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Abstract: We propose and experimentally demonstrate an all-optical 
temporal differential-equation solver that can be used to solve ordinary 
differential equations (ODEs) characterizing general linear time-invariant 
(LTI) systems. The photonic device implemented by an add-drop microring 
resonator (MRR) with two tunable interferometric couplers is 
monolithically integrated on a silicon-on-insulator (SOI) wafer with a 
compact footprint of ~60 μm × 120 μm. By thermally tuning the phase 
shifts along the bus arms of the two interferometric couplers, the proposed 
device is capable of solving first-order ODEs with two variable coefficients. 
The operation principle is theoretically analyzed, and system testing of 
solving ODE with tunable coefficients is carried out for 10-Gb/s optical 
Gaussian-like pulses. The experimental results verify the effectiveness of 
the fabricated device as a tunable photonic ODE solver. 

©2014 Optical Society of America 

OCIS codes: (130.3120) Integrated optics devices; (070.1170) Analog optical signal 
processing; (230.5750) Resonators. 
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1. Introduction 

After decades of development and miniaturization, the integrated electronic devices for 
computing and information processing are rapidly approaching their fundamental speed 
limitations [1]. In comparison with the electronic counterpart, all-optical computing and 
information processing based on photonic devices may show advantages in high-speed 
processing by overcoming the bandwidth bottleneck. In recent years, a number of photonic 
devices performing real-time information processing equivalent to electronic processors have 
been proposed and demonstrated, such as differentiators [2, 3], integrators [4–7], and Hilbert 
transformers [8, 9]. 

Differential equations model and govern fundamental phenomena and applied processes 
in virtually any field of science and engineering [10]. As the fundamental differential 
equations, constant-coefficient linear ordinary differential equations (ODEs) are widely 
employed in modeling of linear time-invariant (LTI) systems [11]. Solving ODEs plays a 
prominent role in real-time information processing [10]. As expected, all-optical ODE solvers 
could potentially offer processing bandwidths that are orders of magnitude larger than their 
electronic counterparts [12]. An optical ODE solving system based on semiconductor optical 
amplifiers (SOAs) and optical filters was proposed in previous work [13]. Precise control of 
time delay and additional optical pump are necessary for the system implemented by discrete 
devices. On the other hand, an integrated scheme using the drop ports of add-drop microring 
resonators (MRRs) was reported in [14, 15]. The ODE solvers can be used to solve simplified 
ODEs without derivative terms of input signal, while solving ODEs with various orders of 
derivative terms of input signal is needed to characterize general LTI systems in practical 
applications. 

In this paper, we propose and experimentally demonstrate a tunable on-chip all-optical 
ODE solver for general LTI systems. The proposed ODE solver is based on a compact add-
drop MRR with two tunable interferometric couplers. The device is monolithically integrated 
on a silicon-on-insulator (SOI) wafer through a fabrication process compatible to the state-of-
art complementary metal-oxide semiconductor (CMOS) technology. By thermally tuning the 
phase shifts along the bus arms of the two interferometric couplers, the proposed device can 
be used to solve first-order ODEs with two variable coefficients. System testing of solving 
ODE with tunable coefficients using the fabricated device is performed with 10-Gb/s optical 
Gaussian-like pulses, and an excellent agreement between the numerical solutions of the ODE 
and the experimental results is obtained. The proposed ODE solver offers a competitive edge 
to solve general ODEs including various orders of derivative terms of input signal, which can 
be used in the modeling and characterization of general LTI systems. 

2. Operation principle 

Based on the classical theory of signals and systems, all LTI systems can be described by a 
linear constant-coefficient ODE normalized as [16]: 

 
1

0 0

( ) ( ) ( )
,

n i kn m
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i k

d y t d y t d x t
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dt dt dt
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where x(t) is the function representing a system input signal, and y(t) is the function 
representing the solution of the ODE as the system output. ai (i = 0, 1, 2…, n–1) and bk (k = 0, 
1, 2…, m) are the constant coefficients of the ith order derivative of y(t) and the kth order 

derivative of x(t), respectively. Note that 0ia ≥  (i = 0, 1, 2…, n–1) and m n≤  should be 

satisfied to ensure the causality and stability for practical systems. For first-order LTI 
systems, Eq. (1) can be simplified to: 

