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Abstract. Let ∆ be a spherical building each of whose irreducible components is infi-
nite, has rank at least 2 and satisfies the Moufang condition. We show that ∆ can be given the
structure of a topological building that is compact and totally disconnected precisely when ∆

is the building at infinity of a locally finite affine building.

1. Introduction. Generalizing earlier work by Kolmogorov and Pontryagin [22, 27],
Salzmann [29], and Burns and Spatzier [7], Knarr and two of the present authors showed that
an infinite compact (locally) connected building without factors of rank 1 whose topological
automorphism group acts transitively on the chambers must be the building associated with the
parabolic subgroups of a semisimple Lie group; see [14], [15], [23], [24, Ch. 7]. In particular,
such a building is the spherical building at infinity of a unique Riemannian symmetric space
of noncompact type. (See Section 9 for more details.)

The goal of this paper is to extend this result to totally disconnected compact spherical
buildings. Our results are as follows. (All buildings in this paper are thick. By Bruhat-Tits
building, we mean an irreducible affine building of dimension l at least 2 whose building at
infinity satisfies the Moufang condition; see Definition 1.3, Conventions 1.5 and Section 5
below.)

THEOREM 1.1. Let ∆ be an infinite irreducible spherical building of rank l at least 2.
Suppose, furthermore, that ∆ satisfies the Moufang condition if l = 2. Then the following
hold.

(i) ∆ can be given the structure of a totally disconnected compact building if and only
if it is the building at infinity of a locally finite Bruhat-Tits building X of dimension l.

(ii) If ∆ is the building at infinity of a locally finite affine building X of dimension l,
then X is unique, the topology on ∆ giving it the structure of a compact building is unique, this
topology is uniquely determined by the canonical CAT(0) metric on X, the set of chambers of
∆ is totally disconnected and, in fact, homeomorphic to the Cantor set, and the natural map
from Iso(X) to Aut(∆), each equipped with the compact-open topology, is an isomorphism of
topological groups.
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Combining this with the aforementioned results, we have the following.

THEOREM 1.2. Let ∆ be a compact spherical building each of whose irreducible fac-
tors is infinite, has rank at least 2 and satisfies the Moufang condition. Then the following
hold.

(i) ∆ is the building at infinity of a product of irreducible Riemannian symmetric
spaces of noncompact type and rank at least 2 and locally finite Bruhat-Tits buildings of
dimension at least 2.

(ii) The compact topology of ∆ is unique up to conjugation by field automorphisms on
the irreducible Riemannian symmetric factors belonging to complex simple Lie groups.

(iii) If none of the Riemannian symmetric irreducible factors belongs to a complex sim-
ple Lie group, then the compact topology of ∆ is unique and every abstract automorphism is
continuous.

DEFINITION 1.3. Let ∆ an irreducible spherical building of rank at least 2. For each
root α of each apartment, we denote by Uα the corresponding root group. This is the subgroup
of Aut(∆) consisting of all elements acting trivially on all panels containing two chambers in
α. The building ∆ satisfies the Moufang condition (equivalently, ∆ is Moufang) if for each
root α of each apartment, the root group Uα acts transitively on the set of all apartments of ∆

that contain α. See [43, 11.2].

If ∆ is an irreducible spherical building, then by [34] and [43, 11.6], ∆ is automatically
Moufang if its rank l is at least 3. The hypothesis in Theorem 1.1 that ∆ is Moufang if l = 2
is, however, essential. In [13], for example, it is shown that compact totally disconnected
projective planes exist that do not have a continuous epimorphism to a finite projective plane
and hence cannot be the building at infinity of a locally finite affine building.

The following question is presently open. In the (locally) connected case the answer is
in affirmative in both cases by [7] and [14, 15].

QUESTION 1.4. Let ∆ be an irreducible totally disconnected compact building of rank
at least 2. If the topological automorphism group Auttop(∆) acts chamber transitively or even
strongly transitively on ∆, is ∆ necessarily Moufang?

Bruhat-Tits buildings of dimension l ≥ 2 were classified by Bruhat and Tits in [6] and
[36]. Tables describing the thirty-five families of locally finite Bruhat-Tits buildings can be
found in [45, Chapter 28]. Apart from the three families involving inseparable extensions in
characteristic 2 and 3 in [45, Table 28.4], they are precisely the affine buildings associated
with absolutely simple algebraic groups of k-rank l, where k is a commutative local field in
the sense of Definition 3.5 below. These algebraic groups had been classified earlier in [35]
(for arbitrary l).

CONVENTIONS 1.5. All topological spaces in this paper are assumed to be Hausdorff,
unless stated otherwise. In a metric space X we denote balls as

Br(x) = {y ∈ X; d(x, y) < r} and B̄r (x) = {y ∈ X; d(x, y) ≤ r} .
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All buildings are assumed to be thick (as defined in [43, 1.6]). When we say that ∆ is the
“building at infinity of an affine building X” in Theorem 1.1 or elsewhere in this paper, we
mean that ∆ is the “building at infinity of X with respect to the complete system of apart-
ments” as defined in [45, 8.5 and 8.25].

After preparing the ground in Sections 2 through 8, we prove Theorems 1.1 and 1.2 in
Section 9. We also call attention to Theorem 4.1 below.

2. Locally compact groups. To get started, we assemble a few well known facts
about locally compact groups. Recall that a locally compact space is σ -compact if it is a
countable union of compact subsets. Every second countable locally compact space is σ -
compact.

THEOREM 2.1. Let G be a locally compact σ -compact group and let X be a locally
compact space. Suppose that G × X → X is a continuous and transitive action. Then the
action induces a homeomorphism from the quotient space G/H to X, where H is the stabilizer
of a point x ∈ X.

PROOF. See [33, 10.10] or [30, 96.8]. �

From 2.1, we obtain the “Open Mapping Theorem”:

COROLLARY 2.2. Let f : G → H be a continuous epimorphism of locally compact
groups. If G is σ -compact, then f is an open map. In particular, f is a topological isomor-
phism if f is continuous and bijective.

PROOF. The map G → G/ker(f ) is open and G acts via f on H by left multiplication.
By 2.1 this action induces a homeomorphism G/ker(f ) → H . �

We could not find a reference for the following standard fact.

THEOREM 2.3. Let (X, d) be a proper metric space, i.e., all closed balls in X are
compact. Then the isometry group Iso(X), endowed with the compact-open topology, is a
locally compact second countable transformation group. The stabilizer H ⊆ Iso(X) of any
point x ∈ X is compact. If H/Hn is finite for all n ∈ N, where Hn is the pointwise stabilizer
of the closed ball B̄n(x), then H is totally disconnected.

PROOF. Since X is a countable union of second-countable open sets [8, XI.4.1], X is
second countable. Therefore the space C(X,X) of all continuous maps from X to X is second
countable in the compact-open topology; see [8, XII.5.2]. Thus we may use sequences to
check continuity. By [8, XII.7.2], the compact-open topology coincides with the topology of
uniform convergence on compact sets. We note also that Iso(X) is closed in C(X,X).

We show first that Iso(X) is a topological group. It is true in general that C(X,X) is a
topological semigroup (by [8, XII.2.2]), so we only have to check the continuity of inversion.
Suppose that (gn)n∈N converges in Iso(X) to g . We have d(gn(z), g(z)) = d(z, g−1

n g(z))

for each n. Substituting y = g(z), this becomes d(gn(z), g(z)) = d(g−1(y), g−1
n (y)). Thus
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if Y ⊆ X is compact, then (g−1
n )n∈N converges on Y uniformly to g−1 because (gn)n∈N

converges on g−1(Y ) uniformly to g .
Now we show that some neighborhood of the identity of Iso(X) is compact. Let x ∈ X

be any point and put L = {g ∈ Iso(X); d(x, g(x)) < 1}. This is an open neighborhood of the
identity in Iso(X) because the evaluation map g �→ g(x) is continuous (by [8, XII2.4]). Since
L consists of isometries, L is equicontinuous. Let y ∈ X be arbitrary and put r = d(x, y).
Then L(y) is contained in the compact ball B̄r+1(x). Therefore L(y) has a compact closure.
By Arzela-Ascoli (see [8, XII.6.4]), L has a compact closure L̄ in Iso(X).

Since H ⊆ L̄ is closed, H is compact. If H/Hn is finite for all n, then H injects into the
compact totally disconnected space

∏

n∈N

H/Hn

and is therefore totally disconnected. �

3. Locally compact fields. In this section we assemble classification results for lo-
cally compact nondiscrete fields, skew fields and octonion division algebras.

PROPOSITION 3.1. Let F be an infinite nondiscrete locally compact field. Then the
following hold.

(i) If char(F ) > 0, then F is isomorphic to the field of formal Laurent series Fq((t))

for some q , where Fq is the field of q elements.
(ii) If char(F ) = 0, then either F = R or C or F is a finite extension of the p-adic field

Qp for some prime p.

PROOF. This holds by [42, Chapter 1, Theorems 5 and 8]. �

PROPOSITION 3.2. If F is an infinite nondiscrete locally compact field of characteris-
tic p > 0, then F/Fp is an extension of degree p.

PROOF. If F = Fq((t)) for some power q of p, then Fp = Fq((tp)). The claim holds,
therefore, by 3.1(i). �

PROPOSITION 3.3. Let F be an noncommutative nondiscrete locally compact skew
field. Then F is a cyclic algebra over a locally compact field, i.e., over one of the fields in
Proposition 3.1 other than C.

PROOF. See [31, 58.11]. �

PROPOSITION 3.4. Let F be a nondiscrete locally compact field or skew field. Then
the locally compact topology on F is unique except when F = C, in which case the locally
compact topology is unique up to field automorphisms.

