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A device concept for laterally extracting selected wavelengths from an optical signal traveling along

a waveguide, for operation in metropolitan area networks, is presented. The signal on the

fundamental mode of a multimode photonic crystal waveguide is coupled to a higher-order mode,

at a center frequency that spatially depends on the slowly varying guide parameters. The device is

compact, intrinsically fault tolerant, and can split any desired fraction of the signal for monitoring

purpose. Characterizations by the internal light source technique validate the optical concept

whereas an integrated device with four photodiodes qualifies its potential with respect to real-world

applications. © 2005 American Institute of Physics. fDOI: 10.1063/1.1879105g

Wavelength monitoring is one of the key functions

needed at nodes of wavelength division multiplexing metro-

politan optical networks. Monolithic solutions on InP-based

heterostructure, such as standard one-dimensional Bragg

reflectors
1

phasar type solutions,
2

micromechanically tuned

vertical Fabry-Pérot cavities,
3

and microring resonator

filters,
4

have been tackled in classical integrated optics. Their

footprints are still in the 1 mm2 range and none of these

solutions have a practical, cost-efficient geometry for moni-

toring purpose, which would transmit most of the signal.

Meanwhile, matured planar photonic crystal technology

makes optical integrated circuits based on these two-

dimensional s2Dd structures increasingly attractive. Compact

and fault-tolerant coupler,
5

power lasers,
6

coupled-cavity

lasers
7

are some examples of components using the specific

functionalities, such as confinement and diffraction, provided

by photonic crystals. Among all available devices, multi-

mode photonic crystal channel waveguides sPXCWd are

known to exhibit specific anticrossings between guided

modes of different orders. This mode coupling occurs

through the corrugation of the boundary of the PXCW and is

nothing but a Bragg diffraction. The impact of this so-called

mini-stop-band sMSBd on the transmission has been

detailed.
8,9

In this letter, we propose a use of mode-coupling

in PXCW: combined with a slow spatial variation of guide

parameters fFigs. 1sad and 1sbdg, it lends itself to wavelength

monitoring in a very compact and simple way, namely detec-

tion by integrated photodiodes located aside the guide.

As seen on Figs. 1sad and 1sbd, the principle takes ad-

vantage of a multimode PXCW with a slight wedge ssmooth

or “staircased”d, resulting in a shifting spectral position of

the MSB fFig. 1scdg. The guide couples its fundamental squa-

sirefractived mode to a higher-order mode only inside the

local MSB’s narrow wavelength window. Outside the MSB,

the fundamental mode is unaffected. Hence, when a trans-

verse electric sTEd signal enters the device, its spectral com-

ponents are unaffected in all sections but the critical, cou-

ad
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FIG. 1. sad Scheme of sample B. The waveguide width shrinks from w1

=4.1aÎ3/2 to w2=3.9aÎ3/2, inducing a total shift Du=0.01 of the mini-

stop-band frequency. The six lateral channels have a 50a length. The fate of

a particular wavelength, l5, is illustrated. sbd Scheme of sample A, with four

integrated photodiodes. scd Superimposed dispersion relations for photonic

crystal waveguides in a InP-based heterostructure sair filling factor: 45%d.
The MSB shifts up between extreme widths w1 and w2, and is centered

around u=0.265 for the basic W3K A case. sdd Cross section of sample B.

Note the technological challenge of deep-etching photonic crystal near pho-

todiodes pads of 800 nm height. Mode profiles for both fundamental and

fifth-order mode are depicted.
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pling section. In this section, the fundamental mode is

coupled to the higher order mode, which has a slower group

velocity and a much deeper penetration in the photonic crys-

tal cladding. Thinning one of the walls of the PXCW down

to a few rows, this mode leaks out laterally fFigs. 1sad and

1sbdg. The splitting ratio may be widely adjusted through

parameters such as section length, hole diameter, etc.

In this letter, we focus on the extreme case of complete

extraction. We model it based on the coupled-mode theory.

We discuss first realizations and corresponding measure-

ments by purely optical methods. A first realization with four

photodiodes validates its potential for real-world integration.

Coupled mode theory is an efficient design tool for

PXCW
10,11

near the MSB regions including propagation

losses.
11

We apply it here to a multisection waveguide having

a staircased decreasing width fFig. 2sadg. The scalar field in

quasi-TE polarization is actually the H field.

The field Ensx ,yd in the nth section of the PXCW can be

written as a sum of the fundamental mode of amplitude Rnsyd
and a higher order mode of amplitude Snsyd:

Ensx,yd = RnsydEn
rsxde−ibn

r sy−Ln−1d + SnsydEn
ssxde+ibn

s sy−Ln−1d,

s1d

where bn denotes the propagation constant in the nth section,

En
r and En

s are the uncoupled mode profiles and Rnsyd et Snsyd
are solutions of the coupled equations:

dRn

dy
= − sidn

r + an
rdRn − iknSn,

s2d
dSn

dy
= + iknRn + sidn

s + an
sdSn.

an is the propagation losses, and dn= s2p /adngsu0−ud is the

detuning to the Bragg condition su=a /l is the normalized

frequencyd, ng being the group index, and a the photonic

crystal period.

