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Abstract. This paper proposes a few steps to escape structured extensive representations for objects, in the context
of evolutionary Topological Optimum Design (TOD) problems: early results have demonstrated the potential power
of Evolutionary methods to find numerical solutions to yet unsolved TOD problems, but those approaches were
limited because the complexity of the representation was that of a fixed underlying mesh. Different compact
unstructured representations are introduced, the complexity of which is self-adaptive, i.e. is evolved by the algorithm
itself. The Voronoi-based representations are variable length lists of alleles that are directly decoded into object
shapes, while the IFS representation, based on fractal theory, involves a much more complex morphogenetic process.
First results demonstrates that Voronoi-based representations allow one to push further the limits of Evolutionary
Topological Optimum Design by actually removing the correlation between the complexity of the representations
and that of the discretization. Further comparative results among all these representations on simple test problems
seem to indicate that the complex causality in the IFS representation disfavors it compared to the Voronoi-based
representations.
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1. Introduction

Evolutionary Algorithms (EAs) have been widely used
in the framework of parametric optimization, i.e. when
the search space is a structured space of fixed length
vectors. In that context, EAs are just yet another opti-
mization method: They are indeed a powerful zero-th
order global optimization method, and, as such, they
have been successfully applied in many domains.

But the most innovative and outstanding results have
been recently obtained by taking advantage of the abil-
ity of EAs to deal with very unusual unstructured search

spaces, such as spaces of parse-trees [1–3], of un-
ordered lists, of graphs, and the like [4, 5]. Indeed,
structured search spaces are more likely to reflect the
unavoidable biases of the programmer, and hence to
limit the creativity of the overall design process. On the
other hand, evolving complex representations opens up
unsuspected regions of huge search spaces. The “only”
prerequisites are an initialization procedure and varia-
tion operators that respect some minimal requirements
with respect to the problem at hand [6].

One first step away from structured representations
is to use sparse variable-length lists instead of full
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extensive descriptions1: for instance, when searching
in the space of polynomials (of several variables), the
extensive structured representation would be to look
for the vector coefficients of all monomials up to a cer-
tain degree; an unstructured representation can be that
of variable length lists of coefficients, describing only
some particular monomials. The critical issue of such
compact unstructured representations is of course the
design of meaningful variation operators (crossover,
mutation) that will make evolution differ from random
search.

Another further step toward scalability is to use lists
or groups of elementary items, also called component-
based representations in [7]: in the context of polyno-
mial identification, that would amount to manipulate
some elementary polynomials not limited to simple
monomials. But such compact unstructured represen-
tations can also be organized into . . . structured spaces,
to make their evolution easier: using Genetic Program-
ming [8, 9] is an alternative representation for variable
degree polynomials, with well-designed variation op-
erators. Such search space also allows one to add useful
features, such as modularity and recursion, to the rep-
resentations [1], making another step toward the evo-
lution of complex solutions: for instance, when the so-
lution to a problem is known to have some symmetries,
it seems at least resource-wasting, and at worse bound
to failure to let evolution “discover” multiple instances
of the same optimal half-solution.

But the to-date ultimate research direction toward the
evolution of complex solutions seems to lie in the so-
called morphogenetic approach [5]: instead of evolving
parts of solutions (simple item or more complex com-
ponents), one evolves some programs, or rules, that
in turn give the solution when they are executed or
applied. One of the early attempts of morphogenetic
approach is the Cellular Encoding of F. Gruau [10]
where a Neural Network is built from an embryo by a
GP-like program—while many recent successes have
been reported using GP in different domains [2, 11].
As they also can evolve modular solutions, morpho-
genetic approaches really are appealing to build very
complex solutions to difficult problems whose compo-
nents can hardly be designed directly. However, the in-
crease in scalability goes together with a loss in causal-
ity: it is almost impossible for anyone to guess the
influence of small parts of the genotype on the final
solution.

In the framework of Topological Optimum Design,
the plain direct extensive representation is the widely

used bitarray approach based on a fixed mesh of the
design domain. Though very successful to overcome
the main limitations of deterministic methods for TOD
[12–14], this representation does not scale up with the
complexity of the mesh. Different compact unstruc-
tured representations based on Voronoi diagrams are
introduced, that exhibit a self-adaptive complexity (i.e.
the complexity of the solutions is adjusted by the al-
gorithm). These representations do not exactly involve
components, but do require some elementary alleles
to be defined by the programmer; such alleles can be
viewed as some sort of variable components: due to
the high degree of epistasis of those representations,
the phenotypic expression of each allele strongly de-
pends on the other alleles. In an attempt to avoid the
biases resulting from the manual choice of these alle-
les, the IFS representation, a morphogenetic approach
based on fractal theory, is defined.

The paper is organized the following way. The
context of evolutionary TOD is briefly recalled in
Section 2, from the mechanical background to the adap-
tive penalty method used within the fitness function.
Section 3 introduces a series of three different repre-
sentations based on the idea of Voronoi diagrams while
Section 4 presents original experimental results ob-
tained with those representations, assessing the power
of the compact unstructured approach. Comparative
results on cantilever benchmark problems are then pre-
sented, allowing one to discriminate among those rep-
resentations. Section 5 introduces the IFS representa-
tion, based the fractal theory, together with preliminary
experimental results assessing its possible advantages
and setting its limits, at least for simple problems of
TOD. Section 6 discusses the relevance of the different
representations introduced in the paper and concludes
on further directions of research.