PROOF. See the references at the bottom of [31, p. 332]. �

DEFINITION 3.5. We will say that F is a local field if it is a field or a skew field
complete with respect to a discrete valuation whose residue field is finite.
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PROPOSITION 3.6. Local fields, as defined in Definition 3.5, are precisely the fields
and the skew fields that appear in Propositions 3.1 and 3.3 other than those whose center is
R or C. Furthermore, the discrete valuation of a local field is unique.

PROOF. By [41, Theorem 21.6], a local field is a locally compact field with respect
to the topology induced by its valuation. By [32, Section II, Corollary 2 to Proposition 3]
and [38, Corollary 2.2], the fields and the skew fields that appear in Propositions 3.1 and 3.3
(other than those with center R or C) are, conversely, local fields. The uniqueness of the
discrete valuation of a local field holds by [31, 56.13] or [45, 23.15]. �

REMARK 3.7. Let F be a local skew field. Since F and F opp have the same valuation,
it follows by Propositions 3.4 and 3.6 that they have the same topology as locally compact
fields.

PROPOSITION 3.8. Let F be a nonassociative alternative division algebra. Then F is
an octonion division algebra over some infinite field k. If F is locally compact and nondis-
crete, then F is topologically isomorphic to the real octonion division algebra O. In particu-
lar, the locally compact topology on F is unique and F is connected.

PROOF. The first assertion was first proved in [5] and [21]; see [37, 20.2–20.3] for
another proof. Therefore k is infinite by, for example, [37, 9.9(v)]. Now suppose that F is
locally compact and nondiscrete. Since the center k of F is closed, it is locally compact. By
[40, Corollary 1 on p. 465], k is nondiscrete. Hence by [45, 28.4(i)] and 3.1, k must be R or
C. By [37, 20.9], k cannot be C. Thus k = R. By [37, 9.4 and 9.7], there is precisely one
quaternion division algebra H over R. Let N denote its reduced norm. Since N(H) = {α ∈
R; α ≥ 0}, it follows from [37, 9.9(v)] that there is precisely one octonion division algebra
O over R. (The uniqueness of H and O was, in fact, first proved by Frobenius.) Since O is
finite-dimensional over its center, an isomorphism from O to F must, in fact, be a topological
isomorphism (by [31, 58.6(i)]). �

4. The rank 1 case: compact projective lines. Let F be field, a skew field or an
alternative division algebra. Let P = F ∪ {∞} and let G denote the permutation group on P

generated by the maps τa : x �→ a + x for all a ∈ F and the involution i : x �→ −x−1 with
the usual conventions that 0−1 = ∞, ∞−1 = 0, −∞ = ∞ and a + ∞ = ∞ for each a ∈ F .
We call the pair (G,P ) the projective line over F and denote it by F̂ . We call F̂ = (G,P ) a
compact projective line if F is infinite, P carries a compact topology and G acts as a group
of homeomorphisms on P .

The following, combined with Proposition 3.8, generalizes the main result of [12].

THEOREM 4.1. Let F be a field, a skew field or an alternative division ring and sup-
pose that F̂ = (G,P ) is a compact projective line. Let F ⊆ P be endowed with the subset
topology. Then F is a locally compact, non-discrete and σ -compact field, skew field or alter-
native division ring.
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PROOF. We divide the proof into several steps. We note that P is topologically just the
one-point compactification of F .

STEP 1. The additive group (F,+) is a locally compact topological group. Moreover,
the extended addition F × P → P is continuous.

PROOF. See [41, Theorem 9.4] and its proof. �

STEP 2. Both inversion and the map (x, y) �→ xyx from F × F to F are continuous.

PROOF. We start with Hua’s identity:

xyx = (x−1 − (x + y−1)−1)−1 − x

for all x, y ∈ F such that xy 	= 0,−1. (When F is an octonion division algebra, then
by [37, 20.22], the subring generated by any two elements of F is associative. Thus Hua’s
identity holds also in this case.) The map x �→ −x is a homeomorphism of F , so it extends
continuously to its one-point compactification P . Since the map i : x �→ −x−1 is continuous,
it follows that the extended inversion x �→ x−1 from P to P is also continuous. It remains
only to check that with these extended maps, Hua’s identity holds also when xy = 0 or
xy = −1. �

STEP 3. The map x �→ x2 is continuous on P , where ∞2 = ∞.

PROOF. On F = P\{∞} we have x2 = x ·1 ·x and on P \{0} we have x2 = −i(i(x)2).
The claim holds, therefore, by Step 2. �

STEP 4. F is σ -compact and not discrete.

PROOF. The compact set P is infinite and homogeneous. It follows that F is not discrete
and there exists a countably infinite set C = {cn; n ≥ 1} ⊆ F \ {0} that has 0 in its closure.
Let K be a compact neighborhood of 0. The map φ : (x, y) �→ xyx is continuous. For z ∈ F

we have by continuity 0 ∈ φ(C̄ × {z}) ⊆ φ(C × {z}). Therefore, cnzcn ∈ K for some n. It
follows that

F =
⋃

n∈N

c−1
n Kc−1

n .

Thus F is σ -compact. �

From now on, we let k denote the center of F .

STEP 5. If char(F ) 	= 2, then the map x �→ 2x from F to itself is a homeomorphism
and if char(F ) = 2, then k is a closed subset of F and the Frobenius map from k to k2 is a
homeomorphism.

PROOF. If char(F ) 	= 2, then the map x �→ 2x is continuous (by Step 1) and bijective,
hence (by Step 4 and Corollary 2.2) a homeomorphism. Suppose that char(F ) = 2. In this
case, k = {x ∈ F ; (x + y)2 = x2 + y2 for all y ∈ F }. By Steps 1 and 3, it follows that k

is closed in F . By Step 3, the map x �→ x2 from k ∪ {∞} to k2 ∪ {∞} is continuous. Since



COMPACT TOTALLY DISCONNECTED MOUFANG BUILDINGS 339

the set k ∪ {∞} is the one-point compactification of the closed subset k ⊆ F , this map is a
homeomorphism. Thus the Frobenius map from k to k2 is a homeomorphism. �

By Steps 1 and 2, addition and inversion in F are continuous maps. To conclude that F

is a topological field (or skew field or alternative division ring), it thus remains only to show
that multiplication is also continuous.

STEP 6. If F = k is a field, then multiplication is continuous.

PROOF. If char(k) 	= 2, then by Steps 1 and 3, the quantity

2xy = (x + y)2 − x2 − y2

depends continuously on x, y, so by Step 5, the map (x, y) �→ xy is continuous. If char(k) =
2, then by Step 4, the inverse s of the Frobenius map x �→ x2 is continuous, so by Steps 2
and 3, the map (x, y) �→ s(xy2x) = xy is continuous. �

STEP 7. If F is a skew field, then multiplication is continuous.

PROOF. We put λc(x) = cx for all c, x ∈ F and [a, b] = a−1b−1ab for all a, b ∈
F ∗ := F\{0}. Then

a−1(b−1(ab)x(ab)b−1)a−1 = [a, b]x = λ[a,b](x)

for all a, b ∈ F ∗. By Step 2, the maps λc are thus continuous for all multiplicative com-
mutators c ∈ [F ∗, F ∗]. By Step 6, we can assume that F is not commutative. Let a, b be
non-commuting elements of F . Then a = (1 − [a − 1, b])([a, b] − [a − 1, b])−1. By Corol-
lary 2.2, the continuous automorphism

λ[a,b]−[a−1,b] = λ[a,b] − λ[a−1,b]

of (F,+) is a homeomorphism and therefore

λa = λ1−[a−1,b] ◦ λ−1
[a,b]−[a−1,b]

is continuous on F . Since a is an arbitrary non-central element and every element in F is a
sum of two non-central elements, we conclude that the maps λc are continuous for all c ∈ F .
Similarly, the maps x �→ xc are continuous for all c ∈ F . By [41, Theorem 11.17], it follows
that the map (x, y) �→ xy is continuous. �

STEP 8. If F is a nonassociative alternative division algebra, then multiplication is
continuous.

PROOF. By Proposition 3.8, F is an octonion division algebra and k is infinite. By
[37, 20.8 and 20.22], every subalgebra of F generated by two elements is contained in an
associative division ring. Let jy(x) = yxy for all x, y ∈ F . We claim that k is closed in F .
By Step 5, we can assume that char(k) 	= 2. We will show that in this case,

(4.2) k = {a ∈ F ; ja(jx(y)) = jx(ja(y)) for all x, y ∈ F } .
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By Step 2, this will suffice to prove our claim. Let a 	= 0 belong to the set on the right-hand
side of (4.2). Then

(4.3) a(xyx)a = x(aya)x

for all x, y ∈ F . Setting y = a−1 in (4.3) yields a(xa−1x)a = xax. Hence a−1xa commutes
with x for all x ∈ F . Fix x ∈ F\{k} and let B denote the subalgebra of F generated by x.
By [37, 20.9], B is a subfield of F and B/k is a quadratic extension. By [37, 20.20, 20.21],
it follows that the centralizer of B in F is B itself. Thus a−1Ba = B. Hence conjugation by
a induces a k-automorphism of order at most 2 on B and therefore a2 centralizes x. Since x

is arbitrary, it follows that a2 ∈ k. Setting y = 1 in (4.3), we therefore have ax2a = xa2x =
x2a2 for all x ∈ F . Thus a commutes with x2 and hence with x = ((x + 1)2 − x2 − 1)/2 for
all x ∈ F , so a ∈ k. Therefore (4.2) holds. We conclude that k is closed (in all characteristics)
as claimed.