 0 1 0

( ) ( )
( ) ( ).

dy t dx t
a y t b b x t

dt dt
+ = +  (2) 

After Fourier transformation from Eq. (2), the spectral transfer function can be given by [16]: 
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where 1j = − , and ω is the angular frequency variable. Compared to the formula in [14, 15], 

the ODE in Eq. (2) includes an additional first-order derivative term of input signal b1 
dx(t)/dt, allowing for a more general and versatile modeling of LTI systems. The maximum 
transmission of the filter in Eq. (3) is normalized to 1 since it does not affect the shape of the 
output signal. Given that there are other amplifications or attenuations in practical processing 
process, the difference in amplitude can be further compensated. 

For a practical first-order optical filter implemented by an add-drop MRR, the spectral 
transfer function of the through port around any given resonance can be expressed as [17]: 
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where ω0 is the resonance frequency of the MRR, Qi, Qe1, and Qe2 are the quality factors 
induced by the internal cavity loss, the external coupling between the microring and the input 
waveguide, and the external coupling between the microring and the drop waveguide, 
respectively. According to the coupled mode theory, the three quality factors can be given by 
[18, 19]: 
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where ng is the group index, L is the circumference of the MRR, c is the speed of light in 
vacuum, η is the round-trip intrinsic power loss, κ1 is the power coupling coefficient between 
the microring and the input waveguide, and κ2 is the power coupling coefficient between the 
microring and the drop waveguide. T(ω) in Eq. (4) shows an agreement with normalized 
H(ω) in Eq. (3). For an input optical signal with a carrier frequency of ω0, the temporal ODE 
corresponding to T(ω) after inverse Fourier transformation is [16]: 

 0 0 0 0

0 0

( ) ( )
[ ( ) ] [ ( ) ],

j t j t j t j tdy t dx t
e a y t e e b x t e

dt dt
ω ω ω ω

+ = +  (6) 

where ( ) 0j tx t e ω
 and ( ) 0j ty t e ω

are the functions representing the input and output optical 

signals, respectively, with x(t) and y(t) denoting the complex envelop of the optical signals. b0 
= ω0 / 2Qi + ω0 / 2Qe2– ω0 / 2Qe1 and a0 = ω0 / 2Qi + ω0 / 2Qe1 + ω0 / 2Qe2 = ω0 / 2Q = Δω3dB / 
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2 are the constant coefficients, with Q and Δω3dB denoting the quality factor and 3-dB angular 
bandwidth of the MRR, respectively. After simplification, Eq. (6) can be written as: 

 0 0

( ) ( )
( ) ( ),

dy t dx t
a y t b x t

dt dt
+ = +  (7) 

From Eq. (7), one can see that an add-drop MRR can be regarded as a linear first-order ODE 
system with coefficients of a0 and b0, which performs ODE solving for the complex envelop 
of optical signals. For high-speed optical signals on the order of GHz, the differential item dt 
is of the unit of picosecond. a0 and b0 determined by Qi, Qe1, and Qe2 of the add-drop MRR 
compensate the magnitude introduced by 1/dt on the order of 1012 Hz, allowing the proposed 
ODE solver to process high-speed optical signals. 

 

Fig. 1. (a) Schematic illustration of the proposed tunable first-order ODE solver based on an 
add-drop MRR with two interferometric couplers. (b) Add-drop MRR equivalent to (a) with 
two directional couplers. (c) Schematic illustration of the second-order ODE solver 
implemented by two cascaded add-drop MRRs with interferometric couplers. 