2. Optimum Design of Mechanical Structures

2.1. The Mechanical Problem

The general framework of this paper is the Topologi-
cal Optimum Design (TOD) problem: find the optimal
shape of a structure (i.e. a repartition of material in a
given design domain) such that the mechanical behav-
ior of that structure meets some requirements—here
a bound on the maximal displacement under a pre-
scribed loading, but it could also involve bounds on the
eigenfrequencies, or any combination of stiffness and
modal optimization. The optimality criterion is here the
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Figure 1. The 2 × 1 cantilever plate test problem, and a bitarray
representation of a structure derived from a regular 13×6 mesh. See
Section 2.4.

weight of the structure, but it could also involve other
technological costs.

The mechanical model used in this paper is the stan-
dard two-dimensional (except in Section 4.4) plane
stress linear model, and only linear elastic materials
will be considered (see e.g. [15]). All mechanical fig-
ures are adimensional (e.g. the Young modulus is set
to 1) and the effects of gravity are neglected.

One of the most popular benchmark problem of Op-
timum Design is the optimization of a cantilever plate:
the design domain is rectangular, the plate is fixed on
the left vertical part of its boundary, and the loading is
made of a single force applied on the middle of its right
vertical boundary. Figure 1 shows the design domain
for the 2 × 1 cantilever plate problem.

2.2. State of the Art in Shape Optimization

The main trends in structural optimization can be
sketched as follows. A first approach is that of domain
variation [16] (also termed sensitivity analysis in Struc-
tural Mechanics). It consists in successive small vari-
ations of an initial design domain, and is based on the
computation of the gradient of the objective function
with respect to the domain. The original approach had
two major defects: first, it requires a good initial guess,
as it demonstrated unstable for large variations of the
domain; second, it does not allow to modify the topol-
ogy of the initial domain (e.g. add or remove holes).
However, the idea of topological gradient was recently
proposed and successfully used in [17], allowing the
modification of the topology of the solution. Neverthe-
less, this method is strictly limited to the linear elastic-
ity framework.

The other method for topology optimization is the
now standard approach of homogenization, introduced

in [18], which deals with a continuous density of mate-
rial in [0, 1]. This relaxed problem is known to have
a solution in the case of linear elasticity [19]—and
the corresponding numerical method does converge
to a (non-physical) generalized solution. That solution
must then be post-processed to obtain an admissible
solution with boolean density [20]. The homogeniza-
tion method is also insofar limited to linear-elasticity.
The theoretical results about optimal micro-structures
only handle single-loading cases, though numerical so-
lution to multi-loading cases have been proposed [21].
In addition, this method cannot address loadings that
apply on the (unknown) actual boundary of the shape
(e.g. uniform pressure).

A possible approach to overcome these difficulties
of TOD is to use stochastic optimization methods.
Stochastic optimization methods have been success-
fully applied to other problems of structural optimiza-
tion: in the framework of discrete truss structures, for
cross-section sizing [22, 23] among others, as well as
for topological optimization [24, 25] and for the opti-
mization of composite materials [26].

TOD problems have also already been addressed
by stochastic methods: Simulated Annealing has been
used to find the optimal shape of the cross-section of a
beam in [27]; and Evolutionary Algorithms have been
used to solve cantilever problems as the one presented
in Section 2.1 in [12, 28, 29].

The above-mentioned limitations of the determinis-
tic methods have been successfully overcome by these
works—in [12–14] for instance, results of TOD in non-
linear elasticity, as well as the optimization of an un-
derwater dome (where the loading is applied on the
unknown boundary) have been proposed, both out of
reach for the deterministic methods.

2.3. Fitness Computation

The problem tackled in this paper is to find a structure
of minimal weight such that its maximal displacement
stays within a prescribed limit Dlim when some given
point-wise force is applied on the loading point (see
Fig. 1). The computation of the maximal displacement
is made using a Finite Element Analysis solver [30].

From mechanical considerations, all structures that
do not connect the loading point and the fixed boundary
are given an arbitrary high fitness value. Moreover, the
material in the design domain that is not connected to
the loading point—and has thus no effect on the me-
chanical behavior of the structure—is discarded during
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the Finite Element Analysis, but slightly penalizes the
structure at hand (see [12, 13] for a detailed discus-
sion on both these issues). In summary, for connected
structures, the problem is to minimize the (connected)
weight subject to one constraint for each loading case,
namely Di

Max ≤ Di
lim, where Di

Max its maximal dis-
placement computed by the FEM under loading i , and
Di

lim its prescribed limit.
Introducing the positive penalty parameters αi , the

fitness function to minimize is

Weight +
∑

i

αi
(
Di

max − Di
lim

)+
(1)

However, adjusting αi is not an easy task, and many
specific methods exist in Evolutionary Computation
[31].

The adaptive penalty method used here updates the
penalty parameter based upon global statistics of feasi-
bility in the population. Its main goal is to explore the
neighborhood of the boundary of the feasible region
by trying to keep in the population individuals that
are on both sides of that boundary: in the context of
stiffness optimization in TOD, the solution does lie on
the boundary, . . . but for the continuous problem only!
Once discretized, this is no longer true, and it can only
be said that the solution lies close to the boundary.