By Step 6, k is locally compact and by Step 4, k is σ -compact. We have

2xa = ((x + 1)2 − x2 − 1)a

= jx+1(a) − jx(a) − a

for all x ∈ k and a ∈ F . Thus if char(k) 	= 2, then by Steps 1, 2 and 5, the map (x, a) �→ xa

from k × F to F is continuous and therefore F is a topological vector space over k. Suppose
that char(k) = 2 and let s denote the inverse of the Frobenius map from k to k2. Since
xa = js(x)(a) for all x ∈ k2 and all a ∈ F , it follows from Steps 2 and 5 that F is a
topological vector space over k2. By Proposition 3.1(i), dimk2 k = 2 and hence dimk2 F = 16
if char(k) = 2. By Step 5, k2 is homeomorphic to k and hence also locally compact and σ -
compact. We conclude that F is a locally compact topological vector space of finite dimension
m (equal to 8 or 16) over a locally compact and σ -compact field L (equal to k or k2) in all
characteristics.

Let v1, . . . , vm be a basis for F . The map Lm → F that sends (a1, . . . , am) to a1v1 +
· · · + amvm is a continuous bijective homomorphism. Since L is locally compact and σ -
compact, so is Lm. Hence this map is a homeomorphism by Corollary 2.2. We conclude that
multiplication in F is continuous (since it is bilinear over L). �

With this last step, the proof of Theorem 4.1 is complete. �

REMARKS 4.4. We note that another proof of Theorem 4.1 can be derived from [26,
Satz 1.2]. If we add “totally disconnected” to the hypotheses of Theorem 4.1, then by Propo-
sition 3.8, we can add “F is associative” to the conclusions.

5. Buildings. In this section, we briefly record some basic notions and facts for build-
ings which can be found in [1], [4], [28], [34] and [43]. We view buildings as simplicial
complexes.

Simplicial complexes. Let V be a set and S a collection of finite subsets of V . If⋃
S = V and if S is closed under going down (i.e., a ⊆ b ∈ S implies a ∈ S), then the poset
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(S,⊆) is called a simplicial complex. More generally, any poset isomorphic to such a poset
S will be called a simplicial complex. The join S ∗ T of two simplicial complexes S, T is
the product poset; it is again a simplicial complex. The automorphism group of a simplicial
complex is the group of all its poset automorphisms.

Coxeter groups and buildings. Let (W, I) be a Coxeter system. Thus W is a group
with a (finite) generating set I consisting of involutions and a presentation of the form W =
〈I ; (ij)ord(ij) = 1 for all i, j ∈ I 〉, where the relation (ij)ord(ij) = 1 is to be ignored when-
ever ord(ij) = ∞. For a subset J ⊆ I we put WJ = 〈J 〉. Then (WJ , J ) is again a Coxeter
system. The poset Σ = ⋃{W/WJ ; J ⊆ I }, ordered by reversed inclusion, is a simplicial
complex, the Coxeter complex Σ = Σ(W, I). The type of a simplex wWJ is t (wWJ ) = I \J .
The type function may be viewed as a non-degenerate simplicial epimorphism from Σ to the
power set 2I of I viewed as a simplicial complex. We refer to [20] for more details on Coxeter
groups.

A (thick) building ∆ is a simplicial complex together with a collection of subcomplexes
called apartments which are isomorphic to a fixed Coxeter complex Σ . The apartments have
to satisfy the following two conditions.

(B1) For any two simplices a, b ∈ ∆, there is an apartment A containing a, b.
(B2) If A,A′ ⊆ ∆ are apartments containing the simplices a, b, then there is a (type

preserving) isomorphism A → A′ fixing a and b.
(B3) Every non-maximal simplex is contained in at least three maximal simplices.

The property (B3) is called thickness. Sometimes this axiom is omitted, but for our purposes
it is convenient to assume that buildings are thick. Non-thick buildings can in a certain way
be reduced to joins of thick buildings and spheres. An automorphism of a building is just a
simplicial automorphism.

The join of two buildings is again a building. Conversely, a building decomposes as a
join if its Coxeter group is decomposable, i.e., if I ⊆ W decomposes into two subsets which
centralize each other; see [28, 3.10]. A building is called irreducible if its Coxeter group is
not decomposable.

The type functions of the apartments are pairwise compatible and extend to a non-
degenerate simplicial epimorphism t : ∆ → 2I . The cardinality of I is the rank of the build-
ing, so

rank(∆) = dim(∆) + 1 .

The automorphisms of a building that preserve the type function are called special automor-
phisms. A building of rank 1 is just a set (of cardinality at least 3 since we are assuming
buildings to be thick), where the apartments are the two-element subsets.

Chambers and galleries. The maximal simplices in a building are called chambers.
The chamber graph of ∆ is the undirected graph whose vertices are the chambers of ∆. Two
chambers are adjacent if they have a codimension 1 simplex in common. A gallery is a sim-
plicial path in the chamber graph, and a nonstammering gallery is a path where consecutive
chambers are always distinct. The chamber graph of a building is always connected. A mini-
mal gallery is a shortest path in the chamber graph.



342 T. GRUNDHÖFER, L. KRAMER, H. VAN MALDEGHEM AND R. M. WEISS

The distance function. Let i = (i1, . . . , im) be a sequence in Im. A gallery of type i is
a gallery (c0, c1, . . . , cm) where ck−1∩ck contains a simplex of type I\{ik}. If (c0, c1, . . . , cm)

is a minimal gallery of type i, then the product w = i1 · · · im ∈ W is independent of the chosen
gallery (i.e., the types of all minimal galleries yield the same element w ∈ W ). The W -valued
distance δ is defined by δ(c0, cm) = w. Thus

δ(a, b) = δ(b, a)−1

for all chambers a, b ∈ ∆ and δ(a, b) = 1 if and only if a = b.
Residues and panels. Let a ∈ ∆ be a simplex of type J . The residue of a is the poset

Res(a) consisting of all simplices containing a; this poset is again a building, whose Coxeter
complex is modeled on WI\J [34, 3.12]. If a is a simplex of codimension 1 and type I \ {j },
then Res(a) is called a j -panel.

Spherical buildings. A Coxeter complex Σ is called spherical if it is finite and a build-
ing is called spherical if its apartments are finite.

6. Compact buildings.

DEFINITION 6.1. Let ∆ be a spherical building with Coxeter system (W, I). We call
∆ a compact spherical building if for each i the set Vi of vertices of type i carries a compact
topology such that the set of chambers is closed in the product

∏
i∈I Vi , where we view a

chamber as an I -tuple of vertices. It is easy to see that this agrees with the definition of
a compact spherical building given in [7, 1.1]. In the rank 2 case it also agrees with the
definition of a compact generalized polygon; see [14], [16], [23]. We say that ∆ is connected,
totally disconnected, etc., if the set of chambers is connected, totally disconnected, etc.

Our first observation is that compact spherical buildings arise from transitive actions of
compact groups on spherical buildings.

LEMMA 6.2. Let ∆ be a spherical building and suppose that a group K acts as a
chamber transitive automorphism group. Let {vi; i ∈ I } denote the vertices of a fixed cham-
ber c. If K is a compact group and if the stabilizers Kvi are closed in K , then ∆ is a compact
building if we endow the set of i-vertices with the compact topology of K/Ki . If K is totally
disconnected, then ∆ is totally disconnected.

PROOF. The group Kc = ⋂{Kvi ; i ∈ I } is closed and the natural map

K/Kc →
∏

i∈I

K/Kvi

is continuous onto the set of chambers. Since K/Kc is compact, the set of chambers is com-
pact and therefore closed. If K is totally disconnected, then each coset space K/Kv is also
totally disconnected; see [18, 7.11]. �

PROPOSITION 6.3. Let G be a noncompact simple real or complex Lie group and let
∆ denote the spherical building associated to the canonical Tits system of G; see [39, p. 68].
Then ∆ carries in a natural way a compact topology which turns ∆ into a compact building.



COMPACT TOTALLY DISCONNECTED MOUFANG BUILDINGS 343

Let K ⊆ G be a maximal compact subgroup and let X = G/K denote the associated Rie-
mannian symmetric space of noncompact type. Then ∆ can be identified with the spherical
building at infinity of X. The compact topology on ∆ coincides with the topology induced on
∆ by the cone topology on ∂X. See [3, II.8] for the latter.

PROOF. We refer to [39] and [9] for the following facts. Let G = KAU be an Iwasawa
decomposition of G; see [17, Section IX.1]. Note that we call the nilpotent part U instead
of N since N has a different meaning for Tits systems. Let K0 = CenK(A). Then K0 is
the reductive anisotropic kernel of G and B = K0AU is a minimal parabolic subgroup. Let
N = NorG(K0A). Then (B,N) constitutes a Tits system for G, of rank dim A. The parabolics
of this Tits system are closed subgroups. The group K acts transitively on the chambers of
the corresponding spherical building ∆, since G = KB. Because the parabolics are closed in
G, the vertex stabilizers in K are also closed. By Lemma 6.2, ∆ is a compact building and
G acts continuously. Let x = K denote the unique fixed point of K in G/K . Then K acts
continuously on the compact space X ∪ ∂X; see [3, II.8.8]. Recall that each boundary point
in ∂X is represented by a geodesic ray starting at x [3, II.8.2]. Let ξ be such a geodesic ray
starting at x. Since K is compact, the K-orbit of ξ is homeomorphic to the coset K/Kξ . The
G-stabilizer of ξ(∞) is a parabolic P (see [9, 2.17]) and therefore we have a K-equivariant
homeomorphism G/P ∼= K/Kξ . �

In a similar way, we have the following result for Bruhat-Tits buildings. Recall that by
‘Bruhat-Tits building,’ we mean an irreducible affine building whose spherical building at
infinity is Moufang.