Figure 1(a) illustrates the schematic configuration of our proposed tunable ODE solver, 
which consists of an add-drop MRR with two interferometric couplers 1 and 2. There are two 
arms in each interferometric coupler: one is the bus arm, and the other is the ring arm. The 
coupling strength between the microring and the input/drop waveguide can be dynamically 
changed by varying the phase shift along the bus arm of the interferometric coupler [18]. As a 
result, varied Qe1, 2 in Eq. (5) can be obtained, thus leading to tunable coefficients a0 and b0 of 
the ODE in Eq. (7). If one regards the interferometric couplers as equivalent directional 
couplers shown in Fig. 1(b), the effective power coupling coefficients of interferometric 
couplers 1 and 2 can be illustrated as: 

 
1,2 0 0 1,2 1,2 1,2 1,2 1,2 1,2

(1 )[ 2 cos( )],b r b r b rT T T Tκ κ κ ϕ ϕ= − + + −  (8) 
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where κ0 is the power coupling coefficient at each coupling point in Fig. 1(a). Tb1, 2 and Tr1, 2 
are the power transmission factors of the bus and ring arms of the two interferometric 
couplers, respectively. φb1, 2 = ω0nb1, 2Lb1, 2/c and φr1, 2 = ω0nr1, 2Lr1, 2/c are the phase shifts 
along the bus and ring arms of the two interferometric couplers, respectively, with nb1, 2 and 
nr1, 2 denoting the effective index of the bus and ring arms of the two interferometric couplers. 
Practically, φb1 and φb2 in Eq. (8) can be changed by tuning nb1 and nb2 through thermo-optic 
effect or electro-optic effect, thus leading to tunable coefficients a0 and b0 of the ODE in Eq. 
(7). 

The proposed ODE solver can be extended to solve high-order differential equations by 
cascading more add-drop MRRs with tunable interferometric couplers. Consider the second-
order ODE solver shown in Fig. 1 (c) as an instance, assuming that the two cascaded add-drop 
MRRs have a same resonance wavelength as the carrier frequency of input optical signal, the 
corresponding linear second-order ODE can be expressed as: 

 
2 2

1 0 2 1 02 2

( ) ( ) ( ) ( )
( ) ( ),

d y t dy t d x t dx t
a a y t b b b x t

dt dtdt dt
+ + = + +  (9) 

where the constant coefficients can be given by: 
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with a10, b10 and a20, b20 denoting the constant coefficients of the first-order ODEs 
corresponding to the two MRRs, respectively. Note that the second-order ODE in Eq. (9) also 
includes derivative terms of input signal that characterize general LTI systems, and various 
constant coefficients of the high-order ODE can be obtained by tuning the coefficients of the 
first-order ODEs corresponding to the individual MRRs. 

3. Device design, fabrication, and characterization 

 

Fig. 2. Calculated coefficients (a) a0 and (b) b0 of the ODE in Eq. (7) for various nb1 and nb2. 

The structural parameters of the proposed device are chosen as follows: the gap size in the 
coupling region is 0.18 μm due to the resolution limitation of deep ultraviolet (DUV) 
photolithography used in our fabrication. The straight coupling length of the directional 
coupler at each coupling point in Fig. 1(a) is 2.50 μm to enhance the coupling by increasing 
the interaction length. Stronger coupling means larger κ0 in Eq. (8), thus leading to broader 
tuning ranges of coefficients a0 and b0 in Eq. (7). The circumference of the microring is L = 
178.98 μm, which is a trade-off between the device footprint and the implementation of the 
interferometric couplers. The physical lengths of the bus and ring arms of the two 
interferometric couplers are Lb1 = 116.80 μm, Lr1 = Lb2 = Lr2 = 47.12 μm, respectively. Here 
we choose two interferometric couplers with different physical lengths of bus arms to 
compare tuning effects. Longer bus arms can also improve the tuning efficiencies of the 
thermo-optic microheaters along them. For single-mode silicon photonic waveguides with a 
cross section of 450 × 220 nm2, the calculated power coupling coefficient of each directional 
coupler using Lumerical finite-difference time-domain (FDTD) solutions is κ0 = 0.0441. We 
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also assume that the waveguide group index of the transverse electric (TE) mode is ng = nr1 = 
nr2 = 4.1850, and the waveguide power loss factor is α = 8 dB/cm based on our previously 
fabricated devices. Figures 2(a) and 2(b) present the calculated coefficients a0 and b0 in Eq. 
(7) for various nb1 and nb2 using the above design parameters, respectively. It can be seen that, 
by changing the effective index of the bus arms, the proposed device can be used to solve 
ODE in Eq. (7) with varied coefficients a0 and b0. 