The objective is to maintain in the population a min-
imum proportion of feasible individuals as well as a
minimum proportion of infeasible individuals. Denote
by �k

feasible the proportion of feasible individuals at gen-
eration k, and by �inf and �sup two user-defined param-
eters. As small penalty parameters favor the infeasible
individuals (and vice-versa), the following update rule
for the αi parameters is proposed to try to keep �k

feasible
in [�inf , �sup]:

αk+1 =




β · αk if �k
feasible < �inf

(1/β) · αk if �k
feasible > �sup

αk otherwise

(2)

with β > 1. User-defined parameters of this method
are �inf , �sup, β and the initial value α0. The robust
values β = 1.1, �inf = 0.4, and �sup = 0.8 were used
in all experiments presented this paper.

Note that the variations of α are non monotonous,
and hence there is no a priori guarantee that the best in-
dividual in the population is feasible. It can even happen
that the population contains no feasible individual—
though in that case the steady increase of α should

favor individuals with lower constraint violation, and
rapidly result in the emergence of feasible individuals.

Some comparative results assessing the power of
that population-based adaptive penalty method can be
found in [32] for test problems, and in [33] in the con-
text of TOD.

2.4. Representations of Structures for TOD

All the works cited in Section 2.2 that address TOD
problems with EAs use the same ‘natural’ binary repre-
sentation, termed bitarray in [12]: it relies on a mesh of
the design domain—the same mesh that is used to com-
pute the mechanical behavior of the structure in order
to give it a fitness (see Section 2.3). Each element of the
mesh is given value 1 if it contains material, 0 otherwise
(see Fig. 1). Note that this bit-based representation is
not equivalent to the usual bitstring representation, and
that some specific geometrical crossover operators had
to be designed [34], similar to the crossover operator
described in Section 3.1 below for the Voronoi-based
representations.

In spite of its successes in solving TOD
problems [12–14], bitarray representation suffers from
a strong limitation due to the dependency of its com-
plexity on that of the underlying mesh. Indeed, the size
of the individual (the number of bits used to encode a
structure) is the size of the mesh. Unfortunately, accord-
ing to both theoretical results [35] and empirical con-
siderations [36], the critical population size required for
convergence should be increased at least linearly with
the size of the individuals. Moreover, larger popula-
tions generally require a greater number of generations
to converge. Hence it is clear that the bitarray approach
will not scale up when using very fine meshes. This
greatly limits the practical application of this approach
to coarse (hence imprecise) 2D meshes, whereas Me-
chanical Engineers are interested in fine 3D meshes!

These considerations appeal for some more compact
representations whose complexity does not depend on a
fixed discretization. The ultimate step in the direction of
complexity-free representation is to let the complexity
itself evolve and be adjusted by the EA.

3. Voronoi-Based Representations

The Voronoi representation is a first attempt toward
unstructured representations for TOD. It has first been
proposed in [37], but has since then been used mainly
in the context of identification problems [38, 39]. This
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section recalls the definition of Voronoi representation,
and proposes two other representations that also derive
from the same ideas.

3.1. Voronoi Representation

3.1.1. Voronoi Diagrams. Consider a finite number
of points V0, . . . , VN (the Voronoi sites) of a given sub-
set of IRn (the design domain). To each site Vi is associ-
ated the set of all points of the design domain for which
the closest Voronoi site is Vi , termed Voronoi cell. The
Voronoi diagram is the partition of the design domain
defined by the Voronoi cells. Each cell is a polyhe-
dral subset of the design domain, and any partition of
a domain of IRn into polyhedral subsets is the Voronoi
diagram of at least one set of Voronoi sites (see [40]
for a detailed introduction to Voronoi diagrams, and a
general presentation of algorithmic geometry).

3.1.2. The Genotype. Consider now a (variable
length) list of Voronoi sites, each site being labeled
0 or 1. The corresponding Voronoi diagram represents
a partition of the design domain into two subsets, if
each Voronoi cell is labeled as its associated site (see
Fig. 2(a)).

3.1.3. Decoding. Of course, as some FE analysis is
required during the computation of the fitness function,
and as re-meshing is a source of numerical noise that
could ultimately take over the actual difference in me-
chanical behavior between two very similar structures,
it is mandatory to use the very same mesh for all struc-
tures at the same generation. A partition described by
Voronoi sites is easily mapped on any mesh: the subset
(void or material) an element belongs to is determined
from the label of the Voronoi cell in which the center
of gravity of that element lies.

Figure 2. Voronoi representation on a 2 × 1 design domain. (a) The genotype: a list of labeled Voronoi sites. Black dots are sites with label 0
and white dots are sites with label 1. (b) The phenotype: the Voronoi cells receive the label of the corresponding site, and build a partition of the
design domain.

However, the complexity of the individuals (i.e. the
number of Voronoi sites in their representation) is to-
tally independent of the choice of the mesh used for
fitness computation, and will evolve according to the
Darwinian principles underpinning the whole evolu-
tionary process.

3.1.4. Initialization. The initialization procedure for
the Voronoi representation is a uniform choice of the
number of Voronoi sites between 1 and a user-supplied
maximum number, a uniform choice of the Voronoi
sites in the design domain, and a uniform choice of the
boolean label.

3.1.5. Variation Operators. The variation operators
for the Voronoi representation are problem-driven:

• The crossover operator exchanges Voronoi sites on
a geometrical basis. In this respect it is similar to the
specific bitarray crossover described in [34]. Figure 3
is an example of application of this operator.

• The mutation operator is chosen by a roulette wheel
selection based on user-defined weights among the
following operators (Fig. 4):

– the displacement mutation performs a Gaussian
mutation on the coordinates of the sites. As in Evo-
lution Strategies [41], adaptive mutation is used:
one standard deviations is attached to each coor-
dinate of each Voronoi site, undergoes log-normal
mutation before being used for the Gaussian mu-
tation of the corresponding coordinate.