PROPOSITION 6.4. Let X denote a locally finite Bruhat-Tits building. Then Aut(X)

is a totally disconnected locally compact group. The spherical building at infinity, ∆, is in a
natural way a totally disconnected compact building on which Aut(X) acts continuously. The
compact topology on ∆ coincides with the topology induced on ∆ by the cone topology on
∂X with respect to the canonical CAT(0) metric on X.

PROOF. We endow the geometric realization of X with the unique metric which extends
the W -invariant euclidean metric on the apartments. In this way, X becomes a CAT(0) space;
see [3, II.10A.4] and [6, 3.2]. Moreover, each closed ball in X is contained in a finite subcom-
plex and is therefore compact. It follows from Theorem 2.3 that the isometry group Iso(X) is
locally compact and the stabilizer of any vertex x ∈ X is compact. Moreover, the isometry
group Iso(X) coincides with the combinatorial automorphism group Aut(X); here note that
because X is thick, every isometry is a simplicial automorphism. For every n ≥ 1, the closed
ball B̄n(x) is contained in a finite metric simplicial subcomplex of X. Therefore Iso(X) in-
duces a finite isometry group on B̄n(x). By Theorem 2.3, Iso(X)x is totally disconnected. We
claim that Iso(X) is also totally disconnected. If Z ⊆ Iso(X) is a connected subset, then Z

intersects every stabilizer trivially. If x is a simplicial vertex, then the orbit Z.x is a connected
set of vertices. But simplicial vertices are isolated in X. Therefore Z.x = {y} consists of a
single element, and so does Z.
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Now let x be a special vertex. By Proposition 7.9(iv) below, the compact group K =
Iso(X)x acts transitively on the chambers of the spherical building at infinity. The rest of
the proof is completely analogous to the previous proof. The K-stabilizer of each geodesic
ray ξ starting in x is closed. By Lemma 6.2, the spherical building at infinity is a totally
disconnected compact building. �

Suppose now that ∆ is a compact building over I and let C denote its set of chambers.
For each sequence i = (i1, . . . , im) ∈ Im, we have the set of all (possibly stammering)
galleries of type i. This is clearly a closed, whence compact, subset of Cm+1. The following
observations are immediate consequences.

LEMMA 6.5. Let ∆ be a compact spherical building and C its set of chambers. Let
m ≥ 1.

(i) For each i ∈ Im, the set of all pairs of chambers that can be joined by a gallery of
type i is compact.

(ii) For each i ∈ Im, the set of all chambers that can be reached from a given chamber
by a gallery of type i is compact.

(iii) The set of all chambers in any residue of ∆ is compact. In particular, panels are
compact.

(iv) The set of all pairs of opposite chambers is open in C × C.
(v) The set of all chambers opposite a given chamber is open in C.

PROOF. The sets given in (i) and (ii) are continuous images of compact sets of galleries
and therefore compact. Now (iii) is a special case of (ii), since the set of chambers of a residue
is precisely the set of all chambers of ∆ that can be reached from a chamber in the residue
via a (possibly stammering) gallery whose type represents the longest word w0 in the Coxeter
group of the residue by, for example, [43, 5.4]. The complements of the sets given in (iv) and
(v) are finite unions of compact sets by (i) and (ii), and therefore closed. �

COROLLARY 6.6. Every residue in a compact spherical building is in a natural way
a compact spherical building.

PROOF. The proof is mainly a matter of careful bookkeeping. Let a ∈ ∆ be a sim-
plex of type J ⊆ I . Its residue Res(a) is by definition the poset of all simplices containing
a. For i ∈ I \ J , its set of i-vertices Vi(Res(a)) consists of all simplices of type J ∪ {i}
containing a. Its chamber set is C(Res(a)) = Res(a) ∩ C. This set C(Res(a)) is com-
pact by 6.5(iii). Since it projects continuously onto Vi(Res(a)), the latter set is also com-
pact. Moreover, Vi(Res(a)) ⊆ ∏

j∈J∪{i} Vj is Hausdorff. Consider the natural injection
C(Res(a)) → ∏

i∈I\J Vi(Res(a)). This map is continuous, so its image is compact and
therefore closed in the product

∏
i∈I\J Vi(Res(a)). �

COROLLARY 6.7. Let ∆1 and ∆2 be spherical buildings and let ∆ = ∆1 ∗ ∆2 denote
their join, i.e., the product poset.

(i) If ∆1 and ∆2 are compact buildings, then ∆ is in a natural way a compact building.
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(ii) If ∆ is a compact building, then ∆1 and ∆2 are compact buildings and ∆ is as in
(i) isomorphic to their join.

PROOF. Again, the proof is just a matter of bookkeeping. The vertex set of ∆1 ∗ ∆2

is the disjoint union of the vertex sets of ∆1 and ∆2. The chamber set of ∆ is the cartesian
product of the chamber sets of ∆1 and ∆2. For (i) we note that we have compact Hausdorff
topologies on the vertex sets of ∆ and the chamber set of ∆ is a continuous image of a compact
set in their cartesian product. This proves (i). For (ii) we note that ∆1 and ∆2 are residues
in ∆. By Corollary 6.6, both residues are compact buildings. It is now easy to see that the
various compact topologies on ∆1 ∗ ∆2 and ∆ coincide, since there are natural continuous
bijections between them. �

LEMMA 6.8. Let i = (i1, . . . , im) be a reduced expression of i1 · · · im = w ∈ W ,
i.e., w cannot be expressed in a shorter way as a word in the generating set I . The map
which assigns to a pair of chambers (c, d) at distance δ(c, d) = w the unique gallery (c0 =
c, c1, . . . , cm = d) of type i is continuous.

PROOF. We use the fact that a map from a topological space X to a compact space Y is
continuous if and only if its graph is closed; see [8, XI.2.7]. In our situation X = {(a, b) ∈
C × C; δ(a, b) = w} and Y = Cm+1. The graph of the map in question is the set of all
(m + 3)-tuples (c0, cm, c0, . . . , cm), where c0, . . . , cm is a nonstammering gallery of type i.
Clearly, this set is closed in C2 × Cm+1. �

COROLLARY 6.9. Let i ∈ I and w ∈ W and suppose that l(wi) < l(w), i.e., w

admits a reduced expression that ends with the letter i. For any chamber c ∈ C, let pi(c)

denote the unique i-panel containing c. Then the map that assigns to a pair of chambers
(c, d) at distance δ(c, d) = w the unique chamber e = projpi(d)(c) with δ(e, d) = i and
δ(c, e) = wi is continuous.

6.10. Schubert cells. Let w ∈ W and let c0 ∈ C be a fixed chamber. We call the set
Cw(c0) = {c ∈ C; δ(c0, c) = w} a Schubert cell. If w0 is the longest element in W , then
Cw0(c0) is sometimes called the big cell. The big cell is just the set of all chambers opposite
c0. By Lemma 6.5(v), this set is open.

PROPOSITION 6.11. Let w ∈ W be an element of word length l(w) = m ≥ 1. Then
the Schubert cell Cw(c0) is homeomorphic to a product of m punctured panels, where ‘punc-
tured panel’ means a panel with one chamber removed.

PROOF. We proceed by induction on m. For each i ∈ I , we have Ci(c0) = pi(c0)\{c0}.
Thus the claim holds for m = 1. Suppose now that m > 1 and choose i such that l(wi) <

l(w). Let w0 be as in 6.10 and let j = w0iw0 ∈ I , put v = ww0, so w0 = v−1w, and
fix d ∈ Cv(c0), so δ(d, c) = v−1w = w0 for all c ∈ Cw(c0). Then the panels pi(a)

and pj (d) are opposite for each a ∈ Cwi(c0) (by [43, 5.13]). By [43, 5.14(i)], projpi(a)

restricted to pj (d) and projpj (d) restricted to pi(a) are inverses of each other for each a ∈
Cwi(c0). Thus the maps Cwi(c0) × Cj(d) → Cw(c0) sending (a, b) to c = projpi(a)(b) and
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Cw(c0) → Cwi(c0) × Cj (d) sending c to (a, b) = (projpi(c)(c0), projpj (d)(c)) are inverses
of each other. By Corollary 6.9, both these maps are continuous. By induction, therefore,
Cwi(c0) is homeomorphic to a product of punctured panels. �

COROLLARY 6.12. The topology on ∆ is uniquely determined by its restriction to the
panels of ∆.

PROOF. By Proposition 6.11, the topology on the panels determines the topologies on
the Schubert cells. In particular, it determines the topologies on the big cells. Since these are
open, this determines the topology on C. The vertex sets Vi are topologically quotients of C

and thus the topology on Vi is also determined by the topologies of the panels. �

PROPOSITION 6.13. If ∆ is an irreducible compact spherical building of rank at
least 2, then either C is connected, or C is totally disconnected, and, in fact, homeomorphic
to the Cantor set.

PROOF. Suppose that C is not connected. Then there is some panel R which is not
connected. By [23, 2.2.3], R is totally disconnected and without isolated points. If S is any
other panel in ∆, then we find a sequence of panels between R and S such that consecutive
panels are contained in irreducible rank 2 residues. Therefore, S is also totally disconnected
without isolated points by [23, 2.2.3]. It follows that the big cells in C are totally disconnected
and without isolated points, and thus C itself is totally disconnected. Moreover, no point in C

is isolated, so the result follows from [19, 2–98]. �

We remark that the vertex sets Vi are also either connected or totally disconnected, de-
pending on C. This can be proved in a similar way as in [23, 2.5.2].

PROPOSITION 6.14. Let ∆ be a compact building without factors of rank 1. Then the
topology on the vertices and chambers is separable and metrizable.