The designed device based on the above principle was fabricated on an 8-inch SOI wafer 
with 220-nm-thick top silicon layer and 2-μm-thick buried oxide (BOX) layer. The 
micrograph of the fabricated device is shown in Fig. 3(a). 248-nm DUV photolithography 
was utilized to define the device layout, and inductively coupled plasma (ICP) etching 
process was used to etch the top silicon layer. Grating couplers for TE polarization were 
employed at the ends of the input/output port to couple light into/out of the chip with single 
mode fibers (SMFs). The drop port is also connected to a grating coupler to dissipate the 
undesired signal with negligible reflection. After etching of the waveguides and grating 
couplers, a 1.5-μm-thick silica layer was deposited on the top silicon layer as a separation 
layer by plasma enhanced chemical vapor deposition (PECVD). Then a 200-nm-thick TiN 
layer was sputtered on the separation layer and TiN heaters along the bus arms of the two 
interferometric couplers were fabricated using DUV photolithography and dry etching. Via 
holes were opened after further deposition of a 300-nm-thick silica layer by PECVD, 
followed by the fabrication of the aluminum wires and pads. The entire fabrication process is 
CMOS compatible. The TiN microheaters were only placed along the bus arms of the two 
interferometric couplers in order to tune the effective index through thermo-optic effect 
without shifting the resonance wavelengths of the add-drop MRR. 

 

Fig. 3. (a) Micrograph of the fabricated device. (b) Experimentally measured through port 
transmission spectrum of the fabricated device. (c) Simulated effective power coupling 
coefficients κ1,2 in the 1540 nm ~1560 nm wavelength range. 

The normalized transmission spectrum of the through port measured with the fabricated 
device is shown in Fig. 3(b). The on-chip insertion loss is ~10.5 dB, which is mainly 
attributed to the coupling loss induced by the vertical coupling system. The resonance notches 
with various depths and bandwidths in Fig. 3(b) are attributed to wavelength dependence of κ1 
in Eq. (8), as illustrated in Fig. 3(c). Since the bus and ring arms of interferometric coupler 2 
have the same physical length, i.e., Lb2 = Lr2 = 47.12 μm, κ2 in Eq. (8) remains unchanged for 
different wavelengths. 
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4. System testing of solving ODE with tunable coefficients 

 

Fig. 4. Experimental setup for system testing of solving ODE with tunable coefficients. PC: 
polarization controller. MZM: Mach-Zehnder modulator. PPG: pulse pattern generator. RFS: 
radio frequency synthesizer. EDFA: erbium-doped fiber amplifier. BPF: band pass filter. DUT: 
device under test. VOA: variable optical attenuator. OSA: optical spectrum analyzer. The 
experimentally observed 10-Gb/s optical Gaussian-like input pulse and the fitted one are 
shown in the inset by the black solid and red dashed curves, respectively. 

We use the experimental setup shown in Fig. 4 to test the performance of the fabricated 
device as a tunable first-order photonic ODE solver. The wavelength of the continuous-wave 
(CW) light launched by a tunable laser with a tuning resolution of 0.001 nm is set to 1550.391 
nm, which is one of the resonance wavelengths in Fig. 3(b). Optical Gaussian-like pulses as 
shown in Fig. 4 are chosen as typical input pulse waveforms in our experiment. The 
Gaussian-like pulses are generated by two cascaded Mach-Zehnder modulators (MZMs) [20]. 
The first MZM is driven by a 10-Gb/s non-return-to-zero (NRZ) signal generated from a 
pulse pattern generator (PPG) with a pattern of “10000000”, and the second one performs as a 
pulse carver driven by a 10-GHz radio frequency signal from a radio frequency synthesizer 
(RFS). An erbium-doped fiber amplifier (EDFA) is utilized to boost the generated signal, 
followed by a tunable band pass filter (BPF) to suppress the amplified spontaneous emission 
(ASE) noise. A polarization controller (PC) is inserted before the device under test (DUT) to 
make sure that the input signal is TE polarized. The output signal from the DUT is split into 
two parts by a 90:10 fiber splitter. One part is fed into the optical spectrum analyzer (OSA), 
and the other part is amplified by another EDFA with one more BPF to suppress the ASE 
noise. After going through a variable optical attenuator (VOA), the temporal waveforms are 
recorded by an oscilloscope. 