– the label mutation randomly flips the boolean at-
tribute of one site.

– the add and delete mutations are specific variable-
length operators that respectively randomly add or
remove one Voronoi site on the list.
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Figure 3. The crossover operator for the Voronoi representation: a random line is drawn across both diagrams, and the sites on either side are
exchanged.

Figure 4. Two mutations for Voronoi representation. (a) The add mutation: the site at end of the arrow has been added to the genotype of Fig.
2(a). The phenotype is rather different from that of Fig. 2(b). (b) Mutation by site displacement: a small displacement of one site in Fig. 2(a)
slightly modified the phenotype (see Fig. 2(b)).

3.1.6. Boundary Control. One crucial problem in
TOD is the fine tuning of the boundary of the solu-
tion. The optimal shape can only be reached in rea-
sonable time if the algorithm is able to precisely con-
trol the boundaries of the individuals in the population.
Unfortunately, the Voronoi representation only offers
indirect control of the boundary of the structure it rep-
resents. Moreover, the high epistasis of that represen-
tation makes it difficult to modify a single boundary
without disturbing the adjacent ones. The idea behind
the dipole representation presented in next section is to
try to overcome that difficulty.

3.2. Dipole Representation

3.2.1. Dipoles. A dipole is a set of two Voronoi sites,
one labeled 0 and the other labeled 1, standing almost at

the same point in the design domain, but whose median
has a prescribed angle in the plane. A dipole is hence
defined by three real-valued variables, its coordinates
(x, y) and the angle of its median with the x-axis θ .
Figure 5(a) is an example of a dipole. The direct control
over θ allows a precise control over that part of the
boundary that goes through the (x, y) point.

3.2.2. The Genotype. One individual in the dipole
representation is a (variable length) list of dipoles. As in
the Voronoi representation, the corresponding Voronoi
diagram represents a partition of the design domain
into two subsets, as can be seen on Fig. 5(a).

3.2.3. Decoding. Considering each dipole as a sin-
gle Voronoi site, the corresponding Voronoi diagram is
drawn. Each dipole is then turned back into two Voronoi
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Figure 5. Dipole representation on a 2×1 design domain. (a) The genotype: the two sites of each dipole lie in fact at the same point of the design
domain. The median are the dashed lines, the Voronoi cell boundaries the solid lines. (b) The phenotype: the medians are directly controlled by
the variation operators, but many actual boundaries between void and material are made by the—uncontrolled—Voronoi boundaries.

sites of opposite color, the median being given by its
angle θ with the x-axis (both the Voronoi cells and the
median are represented on Fig. 5(a)). The full pheno-
type is then drawn, as on Fig. 5(b).

However, as can be seen on Fig. 5, the decoding
of adjacent dipoles shows that the resulting struc-
ture has two kinds of boundaries: the median of the
dipoles, which can hopefully be controlled by the evo-
lutionary algorithm, and the medians between dipoles,
whose fine tuning will be as difficult as in the Voronoi
representation—and maybe even more, as some weird
configurations will often arise, as the one shown in
Fig. 5(b).

3.2.4. Variation Operators. These operators for the
dipole representation are derived from the ones of
the Voronoi representation: the initialization procedure
chooses a number of dipoles, and initializes their coor-
dinates uniformly in the design domain and their angle
in [0, 2π [. The crossover operator exchanges dipoles
exactly as its counterpart for Voronoi representation
exchanged Voronoi sites (see Fig. 3). The mutation op-
erators include the displacement mutation, the Gaus-
sian mutation of the angle of a dipole, and of course
the addition and destruction of dipoles in the list.

Figure 6. The Voronoi-bar representation. A single bar (a) and the structure built using two such bars (b): The thick line is the boundary
between the two Voronoi cells and is part of the structure boundary only at the junction of the two bars.

3.2.5. Truss-Like Structures. For cantilever prob-
lems, it is well-known that the best structures are in
fact truss structures. Obtaining truss structures using
Voronoi diagrams or dipoles requires the emergence of
coupled subsets of either sites or dipole and thus might
take some time to evolve.

Moreover, the defects of the dipole representation
(see Fig. 5(b)), together with experimental results as
the ones of Sections 4.2, demonstrate its inability to
achieve the fine tuning of the boundary that was the
main reason why it was designed.

The idea behind the Voronoi-bar representation, in-
troduced in next section, is precisely to both achieve
the fine tuning of the boundary, and favor the evolution
of truss structures by providing alleles that already are
truss elements.

3.3. Bar Representation

3.3.1. Voronoi-Bars. A Voronoi-bar is hence de-
fined by four real-valued variables, its coordinates
(x, y), the angle of the bar with the x-axis θ and its
width. Figure 6(a) is an example of a single Voronoi-
bar.
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3.3.2. The Genotype. One individual in the Voronoi-
bar representation is a (variable length) list of Voronoi-
bars. When all Voronoi-bars are simply considered as
Voronoi sites, the corresponding Voronoi diagram rep-
resents a partition of the design domain into convex
polygons. Each such polygon is then separated into
two subdomains, namely the central part, made of ma-
terial, and the outer part, “filled” with void (see Fig. 6).
Whenever the width is large enough, the whole cell is
1, whereas a null value for the width turns the cell into a
0 cell: these extreme cases of the Voronoi-bar represen-
tation are nothing else than the Voronoi representation
itself.