PROOF. In view of Corollary 6.7 it suffices to consider the case when ∆ is irreducible
and of rank m ≥ 2. For m = 2, this is proved in [14, Thm. 1.5]. Suppose now that m ≥ 3.
Every panel of ∆ is then contained in some irreducible residue of rank 2 and therefore second
countable by [14, Thm. 1.5]. It follows from Proposition 6.11 that every big cell in C is second
countable. Since C can be covered by |W | big cells (where |W | here denotes the cardinality
of W ), and since the big cells are open by Lemma 6.5(v), C itself is second countable. It
follows that C is separable and metrizable [8, VIII.7.3, XI.4.1], [10, 4.2.8]. It follows from
[10, 4.4.15] that Vi is also metrizable and separable [8, VIII7.2]. �

THEOREM 6.15. Let ∆ be a compact building without factors of rank 1. Then the
group Auttop(∆) of all continuous automorphisms of ∆, endowed with the compact-open
topology, is a second countable locally compact metrizable group. The group of all continuous
special automorphisms is an open normal subgroup.

PROOF. This is essentially [7, Thm. 2.1]. We first note that by Proposition 6.14, ∆ is a
metric building in the sense of [7, p. 12]. We also note that a sufficiently small neighborhood
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of the identity of Auttop(∆) consists only of type-preserving automorphisms. We note that
the argument in [7, pp. 20–21] requires only that each rank 1 residue is contained in some
irreducible rank 2 residue. This is precisely our assumption. Thus a sufficiently small iden-
tity neighborhood of Auttop(∆) is compact and consists of special automorphisms [7, p. 21].
Moreover, Auttop(∆) is second countable, because this is true for ∆, cp. [8, XII.5.2], and
therefore metrizable [8, IX.9.2]. �

PROPOSITION 6.16. Let f : ∆ → ∆ be an abstract automorphism of the compact
building ∆. If, for each i ∈ I , there is some i-panel Ri ⊆ C such that f is continuous on R,
then f is a continuous automorphism of ∆.

PROOF. Suppose that f is continuous on the panel R. Let S be a panel opposite to R.
By [43, 5.14(i)] the maps projR|S and projS |R are inverses of each other. Moreover, f |S =
projf (S) ◦ f ◦ projR|S is continuous by Corollary 6.9. It follows from [34, 3.30] that f is
continuous on every panel of the same type as R. Therefore f is continuous on every panel
of ∆. From Proposition 6.11 we see that f is continuous on every Schubert cell. In particular,
f is continuous on the big cells. Since these are open and cover C, f is continuous on C.
Finally, we note that C → Vi is an f -equivariant quotient map, so f is also continuous on
each vertex set Vi . �

COROLLARY 6.17. Let ∆ be a compact spherical building. Then every element of
every root group is continuous.

PROOF. A root group fixes some panel of each type chamber-wise; see Definition 1.3.
Compare [7, 5.1]. �

NOTATION 6.18. Let ∆ be an irreducible spherical building of rank at least 2 that
satisfies the Moufang condition. We denote by G† the subgroup of Aut(∆) generated by all
the root groups of ∆.

COROLLARY 6.19. Let ∆ be an irreducible compact spherical building of rank at
least 2 that satisfies the Moufang condition. Then G† is contained in Auttop(∆). In particular,
Auttop(∆) acts strongly transitively on ∆.

PROOF. By [43, 11.12], the group G† defined in Notation 6.18 acts strongly transitively
on ∆. By Corollary 6.17, the group G† is contained in Auttop(∆). �

7. Moufang spherical buildings. In this section, we gather the various results about
Moufang spherical buildings we will need. See Appendix B in [45] for a summary of the
classification of these buildings.

Throughout this section, we let ∆ be an irreducible spherical building of rank l at least 2
that satisfies the Moufang condition.

NOTATION 7.1. Let F be the defining field of ∆ as defined in [45, 30.15]. Note that
although we call F the defining field of ∆, F might be a skew field or an octonion division
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algebra. Note, too, that although we call F the defining field of ∆, it is not quite an invariant
of ∆. By [45, 30.29], the following hold.

(i) If ∆ is of type Al, then only the unordered pair {F,F opp} is an invariant of ∆.
(ii) If ∆ is mixed as defined in [45, 30.24], then F is commutative, char(F ) = p ≤ 3,

there exists an extension E of F such that Ep ⊂ F ⊂ E and the unordered pair {F,E}, but
not F alone, is an invariant of ∆. Note that if we replace E by the isomorphic field Ep, then
Fp ⊂ E ⊂ F .

(iii) In every other case, F is an invariant of ∆.
If F is a local skew field, then so is F opp (with the same valuation). If F , E and p are as in
(ii), then (by Proposition 3.2) E equals either Fp or F ; in both cases, E is isomorphic to F

and, in particular, E is also a local field. Thus in those few cases where there are really two
defining fields, one is a local field if and only if the other one is.

THEOREM 7.2. Let F be as in Notation 7.1. Then the following hold.
(i) If ∆ is the building at infinity of a locally finite affine building X, then F is a local

field and X is one of the buildings in [45, Tables 28.4–28.6] where F is called K .
(ii) If F is a local field, then ∆ is the building at infinity of a unique locally finite affine

building X.

PROOF. If ∆ is the building at infinity of a locally finite affine building X, then by
1.5 and the remarks in the two paragraphs preceding [45, 28.1], F is a local field. Suppose,
conversely, that F is a local field. By [45, 28.11(viii)], ∆ is not an exceptional quadrangle
and therefore the relevant parameter system is “ν-compatible” in every case (as defined in the
places cited in the second column of [45, Table 27.2]) simply because F is complete with
respect to its valuation ν. It follows from in [45, 27.2] that ∆ is the building at infinity of
an affine building X with respect to some system of apartments A and from [45, 27.1(iv)]
that the pair (X,A) is unique (since the valuation of F is unique). It is the main result of
[45, Chapter 28] (see, in particular, [45, 28.11(viii), 28.14 and 28.33–28.38]) that if F is a
local field and ∆ is the building at infinity of an affine building X with respect to a system
of apartments A, then (X,A) is one of the Bruhat-Tits pairs (as defined in [45, 13.1]) in [45,
Tables 28.4–28.6] (where F is called K). It can be read off from the last column of these
tables that X is, in every case, locally finite.

It is assumed in [45, 28.29] that A is complete, but this assumption is not used in [45,
28.33–28.38]. Instead, it can be observed by invoking [45, 17.11, 19.28(ii), 23.13, 24.48,
25.27 and 28.15] that each Bruhat-Tits pair in these tables is, in fact, complete as defined in
[45, 17.1]. (When invoking [45, 23.13], it needs to be observed that by [45, 28.15], F0 is a
closed subset of F if (F, F0, σ ) is an involutory set and when invoking [45, 25.27], it needs
to be observed that by Proposition 3.2, L is closed in F if char(F ) = 3 and L is a subfield
such that F 3 ⊂ L ⊂ F .) �

We now fix an irreducible rank 2 residue Γ of ∆. By [43, 7.14, 7.15 and 11.8], Γ is a
Moufang n-gon for some n ≥ 3 (as defined in [37, 4.2]). Thus, in particular, Γ is a graph
whose vertices are the panel and whose edges are the chambers.
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NOTATION 7.3. Let Σ be an apartment of ∆ containing an apartment of Γ . By [43,
8.13(i)], the intersection Σ ∩ Γ is a circuit of length 2n whose vertices we can label with the
integers modulo 2n, so that i − 1 and i are adjacent for each i. For each i, there exists by [43,
3.11 and 4.10] a unique root αi of Σ such that α ∩ Γ = (i, i + 1, . . . , i + n). Let Ui = Uαi

for each i.

PROPOSITION 7.4. Let Ui for all i be as in Notation 7.3. Then the following hold.
(i) The group 〈U1, U2, . . . , Un〉 acts faithfully on Γ .

(ii) If 0 ≤ j ≤ n − 3 and 1 ≤ i ≤ n − j , then the subgroup

UiUi+1 · · · Ui+j

is the pointwise stabilizer of its set of fixed points in Γ .

PROOF. Assertion (i) holds by [43, 11.27]. Assertion (ii) holds, therefore, by
[37, 5.2]. �

NOTATION 7.5. By [37, 17.1–17.7] and 7.4(i), the group U+ := 〈U1, U2, . . . , Un〉
can be identified with one of the groups described in [37, 16.1–16.9]. We denote the nine
cases (as in [37]) T , QI , QQ, QD, QP , QE , QF , H and O. (We have n = 3 in the first
case, n = 4 in the next six cases, n = 6 in Case H and n = 8 in Case O.) In each case,
U+ is defined in terms of a parameter system Ξ . In Case T , Ξ is an alternative division
ring k (that is to say, a field, a skew field or an octonion division algebra); in Case QI , an
involutory set (k, k0, σ ); in Case QI , an anisotropic quadratic space (k, L, q), in Case QD,
an indifferent set (k, k0, L0), in Case QP , an anisotropic quadratic space (k, k0, σ, L, q), in
Cases QE and QF a quadrangular algebra defined over a field k, in Case H, an hexagonal
system (J, k,N, #, T ,×, 1) and in Case O, an octagonal set (k, σ ). (A quadrangular algebra
is defined in [44]; references to all the other relevant definitions can be found in [37, 16.1–
16.9].) By [37, 38.9], we can assume that in Case QD the indifferent set Ξ = (k, k0, L0) is
proper as defined in [37, 38.8].

PROPOSITION 7.6. Let k be as in Notation 7.5 and let F be the defining field of ∆ as
defined in Notation 7.1. Then one of the following holds.