According to previous discussion, various coefficients a0 and b0 of the ODE in Eq. (7) can 
be obtained by changing nb1 or nb2 in Figs. 2(a) and 2(b). In our experiment, the changing of 
nb1 and nb2 is realized by tuning the heating powers P1 and P2 applied to Heater 1 and 2 in Fig. 
4, respectively. We perform four sets of system testing with (1) varied P1 and unchanged P2, 
(2) varied P2 and unchanged P1, (3) varied b0 and constant a0, and (4) varied a0 and constant 
b0. The first and second sets of system testing are used to test the TiN microheaters and 
demonstrate the tunability of the fabricated device. In these two sets, both coefficients a0 and 
b0 are changed with varied P1 or P2. In practical applications, it may be required to change 
only one of the two coefficients. Therefore we perform the third and fourth sets of system 
testing with only one of the two constant coefficients varied by accurately tuning both P1 and 
P2. For each set, we perform three testings I ~III with different P1 or P2 for comparisons. In 
our experiment, the observed transmission spectra and output pulse waveforms can remain 
stable for ~5 minutes in room temperature when the heating power applied to the TiN 
microheaters is lower than 20 mW. For all the four sets of system testing, the redshift of the 
resonance wavelength at 1550.391 nm is smaller than 0.15 nm. In order to achieve accurate 
alignment with the resonance wavelength of the fabricated device, the output pulse 
waveforms are recorded only when the power of the output signal reaches a minimum during 
the fine tuning process of the CW light around ~1550.391 nm. 
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Fig. 5. Experimental results of the first set of system testing with varied P1 and unchanged P2. 
(a-I)–(a-III) Measured (solid curves) and fitted (dashed curves) transmission spectra of testings 
I, II, and III, respectively. (b-I)–(b-III) Experimentally observed temporal output pulse 
waveforms (solid curves) and numerical solutions of the ODE in Eq. (7) with fitted 
coefficients a0 and b0 in (a-I)–(a-III) (dashed curves), respectively. (c)–(d) Fitted transmission 
spectra and numerical solutions of the ODE in Eq. (7) for the three testings, respectively. 

For the first set of system testing with varied P1 and unchanged P2 = 0 mW, the measured 
transmission spectra and experimentally observed output pulse waveforms are shown in Figs. 
5(a-I)–5(a-III) and Figs. 5(b-I)–5(b-III) by the solid curves, respectively. The fitted spectra 
and numerical solutions of the ODE in Eq. (7) with fitted coefficients a0 and b0 are 
represented by the dashed curves accordingly. The fitted coefficients a0 and b0 are obtained 
from the fitted spectra in Figs. 5(a-I)–5(a-III), respectively. The amplitudes of the output 
pulses are normalized for easier comparisons. It can be seen that the observed output 
waveforms in Figs. 5(b-I)–5(b-III) match closely with the numerical solutions of the ODE in 
Eq. (7). To make qualitative comparisons, the fitted spectra and numerical solutions for 
testings I, II, and III are plotted in Figs. 5(c) and 5(d), respectively. One can see that by tuning 
P1, both a0 and b0 can vary, thus leading to various output pulse waveforms corresponding to 
the solutions of the ODE in Eq. (7) with different coefficients. 
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Fig. 6. Experimental results of the second set of system testing with unchanged P1 and varied 
P2. (a-I)–(a-III) Measured (solid curves) and fitted (dashed curves) transmission spectra of 
testings I, II, and III, respectively. (b-I)–(b-III) Experimentally observed temporal output pulse 
waveforms (solid curves) and numerical solutions of the ODE in Eq. (7) with fitted 
coefficients a0 and b0 in (a-I)–(a-III) (dashed curves), respectively. (c)–(d) Fitted transmission 
spectra and numerical solutions of the ODE in Eq. (7) for the three testings, respectively. 