3.3.3. Decoding. As for the Voronoi representation,
the fitness of all structures will be evaluated using a
fixed mesh, and the projection on that fixed mesh is
performed as in Section 3.1: an element is considered
made of material if and only if its center of gravity falls
within the material part of a Voronoi-bar.

As can be seen on Fig. 6(b), the decoding of adja-
cent Voronoi-bars allows to directly control almost the
whole boundary of the resulting structure, apart from
some limited portions at the junction of two “bars”.

3.3.4. Variation Operators. These operators for the
Voronoi-bar representation are once again derived from
the ones of the Voronoi representation: the initializa-
tion procedure chooses a number of bars, and initial-
izes their coordinates, angles and width uniformly. The
crossover operator exchanges bars exactly as its coun-
terpart for Voronoi representation exchanged Voronoi
sites (see Fig. 3). The mutation operators include the
displacement mutation, the Gaussian mutation of the
angle and width of a bar, and of course the addition
and destruction of bars in the list.

4. Experimental Results for Voronoi-Based
Representations

This section introduces some results obtained using
the Voronoi-based representations. Mesh-dependency
experiments were run on the Voronoi representation
to ensure the idea of compact unstructured represen-
tation was indeed playing its role: this was shown to
be the case up to the error in discretization [33]. The
most important part of this section deals with compar-
ative results on the benchmark cantilever problems to
try to assess the usefulness of the introduction of the
other Voronoi-based representations. This section ends

with some original results on a 3D cantilever prob-
lem, demonstrating that such unstructured representa-
tions did indeed allow innovative results in Evolution-
ary Topological Optimum Design.

4.1. Evolutionary Experimental Conditions

Unless otherwise stated, the experiments presented fur-
ther on have been performed using the following set-
tings: Standard GA-like evolution (linear rank-based
selection and generational replacement of all parents
by all offspring) with populations size 80; At most
40 Voronoi sites (or dipoles or bars) per individual;
Crossover rate is 0.6 and mutation rate per individual
is 0.3; Weights among the different mutations are 0.5
for the displacement mutation, the remaining mutations
equally sharing the remaining 0.5; All runs are allowed
at most 2000 generations, and the algorithm stops after
300 generations without improvement; All plots are the
result of 21 independent runs; All CPU times are given
related to a Pentium III processor running at 300 MHz
under Linux. For instance, the cost of one generation
for the 1×2 or the 2×1 cantilever problems discretized
with 200 elements is 2 s.

4.2. Comparative Results of Voronoi-Based
Representations

This section presents comparative benchmark re-
sults on the three Voronoi-based representations. Two
benchmark problems are considered: the 1×2 and 2×1
cantilever plates with respective limits on the maximal
displacement of 20 and 220. In both cases, the verti-
cal left boundary is fixed, and the point-wise force is
applied at half-height of the right vertical boundary.
The experimental conditions for all representations are
those described in Section 4.1.

Figures 7–9 show typical best structures obtained
with respectively the Voronoi, the dipole and the
Voronoi-bar representations, while Figs. 10 and 11
show statistics over 21 runs for both those test cases.

The first conclusion of these experiments is that all
three representations find almost equally good solu-
tions among the 21 runs. However, the best represen-
tation according to the quality criterion is the Voronoi-
bar representation: almost all solutions were similar
to the ones of Fig. 9, whereas many solutions found
by the dipole representation were much worse, and
the solutions found by the Voronoi representation were
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Figure 7. The two best benchmark results for the Voronoi representation. (a) weight = 0.215, 35 sites (b) weight = 0.35, 32 sites.

Figure 8. The two best benchmark results for the dipole representation. (a) weight = 0.215, 15 dipoles (b) weight = 0.325, 36 dipoles.

Figure 9. The two best benchmark results for the Voronoi-bar representation. (a) weight = 0.2, 4 bars (b) weight = 0.33, 20 bars.
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Figure 10. Comparative on-line results for the Voronoi-based representations on the 1 × 2 cantilever for Dlim = 20.

Figure 11. Comparative on-line results for the Voronoi-based representations on the 2 × 1 cantilever for Dlim = 220.

consistently slightly worse. These trends are reflected
on the plots shown in Figs. 10 and 11. Note that both
Voronoi and dipole representations sometimes showed
results similar to the Voronoi-bar representation, but
the latter really appeared more robust.

Another criterion is the complexity of the solutions.
The test cases are here very simple, and the solutions
should reflect this simplicity. Here again the Voronoi-
bar representation is a clear winner: In all runs, the
Voronoi-bar representation found very compact solu-
tions, compared with those found by the other repre-
sentations. The perfect 2-bars V-shape was even found
once for the 1 × 2 cantilever problem, even though
there was no incentive in the algorithm for to decrease
the number of Voronoi sites. But less Voronoi sites are
probably easier to fine tune, and this might be the ex-
planation for that.

Hence it seems that the additional complexity in
the elementary alleles of the Voronoi-bar represen-
tation does pay off, at least on these benchmark
problems.

4.3. The 10 × 1 Cantilever

The problem of the 10×1 cantilever (discretized using
a 100 × 10 regular mesh) proved to be difficult for the
bitarray representation as it raises an additional diffi-
culty: most of initial random structures do not connect
the fixed boundary and the point where the loading
is applied. Hence an alternate initialization procedure
is used, where the average weight of random struc-
tures can be tuned (see [42] for details). Furthermore,
the maximal number of sites for each individuals is



Compact Unstructured Representations 149

Figure 12. Optimal structure on the 100 × 10 mesh for 10 × 1 cantilever plate for the Voronoi representation. Dlim = 12, number of cells =
105. weight = 0.479. CPU time = 14 s/gen.