(i) k = F or F opp.
(ii) F is commutative and F/k is a separable quadratic extension.
(iii) F is a quaternion or octonion division algebra and k is its center.
(iv) F is commutative, char(F ) = p = 2 or 3 and either Fp ⊂ k ⊂ F or kp ⊂ F ⊂ k.

PROOF. This holds by [45, 30.14–30.15]. �

COROLLARY 7.7. Let k be as in Notation 7.5 and let F be the defining field of ∆.
Then the following hold.

(i) k is a local field if and only if F is.
(ii) If k is a local field, then either k or {k, kopp} is an invariant of ∆.

PROOF. By Propositions 3.3 and 3.6, the center of a local field is a local field. By
Proposition 3.8, there are no octonion division algebras over a local field. Assertion (i) holds,
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therefore, by Propositions 3.6 and 7.6. Assertion (ii) holds by Notation 7.1 applied to Γ (since
Γ is an invariant of ∆). �

PROPOSITION 7.8. Suppose that ∆ is the building at infinity of a locally finite Bruhat-
Tits building X, let Σ be an apartment of ∆, let α be a root of ∆ and let ϕ be a valuation
of the root datum of ∆ based at Σ , which exists by the results in the first two columns of
[45, Table 27.2] and is unique up to equipollence by [45, 3.41(iii)]. Let the root group Uα be
endowed with the metric dα determined by the map ϕα as described in [45, 17.3]. Then Uα is
locally compact with respect to this metric.

PROOF. We write Uα additively even though it might not be abelian and let

Uα,k = {u ∈ Uα; ϕα(u) ≥ k}
for each integer k (where ϕα(0) = ∞). By [45, 18.20], Uα,k+1 is a subgroup of finite index
in Uα,k for each k. To show that Uα is locally compact, it will suffice to show that the open
subgroup Uα,0 is compact. Let (ui)i∈N be an infinite sequence of elements in Uα,0. We can
choose w0 ∈ Uα,0 such that −w0 + ui ∈ Uα,1 for infinitely many i. We can then choose
w1 ∈ Uα,1 such that −w1 − w0 + ui ∈ Uα,2 for infinitely many i. We continue in this fashion
and set zm = w0 + w1 + · · · + wm for each m ≥ 0. By [45, 17.9] and Theorem 7.2(i), Uα is
complete with respect to the metric dα. It follows that the sequence (zm)m∈N has a limit z in
Uα . In fact, z ∈ Uα,0 since Uα,0 is closed. By the choice of the elements wj , the element z is
an accumulation point of the sequence (ui)i∈N. We conclude that every infinite sequence in
Uα,0 has an accumulation point in Uα,0, from which it follows that Uα,0 is compact. �

PROPOSITION 7.9. Suppose that ∆ is the building at infinity of a Bruhat-Tits building
X, let G† be the subgroup of Aut(∆) defined in Notation 6.18 and let B be the stabilizer in
G† of a chamber c of ∆, i.e., B is a minimal parabolic subgroup of G†. Then the following
hold.

(i) The group G† is canonically isomorphic to a subgroup of Aut(X).
(ii) The subgroup B acts transitively on the set of all special vertices of a fixed type in

X.
(iii) G† = KB, where K is the stabilizer in G† of a special vertex of X. (This is the

Iwasawa decomposition of G†. )
(iv) The subgroup K acts transitively on the chambers of ∆.

PROOF. By [45, 12.31], (i) holds and we can identify B with a subgroup of Aut(X). The
chamber c is a parallel class of sectors of X. By [43, 11.12] and [45, 8.27], B acts transitively
on the set of all apartments of X containing c (i.e., containing a sector in the parallel class c).
By [45, 7.6], every vertex of X is contained in such an apartment.

Now let A be an apartment of X containing a sector in the parallel class c, let N denote
the normalizer of A in G† and put T = N ∩ B. By [45, 18.3(ii)], T contains all affine
reflections of A. By [45, 1.30], it follows that T acts transitively on the set of special vertices
of A of any given type. Thus (ii) holds. This, in turn, implies (iii) which then implies (iv). �
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8. Compact totally disconnected buildings of rank 2. In this section we prove the
following result. It is the key step in the proof of Theorem 1.1.

THEOREM 8.1. Let Γ be an infinite irreducible compact totally disconnected Moufang
building of rank l = 2. Let G† be the group of automorphisms generated by all the root groups
of Γ and let F be the defining field of Γ as defined in Notation 7.1. Then F is a local field in
the sense of Definition 3.5 and the topology on Γ that makes it a compact building is unique.

The building Γ in Theorem 8.1 is a graph whose edges are the chambers and whose
vertices are the panels. For each vertex x, we denote by Γx the set of vertices adjacent to x

and we identify the set of chambers (i.e., edges) containing x with Γx via the map {x, y} �→ y.
We fix an apartment Σ of Γ . Let n, the labeling of the vertices of Σ and Ui for i ∈ Z2n

be as in Notation 7.3 and let k and Ξ be as in Notation 7.5.
We recall from Theorem 6.15 that the group Auttop(Γ ) of topological automorphisms

of Γ is locally compact, metrizable, second countable, and in particular σ -compact.

PROPOSITION 8.2. The subgroup Ui is a locally compact subgroup of Auttop(Γ ) for
all i ∈ [1, n].

PROOF. Let i ∈ [1, n]. By 6.17, Ui ⊂ Auttop(Γ ). By Proposition 7.4(ii) (with j = 0)
and Theorem 6.15, therefore, Ui is a closed subgroup of a locally compact group. �

From now on we use exponential notation to indicate the action of a group on a set; see
[43, 11.9].

PROPOSITION 8.3. The map u �→ 0u is a homeomorphism from U1 to Γ1\{2} and the
map u �→ (n − 1)u is a homeomorphism from Un to Γn\{n + 1}.

PROOF. The closed subgroup U1 is σ -compact (by Theorem 6.15) and the stabilizer in
U1 of the vertex 0 is trivial (by [37, 3.7]). By Theorem 2.1 and Proposition 8.2, it follows that
the map u �→ 0u is a homeomorphism from U1 to Γ1\{2}. Thus the first assertion holds. The
proof of the second assertion is virtually the same. �

NOTATION 8.4. Let the cases T , QI , QQ, QD, QP , QE , QF , H and O and the
parameter system Ξ be as in Notation 7.5. We use xi to denote the various isomorphisms
from the appropriate algebraic structures to Ui for all i ∈ [1, n] that appear in [37, 16.1–
16.9]. In particular, the following hold.

(i) x1 is an isomorphism from k0 to U1 and x4 is an isomorphism from L0 to U4 in
Case QD, where Ξ is the indifferent set (k, k0, L0);

(ii) x1 is the isomorphism from the group called S in [37, 16.6] to U1 in Case QE ; and
(iii) x1 is the isomorphism from the group called X0 ⊕ K in [37, 16.7] (with K here

replaced by k) to U1 in Case QF .
In both (ii) and (iii), the map t �→ x1(0, t) is an isomorphism from the additive group of k

into U1.
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DEFINITION 8.5. In Case QD , where Ξ = (k, k0, L0), we equip k0 with the unique
topology that makes the isomorphism x1 into a homeomorphism from k0 to U1. In the remain-
ing cases, we equip k with the unique topology such that the following hold.

(i) x1 is a homeomorphism from k to U1 in Cases T , QQ and O;
(ii) xn is a homeomorphism from k to Un in Cases QI , QP and H;
(iii) the map t �→ x1(0, t) is a homeomorphism from k to the subset x1(0, k) of U1 in

Cases QE and QF .

NOTATION 8.6. Let ∞, P and 〈t〉 be as follows:
(i) In Cases QI , QP and H, let ∞ = n + 1, P = Γn and 〈t〉 = (n − 1)xn(t) for all

t ∈ k.
(ii) In Cases T , QQ and O, let ∞ = 2, P = Γ1 and 〈t〉 = 0x1(t) for all t ∈ k.
(iii) In Case QD , where Ξ is an indifferent set (k, k0, L0), let ∞ = 2, P = Γ1 and

〈t〉 = 0x1(t) for all t ∈ k0.
(iv) In Cases QE and QF , let ∞ = 2, P = Γ1 and 〈t〉 = 0x1(0,t ) for all t ∈ k.

PROPOSITION 8.7. Suppose that Γ is neither in case QE nor in case QF . Let P and
〈t〉 be as in Notation 8.6 and let τ be the map from P to itself that interchanges ∞ and
〈0〉 and maps 〈t〉 to 〈−t−1〉 for all t ∈ k∗ (respectively, t ∈ k∗

0 in case QD ). Then τ is a
homeomorphism.

PROOF. Suppose that we are in case T , QQ, QD or O. (In case QD , where Ξ =
(k, k0, L0), “t ∈ k” is to be read as “t ∈ k0” everywhere in this proof.) By [37, 6.1], there
exists for each t ∈ k∗ a unique element µ(x1(t)) in the double coset U∗

n+1x1(t)U
∗
n+1 that

maps Σ to itself and induces on Σ the reflection with fixed points 1 and n + 1. The element
µ(x1(t)) maps P to itself and interchanges ∞ and 〈0〉 for all t ∈ k∗. Let m = µ(x1(1)). Then
all the identities in [37, 32.5, 32.7, 32.8 and 32.12] as well as

xn+1(t) = x1(t)
m

hold for all t ∈ k (as explained in the introduction to [37, Chapter 32]). In particular,

µ(x1(t)) = xn+1(t
−1)x1(t)xn+1(t

−1)

for all t ∈ k∗. Choose t ∈ k∗. Since both m and µ(x1(t)) interchange 〈0〉 and ∞ and Un+1

fixes 〈0〉, we have

〈t−1〉mx1(t) = 〈0〉x1(t
−1)mx1(t) = ∞m−1x1(t

−1)mx1(t)

= ∞x1(t
−1)mx1(t)

= ∞xn+1(t
−1)x1(t)

= ∞µ(x1(t))xn+1(t
−1)−1

= 〈0〉xn+1(t
−1)−1 = 〈0〉

and therefore
〈t−1〉m = 〈0〉x1(t)

−1 = 〈−t〉 .
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Thus m induces the map τ on P . Hence (by 6.17) τ is continuous. Since τ = τ−1, it is, in
fact, a homeomorphism. The argument in the remaining cases is virtually identical, only with
xn(t) in place of x1(t), xn(t

−1) in place of x1(t
−1) and x0(t

−1) in place of xn+1(t
−1). �

PROPOSITION 8.8. In Case QD, where Ξ = (k, k0, L0), there exists a subfield M of
k0 containing k2 such that x1(M) is a closed subset of U1, where x1 is the isomorphism from
k0 to U1 indicated in Notation 8.4.

