} → C(∂B) by ξ(Tu+K) = u|∂B .
Then, by Corollary 8 and Theorem 14, we can see that ξ is well-defined, one-to-one and an
isometric ∗-homomorphism. Then, using the same argument as in Theorem 8 of [2], one can
see that ξ can be extended to T /K. Hence T /K is *-isometrically isometric to C(∂B) and (b)
holds. The proof is complete. �
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