Figure 13. Optimal structure on the 100 × 10 mesh for 10 × 1 cantilever plate for the Voronoi-bar representation. Dlim = 12, number of cells
= 91. weight = 0.424. CPU time = 14 s/gen.

increased to 120, and the best results were obtained
with a population size of 120.

Nevertheless, the dipole representation was unable
to find satisfactory solutions—in most cases, it simply
could never find a connected solution, similarly to the
bitarray representation.

Figures 12 and 13 shows the most significant re-
sults obtained using respectively the Voronoi and the
Voronoi-bar representations.

Again, a slight advantage can be seen for the
Voronoi-bar representation in the quality of the best so-
lution. However, the advantage in solution complexity
is not so clear than it was on the 1 × 2 benchmark. But
a very interesting feature is the quasi-regularity of the
Voronoi-bar solution: indeed, any mechanical engineer
would build such a structure by using the same part four
or five times before ending with some specific part at
the further end (think of how cranes are designed). But
as the Voronoi-based representations do not have the
ability to evolve modularity, such partial solutions have
to be evolved six times. On-going work addresses this
issue by introducing hierarchical representations based
on the elementary Voronoi representations introduced
in Section 3.

4.4. Three-Dimensional Problem

This section demonstrates that the Voronoi repre-
sentation can indeed be applied to represent three-
dimensional objects. Because the Voronoi diagrams
theory is valid in any dimension, the extension of the
representation defined in Section 3.1 to three dimen-
sional objects is straightforward—note that this is true
for the dipole representation, too (Section 3.2), but that

the bar representation (3.3) will require some work,
as multiple elementary geometrical shapes should be
designed (e.g. 3D bars of different sections).

The test problem is the 3D equivalent of the can-
tilever benchmark problem described in Section 2.1:
The design domain is a quadrangle subset of IR3, the
structure is fixed on a vertical plane, and a force is ap-
plied in the center of its opposite face (see Fig. 14).
The problem is symmetrical with respect to a vertical
plane perpendicular to the fixed wall. Hence only half
of the domain is discretized, according to a 16×7×10
mesh. Its left face is fixed, and the loading is applied
on the middle of the right face.

The first experiments presented here were performed
only with the Voronoi representation (Section 3.1). As
for large 2D domains (Section 4.3), the higher com-
plexity of the problem lead to modify the settings: the
population size is again set to 120 and the maximum
number of Voronoi sites is also increased to 120.

Figure 14. The design domain for the 3-dimensional cantilever
problem.
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Figure 15. Two results for the symmetrical three-dimensional problem using a 16 × 7 × 10 mesh for half of the structure, with same constraint
(CPU time = 6 mn/gen). The point of view is that of Fig. 14, i.e. the structure is fixed on a vertical wall at the back of the figure (not represented).
(a) weight = 0.15178, 103 sites (b) weight = 0.166, 109 sites.

Figure 15 demonstrates that the algorithm was able
to find some good solutions in . . . a few days of CPU
time (3D FEM analyses are far more costly than 2D
for the same mesh size due to higher connectivity den-
sity). To the best of our knowledge, such results are the
first results of 3D TOD obtained using Evolutionary
Computation.

Moreover, it also stresses the ability of EAs to find
multiple quasi-optimal solutions to the same problem,
some of them quite original indeed when compared to
the results of the homogenization method on the same
problem.

5. IFS Representation

The Voronoi-based representations were some attempts
to escape the direct encoding of discretized structures
using a predefined mesh. However, the basic blocks that
build the structure had to be designed by the program-
mer, and wrong choices can bias the search in a wrong
direction, and hence once again limit the creativity of
the overall process.

The following fractal-based representation is an at-
tempt to go further in the morphogenetic direction: no
assumption is made about what the building blocks of a
structure could be—but the search space for the geno-
type is hopefully rich enough so that a large number of
different structures can be evolved.

5.1. IFS Theory

An IFS � = {F, (wn)n=1,...,N } is a collection of N
functions defined on a complete metric space (F, d).

Let W be the Hutchinson operator, defined on the space
of subsets of F :

∀ K ⊂ F, W (K ) =
⋃

n∈[0,N ]

wn(K )

If all wn functions are contractive (i.e. there exists a
positive real number s < 1 such that d(w(x), w(y)) ≤
s.d(x, y) for all (x, y) ∈ F2), the IFS is called hyper-
bolic, and there exists a unique set A, called the attrac-
tor of the IFS, such that W (A) = A.

The uniqueness of the attractor is a result of the con-
tractive mapping fixed-point theorem for W , which is
contractive according to the Hausdorff distance defined
by

dH (A, B)

= max
[

max
x∈A

(
min
y∈B

d(x, y)
)
, max

y∈B

(
min
x∈A

d(x, y)
)]

From a computational viewpoint, there are two
known ways to compute the attractor of an IFS:

• Stochastic Method (toss-coin): Let x0 be the fixed
point of one of the wi functions. Build the sequence
xn by xn+1 = wi (xn), i being randomly chosen
in {1..N }. Then

⋃
n xn is an approximation of the

attractor of � (the larger n, the more precise the
approximation).