PROOF. Let P and ∞ be as in 8.6, let R = Γ4, let [∞] = 5, let [a] = 3x1(a) for all
a ∈ L0 and let π be the map from R to P that sends [∞] to ∞ and [a] to 〈a〉 for each a ∈ L0.
Next let m = µ(x1(1)) and r = µ(x4(1)), where µ is as defined in [37, 6.1]. By [37, 6.4(i)
and 16.4], we have

[x1(1), x4(a)] = x2(a)x3(a) ,

x2(a) = x4(a)m and x1(b) = x3(b)r for all a ∈ L0 and all b ∈ k0. Hence

x1(a) = (x4(a)−mx4(a)x1(1)x4(a))r

for all a ∈ L0. It follows that the map x4(a) �→ x1(a) from U4 to U1 is continuous. By
Proposition 8.3, it follows that the restriction [a] �→ 〈a〉 of the map π to R\{[∞]} is continu-
ous. Exactly as in Proposition 8.7 (alternatively: by Proposition 8.7 and [37, 35.18]), the map
from R to itself interchanging [∞] and [0] and mapping [a] to [a−1] for all a ∈ L∗

0 is contin-
uous. Thus a sequence ([ai])i∈N in R\{[0], [∞]} converges to [∞] if and only if the sequence
([a−1

i ])i∈N converges to [0]. Since the analogous assertion holds in P , it follows that the map
π from R to P is continuous. Since R is compact (by Corollary 6.6), we conclude that its
image is a compact subset of P . Thus π(U4) is a closed subset of U1. By Proposition 8.3
again, we conclude that L0 is a closed subset of k0.

Now let M = {t ∈ L0; tL0 ⊂ L0}. Then M is a subring of k0. Since k2 ⊂ M (by [37,
10.2]), it follows that M is, in fact, a subfield. Let u ∈ L∗

0. The product r−1µ(x4(u
−1)) fixes

the vertex 2 and (by [37, 32.8])

x1(t)
r−1µ(x4(u

−1)) = x3(t)
µ(x4(u

−1)) = x1(ut)

for all t ∈ k. Thus the map from P to itself that fixes ∞ and maps 〈t〉 to 〈ut〉 is continuous.
Now suppose that (ti )i∈N is a sequence of elements in M that converges to an element t ∈ L0.
Then the sequence (uti)i∈N converges to ut . Since uti ∈ L0 for all i, it follows that ut ∈ L0.
Therefore t ∈ M . Hence M is closed. �

PROPOSITION 8.9. In Cases QE and QF , x1(0, k) is a closed subset of U1, where x1

is as in Notation 8.4.

PROOF. By 16.10 and 16.11 of [37], x1(0, k) = CU1(U3). Since U1 and U3 are closed
(by 8.2), the claim follows. �

NOTATION 8.10. Let D be the group
(i) Un in Cases QI , QP and H;

(ii) U1 in Cases QT , QQ and O;
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(iii) x1(M) in Case QD; and
(iv) x1(0, k) in Cases QE and QF .

PROPOSITION 8.11. In Cases QE , QF and QD, let Q = {∞} ∪ 0D , where D is
as in Notation 8.10. In all other cases, let Q = P , where P is the panel of Γ defined in
Notation 8.6. Then Q is a compact subset of P .

PROOF. By Corollary 6.6, the panel P is compact. By Propositions 8.8 and 8.9, there-
fore, Q is the one-point compactification of Q\{∞} in Cases QE , QF and QD . �

PROPOSITION 8.12. The map t �→ 〈t〉 is a homeomorphism from k (respectively, M

in Case QD ) to Q\{∞}.
PROOF. This holds by Proposition 8.3 and Definition 8.5. �

PROPOSITION 8.13. k (respectively, M in Case QD ) is totally disconnected, in fact,
homeomorphic to the Cantor set minus a point.

PROOF. This holds by Propositions 6.13 and 8.12. �

PROPOSITION 8.14. Let ω be the map from Q to itself that interchanges ∞ and 〈0〉
and maps 〈t〉 to 〈−t−1〉 for all t ∈ k∗ (respectively, t ∈ M∗ in Case QD ). Then ω is a
homeomorphism.

PROOF. By Proposition 8.7, it suffices to consider Cases QE andQF . In these two cases
we can simply replace x1(t) by x1(0, t), x1(t

−1) by x1(0, t−1) and xn+1(t
−1) by xn+1(0, t−1)

everywhere in the proof of Proposition 8.7. �

PROPOSITION 8.15. Let E denote the permutation group on Q generated by τ and the
group induced by D on Q and let k (respectively, M in Case QD ) be identified with Q\{∞}
via the homeomorphism t �→ 〈t〉, so Q = k ∪ {∞} (respectively, Q = M ∪ {∞} ). Then
(E,Q) is the projective line k̂ (respectively, M̂ in Case QD ).

PROOF. This holds by Corollary 6.17 and Proposition 8.14. �

PROPOSITION 8.16. k is a local field as defined in Definition 3.5.

PROOF. Suppose first that we are not in Case QD. By Proposition 8.11, Q is compact.
By Theorem 4.1 and Proposition 8.15, therefore, k is a locally compact field. Hence by Propo-
sitions 3.8 and 8.13, k is a local field. Now suppose that we are in Case QD. By virtually the
same arguments, we conclude that M is a local field. Since M is a commutative field of char-
acteristic 2, it is the field of formal Laurent series over a finite field (by Proposition 3.1). By
Proposition 8.8, k/M2 is a quadratic (and hence finite) extension. Therefore k is a local field
also in this case. �

PROPOSITION 8.17. The topology T on the set of chambers of Γ is unique.

PROOF. Let R be a panel of Γ . By Corollary 6.12, it will suffice to show that the
restriction of T to R is unique. Let Σ , n and Ui for i ∈ N be as in 7.3 and let k and Ξ be as
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in 7.5. We can assume that Σ is chosen so that R = Γ1 or Γn. Our goal, therefore, is to show
that the restriction of the topology T to the panel Γ1 and the restriction of T to the panel Γn

are unique.
By Theorem 7.2(i), Γ is in one of the cases T , QI , QQ, QP or H and, as we saw in

Proposition 8.16, k is not octonion. Case QD is ruled out by [45, 28.14], Cases QE and QF
are ruled out, as we observed in the proof of Theorem 7.2, by [45, 28.11(viii)] and Case O
is impossible since by Proposition 3.2, there are no octagonal sets (k, σ ), as defined in [37,
10.11], with k local. By Corollary 7.7(ii), either k or {k, kopp} is an invariant of Γ . By Propo-
sition 3.6 and Remark 3.7, the topology on k that makes it into a locally compact field is
uniquely determined by Γ . We call this topology Tk . Replacing k by kopp if necessary, we
can assume by [37, 35.15] that R = Γ1 if Γ is in Case T . It thus suffices to show that the
restriction of T to the panel Γ1 is uniquely determined by Tk in Case T and that the restriction
of T to Γp is uniquely determined by Tk for both p = 1 and p = n in every other case.

From now on, let p = 1 in Cases T and QQ and p = n in Cases QI , QP and H. By
Proposition 8.12, the restriction of T to Γp is uniquely determined by Tk . We can assume
from now on that we are not in Case T . Let d be the element of the set {1, n} different from
p. It remains only to show that the restriction of T to Γd is uniquely determined by Tk .

Let ν be the valuation of k. By the results in the third column of [45, Table 27.2], there is
a valuation ϕ = (ϕi) of the root datum of Γ (where ϕi is a map from U∗

i to Z for each root αi

of Σ) such that ϕp(xp(t)) = ν(t) for all t ∈ k. Let Tϕ be the topology on Ud induced by the
metric associated with ϕi as described in Proposition 7.8. By [45, 3.41(iii)], ϕ is unique up
to equipollence. This means that ϕd is uniquely determined by Tk up to an additive constant.
Hence the topology Tϕ depends only on Tk.

Now let Td denote the locally compact topology on Ud that we identified in Proposi-
tion 8.2. Suppose we know that the identity map from Ud to itself is a continuous map from
(Ud, Td) to (Ud, Tϕ). By Theorem 6.15 and Corollary 6.17, Ud is σ -compact. By Corol-
lary 2.2, it follows that Td = Tϕ . Hence, by the conclusion of the previous paragraph, Td is
uniquely determined by Tk . By Proposition 8.3, it follows that the restriction of T to Γd is
also uniquely determined by Tk .