Similar to the first set of system testing, the measured and fitted transmission spectra of 
testings I, II, and III in the second set of system testing with varied P2 and unchanged P1 = 0 
mW are shown in Figs. 6(a-I)–6(a-III), respectively. The experimentally observed output 
pulse waveforms, as well as the numerical solutions of the ODE in Eq. (7) for the three 
testings, are shown Figs. 6(b-I)–6(b-III), respectively. The observed output waveforms also 
show good agreement with the numerical solutions of the ODE in Eq. (7) with fitted 
coefficients a0 and b0 obtained from the fitted spectra in Figs. 6(a-I)–6(a-III). The fitted 
spectra and numerical solutions for the three testings are illustrated in Figs. 6(c) and 6(d), 
respectively. By tuning P2, one can also obtain various output pulse waveforms corresponding 
to the solutions of the ODE in Eq. (7) with both a0 and b0 changed. 
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Fig. 7. Experimental results of the third set of system testing with constant a0 and varied b0. (a-
I)–(a-III) Measured (solid curves) and fitted (dashed curves) transmission spectra of testings I, 
II, and III, respectively. (b-I)–(b-III) Experimentally observed temporal output pulse 
waveforms (solid curves) and numerical solutions of the ODE in Eq. (7) with fitted 
coefficients a0 and b0 in (a-I)–(a-III) (dashed curves), respectively. (c)–(d) Fitted transmission 
spectra and numerical solutions of the ODE in Eq. (7) for the three testings, respectively. 

For the third set of system testing with varied b0 and constant a0 = 6.3452 × 1010, the 
measured transmission spectra and experimentally observed output pulse waveforms are 
shown in Figs. 7(a-I)–7(a-III) and Figs. 7(b-I)–7(b-III) by the solid curves, respectively. The 
fitted spectra and numerical solutions of the ODE in Eq. (7) with fitted coefficients a0 and b0 
are represented by the dashed curves accordingly. The fitted spectra and numerical solutions 
for the three testings are illustrated in Figs. 7(c) and 7(d), respectively. The value of b0 can be 
either positive or negative, depending on the coupling regime of the MRR [21]. For the fourth 
set of system testing, the measured and fitted transmission spectra for testings I, II, and III 
with varied a0 and constant b0 = 6.7874 × 109 are shown in Figs. 8(a-I)–8(a-III), respectively. 
The experimentally observed output pulse waveforms, as well as the numerical solutions of 
the ODE in Eq. (7) for testings I, II, and III, are shown Figs. 8(b-I)–8(b-III), respectively. The 
fitted spectra and numerical solutions of the three testings are illustrated in Figs. 8(c) and 
8(d), respectively. It can be seen that the output pulse waveforms also fit well with the 
numerical solutions of the ODE in Eq. (7) for the third and fourth sets of system testing. By 
properly tuning both P1 and P2, one can obtain solutions of the ODE in Eq. (7) with only one 
of the two coefficients a0 and b0 changed. The agreement between the output pulse 
waveforms and the numerical solutions of the ODE for all the four sets of system testing 
verifies the effectiveness of the proposed device as a tunable photonic ODE solver. 
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Fig. 8. Experimental results of the fourth set of system testing with varied a0 and constant b0. 
(a-I)–(a-III) Measured (solid curves) and fitted (dashed curves) transmission spectra of testings 
I, II, and III, respectively. (b-I)–(b-III) Experimentally observed temporal output pulse 
waveforms (solid curves) and numerical solutions of the ODE in Eq. (7) with fitted 
coefficients a0 and b0 in (a-I)–(a-III) (dashed curves), respectively. (c)–(d) Fitted transmission 
spectra and numerical solutions of the ODE in Eq. (7) for the three testings, respectively. 

5. Conclusion 

In summary, we have proposed and experimentally demonstrated a tunable all-optical 
temporal differential-equation solver capable of solving ODEs with derivative terms of input 
signal that characterizes general LTI systems. The photonic device based on an add-drop 
MRR with two tunable interferometric couplers is monolithically integrated on a SOI 
platform with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts 
along the bus arms of the two interferometric couplers, the proposed device can be used to 
solve first-order ODEs with two variable coefficients. The performance of the fabricated 
device as an effective tunable ODE solver has been tested by four sets of system testing using 
10-Gb/s optical Gaussian-like pulses. The compact footprint, high processing speed, and 
CMOS-compatible fabrication process, together with reconfigurability and scalability are all 
key attributes required for on-chip processors, making the proposed ODE solver a promising 
candidate in future all-optical computing and information processing systems. 
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