• Deterministic Method: From any kernel S0, build the
sequence {Sn} of subsets by Sn+1 = W (Sn). When n
goes to ∞, Sn is an approximation of the real attractor
of �.
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5.2. Evolutionary IFS Identification

The first attempts to evolve IFS using EAs dealt
with the inverse problem: given a target shape A ⊂ F ,
find the IFS whose attractor is A.

This problem can be formulated as an optimization
problem: find the IFS whose attractor minimizes the
distance to the target shape A. As the function to be
optimized is extremely complex, some a priori restric-
tive hypotheses are necessary. Usually, the search space
is that of affine IFS, with a fixed number of functions:
see [43, 44] for early computational methods. More
recently, solutions based on Evolutionary Algorithms
have been presented for affine IFS, i.e. IFS in which all
functions are affine functions [45–47].

But affine IFS are a small subset of possible IFS, and
some previous work of one of the authors [48] dealt
with general non-affine IFS (called Mixed IFS ) using
GP, that allows to evolve any type of function. However,
whereas assessing the contractivity of affine functions
is straightforward, the contractivity of general func-
tions defined as GP trees could only be numerically
checked a posteriori—and at a heavy computational
cost. This drawback motivated the very recent intro-
duction of Polar IFS [49] in which the functions are
sought (still using GP) in polar form around their fixed
points: a simple condition on the ρ functions ensures
the local contractivity of the function around its fixed
point. While this does not ensure the global contrac-
tivity, the proportion of contractive functions among
that class of polar functions is much larger than that of
contractive general GP trees—and the inverse problem
can be solved more rapidly and accurately.

Unfortunately, when the present work started, only
the GP program to identify mixed IFS was operational.
Hence the first results presented in next sections us-
ing IFS representation for the TOD problem have been
obtained using the mixed IFS GP-based program de-
scribed in detail in [48].

5.3. IFS Representation for TOD: First Results

The idea of shape representation using IFS is straight-
forward: The attractor of an IFS is a shape defined in
the design domain. Hence the fitness of the IFS can
be computed using that shape as a structure, potential
solution of the TOD.

The attractor of a given IFS is computed on the mesh
that is used for the FE analyses, and the fitness is com-
puted as stated in Section 2.3. The same 1×2 and 2×1

Figure 16. The two benchmark results for the IFS representation.
(a) weight = 0.31 (b) weight = 0.43.

benchmark cantilever problems than in Section 4 are
used, and Fig. 16 shows the best results obtained in 10
runs.

First, the good news is that reasonable structures
were obtained. Moreover, their shapes are indeed
more “lace-like” than when using a Voronoi-based
representation—and without the cost of describing all
small holes as in the bitarray representations.

However, the results are not as good as the results
obtained by Voronoi representations, and that appealed
for further experiments on less simple problems: the
IFS representation was used for the 10 × 1 cantilever
problem of Section 4.3. The best feasible result (out of
10 independent runs) can be seen on Fig. 17. Compar-
ing this result to those presented on Figs. 12 and 13, it is
clear that the optimal structure is heavier here. Note that
a lighter structure (0.55) that violates the constraint on
the maximal displacement very slightly (12.17 vs 12)
has also be obtained in one of the runs.

These preliminary experiments raise some critical
issues:

• The variance of the results was very high—some re-
sults were really not good at all. Of course, such
high variance is a real problem only in exploitation
situations, where it is mandatory that reasonable so-
lutions are found at every run. Moreover, for design
problems, it can even become an advantage, as one
can hope to obtain very good solutions, even if rather
rarely. But it did not happen with the IFS represen-
tation on the benchmarks problems presented here,
maybe because the (known) best solutions are still
too simple.

• The same adaptive penalty strategy was used here
than for the Voronoi-based representations (see
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Figure 17. Optimal structure on the 100 × 10 mesh for 10 × 1 cantilever plate for the IFS representation. Dlim = 12. weight = 0.58. CPU time
=15 s/gen.

Section 2.3). However, whereas all runs of Voronoi-
based representations found feasible solutions, most
runs using the IFS representation found slightly in-
feasible solutions.

• the computational time for decoding is much larger
for the IFS representation than for the Voronoi
representation.

• The influence of mesh refinement on the actual shape
obtained by decoding an IFS is not easy to guess.
However, first experiments suggest that different
meshes might result in quite different shapes up to
very fine meshes.

These remarks suggest that too many things remain
unknown both about the structure of the IFS search
space and about the actual morphogenetic process. Fur-
ther experiments are needed, on different problems
where the solution is not clearly a simple object e.g.
experimenting with design problems outside Structural
Mechanical, e.g. in Image Analysis domain. Another
issue is the extension to three-dimensional problems.
Whereas the theoretical extension is straightforward,
the complexity of the computation of the attractor of a
3D IFS will increase drastically.

6. Discussion and Conclusion

This paper has introduced new representations for the
representation of objects in the framework of Evolu-
tionary Computation. These representations were ex-
perimented with on some Design problems in Struc-
tural Mechanics. Departing from the raw bitarray rep-
resentation based on a fixed discretization of the de-
sign domain, representations based on the theory of
Voronoi diagrams have been proposed, from the sim-
ple Voronoi representation to the more complex dipole
and Voronoi-bar representations.