Suppose now that we are in Case QQ, where Ξ = (k, L, q) and d = 4. By [37, 16.11],
we can assume that there is an element 1 in L such that q(1) = 1. Let m = µ(x1(1)) and
r = µ(x4(1)). By [37, 6.4(i) and 16.3], we have

[x1(1), x4(u)−1] = x2(u)x3(q(u)) ,

x2(u) = x4(u)m and x3(t)
r = x1(t) for all u ∈ L and all t ∈ k. Hence

x1(q(u)) = (x4(u)−mx4(u)x1(1)x4(u)−1)r

for all u ∈ L. Therefore the map x4(u) �→ x1(q(u)) is continuous. By [45, 19.20], we can
assume that ϕ4(x4(u)) = ν(q(u))/δ for all u ∈ L, where δ is either 1 or 2. It follows that the
identity map from U4 to itself is a continuous map from (U4, T4) to (U4, Tϕ) and hence the
restriction of T to Γ4 is uniquely determined by Tk .
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Suppose next that we are in Case QP , where Ξ = (k, k0, σ, L, q) and d = 1. Let
m = µ(x1(0, 1)) and r = µ(x4(1)). By [37, 6.4(i) and 16.5], we have

[x1(a, t), x4(1)−1] = x2(t)x3(a, t)

and hence

x4(t) = (x1(a, t)−1x1(a, t)x1(1)−1
x1(a, t)−r−1

)m
−1

for all x1(a, t) ∈ U1. Thus the map x1(a, t) �→ x4(t) is continuous. By [45, 24.33], we can
assume that ϕ1(x1(a, t)) = ν(t)/δ for all x1(a, t) ∈ U1, where δ = 1 or 2. It follows that the
identity map from U1 to itself is a continuous map from (U1, T1) to (U1, Tϕ) and hence the
restriction of T to Γ1 is uniquely determined by Tk .

Suppose next that we are in Case QI , where Ξ = (k, k0, σ ) and d = 1. Replacing [37,
16.5] by [37, 16.2], [45, 24.33] by [45, 23.4] and x1(a, t) by x1(t) in the previous paragraph,
we obtain a proof that the identity map from U1 to itself is a continuous map from (U1, T1) to
(U1, Tϕ) and hence the restriction of T to Γ1 is uniquely determined by Tk also in this case.

Suppose, finally, that we are in Case H, where Ξ = (J, k,N, #, T ,×, 1) and d = 1.
This time, we set r = µ(x1(1)) and m = µ(x6(1)). By [37, 16.8 and 29.17],

[x1(a), x6(1)−1] = x2(N(a))x3(−a#)x4(N(a))x5(a)

and hence

x4(N(a))x5(a
#)x6(−N(a)) = (x1(a)−1x1(a)x6(1)−1

x1(a)−r−1
)m

for all a ∈ J . By Proposition 7.4(ii), each of the groups U4U5U6, U4U5 and U6 is closed.
By [33, Theorem 6.23], therefore, the map x4(w)x5(b)x6(t) �→ x6(t) from U4U5U6 to U6 is
continuous. We conclude that the map x1(a) �→ x6(−N(a)) is continuous. By [45, 15.23],
we can assume that ϕ1(x1(a)) = ν(N(a))/δ for all a ∈ J , where δ = 1 or 3. It follows that
the identity map from U1 to itself is a continuous map from (U1, T1) to (U1, Tϕ) and hence
the restriction of T to Γ1 is uniquely determined by Tk . �

This concludes the proof of Theorem 8.1.

9. The proofs of Theorem 1.1 and Theorem 1.2.

PROOF OF THEOREM 1.1. We assume that ∆ is an irreducible infinite compact totally
disconnected spherical Moufang building of rank l ≥ 2. Then the panels of ∆ are totally
disconnected. Let Γ be an arbitrary irreducible residue of ∆ of rank 2. By Corollary 6.6, Γ

is a compact totally disconnected building and by [43, 11.8], Γ is Moufang. If Γ1, Γ2 are
two irreducible rank 2 residues such that Γ1 ∩ Γ2 contains a panel, then by [37, 34.5], Γ1 is
finite if and only if Γ2 is finite. Since ∆ is irreducible, it follows that all the irreducible rank 2
residues of ∆ are finite if one of them is. Since ∆ is infinite, we conclude that Γ is infinite.
Hence by Theorem 8.1, the totally disconnected compact topology on Γ is unique. Since Γ

is arbitrary, we conclude that the totally disconnected compact topology on every panel of
∆ is unique. By Corollary 6.12, therefore, the totally disconnected compact topology on the
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set C of chambers of ∆ is unique and by Proposition 6.13, C endowed with this topology is
homeomorphic to the Cantor set.

Suppose now that f is an abstract automorphism of ∆. Then the topology of ∆, trans-
formed by f , is another totally disconnected compact topology which turns ∆ into a compact
building. Therefore, f fixes the topology. In other words, f is a homeomorphism. Thus,
Aut(∆) = Auttop(∆).

Next we note that the defining field F of ∆ is a local field by Theorem 8.1. By [45, 27.2
and 27.6], therefore, there exists a unique locally finite Bruhat-Tits building X whose building
at infinity is ∆. By Proposition 6.4, the compact topology on ∆ coincides with the topology
induced by the cone topology on ∂X.

Finally, consider the natural homomorphism Iso(X) → Aut(∆). By Proposition 6.4
again, the group Iso(X) acts continuously on ∆. Since Aut(∆) carries the compact-open
topology, the map Iso(X) → Aut(∆) is continuous. It is also injective (an isometry that
fixes ∆ pointwise fixes every apartment in X and is therefore the identity). By [45, 26.37 and
26.40-2], this map is also surjective. Since Iso(X) is locally compact and σ -compact by The-
orem 2.3, it follows from Corollary 2.2 that this map is open and therefore a homeomorphism.
This finishes the proof of Theorem 1.1. �

Before we proceed with the proof of Theorem 1.2, we add some general remarks on
the compact connected case and its history. Building on Pontryagin’s classification of locally
compact connected fields [27], Kolmogorov [22] classified compact connected desarguesian
projective spaces, showing that the defining field is R, C or the real quaternion division alge-
bra H. Half a century later Salzmann [29] classified all compact connected projective planes
admitting a flag transitive, or equivalently, chamber transitive, group of continuous automor-
phisms. He proved that such a projective plane is the Moufang plane over R, C, H or the real
octonion division algebra O. These results cover the compact connected buildings of type An.

Burns and Spatzier [7] classified all irreducible compact connected buildings of rank at
least 2 under the condition that they admit a strongly transitive group of continuous automor-
phisms; they call this the ‘topological Moufang condition’. In particular, they classified all
compact connected Moufang buildings of rank at least 2. Their proof does not use the classifi-
cation of Moufang buildings. Instead, they use a characterization of Furstenberg boundaries of
simple Lie groups. They also use, as does Salzmann, the solution of the 5th Hilbert problem.

Continuing in the vein of Salzmann’s result, Grundhöfer, Knarr and Kramer [14, 15]
classified all compact connected buildings of rank at least 2 admitting a chamber transitive
group of continuous automorphisms. As we have seen, it suffices to deal with the rank 2 case.
The final result, assembled from [7], [14, 15] and [24, Ch. 7], is as follows.

THEOREM 9.1. Let ∆ be an irreducible compact and connected building of rank l
at least 2. Suppose that the topological automorphism group Auttop(∆) acts transitively on
the chambers of ∆. Then ∆ is the standard spherical building associated to a noncompact
centerless real or complex simple Lie group G of rank l; cf. Proposition 6.3.
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We remark that such a Lie group G is simple as an abstract group [30, 94.21]. In partic-
ular, G = G† in the notation of 6.18. If G is not complex, then every abstract automorphism
of G = G† is automatically continuous [11]. This shows that every abstract automorphism of
∆ is also continuous. If G is complex, then the automorphism group of G = G† is the group
of all continuous automorphisms, extended by the field automorphisms of C; see [2]. Thus,
an abstract automorphism of G or ∆ need not be continuous in this situation. Nevertheless,
we have the following result.

PROPOSITION 9.2. Let ∆ be a compact connected irreducible Moufang building of
rank at least 2. If the associated simple Lie group G is not complex, or equivalently, absolutely
simple as a real algebraic group, then there is a unique topology on ∆ which turns ∆ into a
compact building. If G is complex, then all topologies that turn ∆ into a compact building
are conjugate under Aut(C).

PROOF. First of all we note that the defining field F of ∆ is R, C, the real quaternion
division algebra H or the real Cayley division algebra O. Suppose that T is a compact topol-
ogy on the chambers of ∆ that turns ∆ into a compact building. If the set of chambers C is
connected in this topology, then ∆ comes from a simple Lie group H by Theorem 9.1. There-
fore there is an abstract isomorphism H = H † ∼= G† = G. If G is real, this isomorphism
is continuous by [11] and if G is complex, then the isomorphism becomes continuous after
composing it with a field automorphism by [2, 8.1]; see also [34, 5.8–5.9] for a more detailed
statement.

Next, assume that the topology T on C is not connected. Then it is totally disconnected
by Proposition 6.13 and ∆ is one of the buildings classified in the present paper. Therefore
the center of the defining field F is a finite extension of the p-adic field Qp for some prime
p. Neither R nor C is, however, isomorphic to a finite extension of Qp by, for example, [31,
54.2]. �

We remark that there is another approach to the proof of Proposition 9.2: it can be shown
that a simple real or complex Lie group admits only one locally compact and σ -compact
group topology up to conjugation by an abstract automorphism if G happens to be complex;
see [25].

PROOF OF THEOREM 1.2. The special automorphism group of a reducible building
factors as a product of the automorphism groups of the factors. In the compact case, this fac-
torization is compatible with the topology because the elementwise stabilizer of any residue
is closed in Auttop(∆). In this way the problem can be reduced to the irreducible case. Now
the result follows from a combination of Theorems 1.1 and 9.1 and Proposition 9.2. �
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