These representations are unstructured, i.e. an in-
dividual is a variable-length unordered list of alleles.
They are compact, in the sense that they don’t require
en extensive description of the object at hand on a (usu-
ally very large) fixed set of alleles: Though the struc-

ture of a single allele increases when going from the
Voronoi representation to the Voronoi-bar representa-
tion, all three representation implement self-adaptive
complexity of the solutions, i.e. the actual complex-
ity of the individuals in terms of number of alleles is
evolved by the algorithm and does not have to be pre-
defined by the user.

These representations have been tried on simple test
problems of Topological Optimum Design. The results
suggest that all three representations can solve such
problems, and require roughly the same computational
effort for the same quality of solution, with a slight ad-
vantage for the Voronoi-bar representation. However,
when examining the complexity of the solution, there
is a clear advantage in using the Voronoi-bar represen-
tation, whose solutions consistently involve less alleles
than both others. Note that this probably also explains
the observed slight improvement in quality versus com-
putation effort, as it is easier to fine tune the solution
when only few alleles are to be adjusted. However,
it should be kept in mind that all 2D cantilever prob-
lems have truss-like optimal solutions constructed from
. . . bar-like elements. Further experiments on problems
for which the optimal solutions does not exhibit such
characteristics should be carried on.

Finally, the IFS representation was presented, a mor-
phogenetic representation in which the structure is in-
directly defined as the attractor of a set of contractive
mappings on the design domain. Such representation
does not make any a priori supposition on the shape
of building blocks for the solution of the problem at
hand. This should allow more complex solutions to be
evolved without designing specific alleles.

Reasonable results were obtained on simple 2D TOD
problems, but slightly worse than those of any of the
Voronoi-based representations. A possible reason for
such results is that the increase of complexity of the
morphogenetic process might only prove beneficial
for problems where the solution is also complex—and
further work will try to apply this representation to
more difficult problems, in order to assess for that hy-
pothesis. Moreover, it also might be the case that the
lack of causality (direct feed-back from the mechanical
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structure on the IFS) forbids any useful evolutionary
process, at least with so few individuals and gener-
ations. Some experiments on highly parallel systems
with distributed populations of hundreds of thousands
of individuals might help answering that question.

Another critical issue is the dependency of the mor-
phogenetic process on the mesh, that seems to be much
higher for IFS representations than for all Voronoi
representations. Two possible answers will be inves-
tigated: by using different unstructured meshes during
evolution, or by making the decoding process smoother.
First, by changing the mesh at every generation, or by
averaging the fitness over a few meshes, it is hoped
that only solutions that are robust with respect to the
mesh will survive successive selections. Second, the
numerical computation of the attractor of an IFS fills
an element with material as soon as it is hit once by
the toss-coin algorithm, whereas smoother decoding
would be to consider only the hard core of the attractor
requiring a minimal number of such hits before filling
the corresponding element.

In the present state of this research, however, the
Voronoi-bar representation seems a good choice when
looking for representations of objects suitable for evo-
lutionary processes, as witnessed by their use in this
paper for evolutionary TOD: it achieves a good com-
promise between compactness of the solutions and ef-
ficiency of search for good solutions. Unfortunately,
whereas the extension of the Voronoi and dipole repre-
sentations to three dimensions is straightforward (see
Section 4.4), that of the Voronoi-bar representation re-
quires some more work: one will probably need plates
and bars with different cross-section shapes to be in-
cluded in the elementary alleles. In that perspective, the
IFS representation will also be tested on 3D complex
problems.

It is clear that compact expressive representations are
a prerequisite to successful evolutionary-guided cre-
ativity [4]. In that respect, the representations of objects
proposed in that paper are a step toward more efficient
evolutionary design. However, as quoted in [1, 50], a
key feature for creative design is the use of modularity,
i.e. the ability to evolve sub-structures and to use them
as new building blocks. None of the proposed repre-
sentations does include high level constructs, such as
the possibility to evolve symmetric, or re-usable sub-
solutions. For instance, any mechanical engineer would
design solutions of the N × 1 cantilever problem for
large N by using many almost-identical small truss-
structures again and again.

In that direction, some hierarchical representations
for shapes have been already proposed in the literature,
such as the Quad-tree representation [51]. However
quad-tree representation is not easy to evolve, as for
instance standard tree crossover does not preserve the
locality of quad-tree discretization. Another possible
approach could be to hybridize the Voronoi represen-
tation with some IFS-like sub-representation: an IFS
would be attached to each Voronoi site, and be used
to define the shape of the object in the corresponding
Voronoi cell (in a similar way that the angle and the
width of a bar define the shape of the structure in the bar-
representation of Section 3.3. The global evolution of
such a representation might prove too time-consuming,
but could be replaced by some two-steps evolution, in
the line of [52]: first, identify the IFS adapted to the
problem at hand; then use them as a (fixed) library
where Voronoi sites would be allowed to pick up their
internal shape.

Anyway, some coupling between a hierarchical ap-
proach to complex representations, and one of the un-
structured representations presented here seems to be
a possible route to the Grail of Evolutionary Design,
the automatic design of highly complex structures. It is
hoped that the work in this paper actually brings some
building blocks to such higher level morphogenetic
representation—while already allowing the direct com-
putation of solutions to simple problems out of reach
for “standard” extensive representations.

Acknowledgments

The authors wish to thank the anonymous reviewers,
whose critical suggestions helped to improve both the
readability and the discussion of the paper.

Note

1. Of course, there also exists extensive unstructured representa-
tion, such as the Messy GA representation [23], different repre-
sentations for the TSP [54], or extensive description of variable-
topology neural networks [55,56] which will not be considered
further in this paper in the light of the scalability issue.
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