The coupling constant is related to the overlap of both

modes srd and ssd with the modulation. Hence with notations

usual to coupled mode theory practitioners, as in Ref. 11:

kn =
kn

2

4bn

E
−`

+`

g1
nsxdEn

rsxdEn
s*

sxddx s3d

save for the section-related subscript n. Continuity at y=Ln

gives for example for the srd mode:

Rnsy = Lndexpsibn
rsLn − Ln−1d = Rnsy = Lnd s4d

while we take R1sy=0d=1 and SNsy=LNd=0. We assume

uniform propagation losses san−1
r =an

r and an−1
s =an

sd, consis-

tent with a spectral shift of the MSB of a few percent.

The anticrossing exploited here is that of a so-called

W3K A waveguide in a triangular photonic crystal lattice of

air holes of local period a sthree missing rows, row-to-row

distance of 4sÎ3a /2d at holes centersd. The simulated device

has six sections of equal length, 50a fFig. 1sadg. The choice

of a staircased device clarifies phenomena related to

crosstalk, and is also unavoidable in practice considering the

unit step of a few nm of the current e-beam definition tools.

The simulated width varies between W3.1K A and W2.9K A,

corresponding to a 5% variation. The group index ng for each

mode sr ,sd are obtained from the dispersion relation com-

puted with the supercell approach.
12

For a 2D photonic crys-

tal etched through a vertical InP-based heterostructure, the

matrix index is taken as the effective index of the underlying

waveguide neff=3.21. For an air-filling factor of 35%, we

find: ngr=3.21, for the fundamental mode srd, and ngs=48 for

the fifth order mode ssd, neglecting material dispersion. The

MSB central position shifts typically by 0.65% per section

s10 nm at l=1550 nmd. The coupling constant, deduced

experimentally,
11

is typically k=0.16a−1, an apparently high

value intimately related to the low group velocity of mode

ssd. Propagation losses of each mode are also deduced from

measurements
11

: ar=135 cm−1 and as=1890 cm−1.

Figures 2sbd and 2scd presents the simulated map of the

fifth order mode intensity in a W3K A-based wedged wave-

guide, as a function of u=a /l and distance y along the de-

vice. Figure 2sdd presents the section-wise integrated inten-

sity spectra for this mode. The fifth-order mode is generated

in each section at a different MSB frequency. The map re-

veals some crosstalk between each channel in this raw de-

sign: for the present proof-of-principle simulation, the

crosstalk is found to be −3 dB. By optimizing the design, it

can easily go down to −15 to −20 dB, as required in

C-WDM networks for wavelength monitoring purpose.

Two samples, denoted A and B, were fabricated onto two

different InP-based heterostructures. Sample A has on top of

the guide a p-n junction to integrate the photodiodes through

evanescent mode coupling fFigs. 1sbd and 1sddg.13
The other

sBd has its waveguide loaded with absorbing quantum wells,

in order to provide internal probe light for physical measure-

ment purpose, by collecting the “sieved” light beams side-

ways at a cleaved edge instead of feeding a photodiode.
12

Six

lateral output channels are defined along the waveguide axis

fFig. 1sadg. The photonic crystal of sample B is fabricated by

using inductively coupled plasma reactive-ion etching.
14

For

case A, the photonic crystal structures are fabricated in re-

cessed areas aside the photodiodes mesa, using chemically

assisted ion beam etching.
15

In order to ensure a large lateral

signal level rather than spectral selectivity, only four photo-

diodes were defined in the same total length. The photonic

crystal period is a=400 nm for sample A s420 nm for sample

Bd and the air filling factor is f =35% for both. The device is

FIG. 2. sad Scheme of a N sections waveguide; gray-level map of the simu-

lated structure; sbd fifth-order mode intensity; scd fundamental mode inten-

sity as a function of the distance and frequency, using actual loss data; and

sdd intensity spectra integrated over each section length.
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a W3K A-based waveguide, with a total width variation iden-

tical to simulations. Similar results were obtained for

W5K A-based guide.

Sample A was measured using a conventional end-fire

technique. A tunable laser source fs1460−1660 nmd /

−3 dBmg fed light through a microlensed, polarization-

maintaining fiber into a ridge waveguide of width similar to

the PXCW. The four photodiodes signals Ph1,… ,Ph4 are in

the 0.5–5 µA range, easily measured by lock-in detection.

For transmission measurements, another photodiode “T” was

also implemented at the output of the PXCW. The corre-

sponding spectra for a W3K A-based guide are shown on Fig.

3sad. The output photodiode spectrum sTd exhibits a wide

region of very low transmission around a normalized fre-

quency u=0.26. This corresponds to the overlap of all local

MSBs. Lateral photodiodes exhibit a peak around the MSB

wavelength of the corresponding waveguide section. The

wavelength of the MSB here Dl=50 nm, a value adapted to

C-WDM networks. Propagation losses of the fundamental

mode can be deduced from the decay spans along the PXCW.

We find ar=150 cm−1, in good agreement with reported

values:
16

integration of photodiodes near photonic crystal is

feasible without altering the photonic crystal properties. The

measured quality factor is 25, in good agreement with the

expected value related to the MSB width. One can also no-

tice that the peaks are asymmetrical. As the higher-order

mode propagates backward in the waveguide, part of this

mode created in channel n leaks through channel n−1, as a

lower wavelength contribution in this latter channel fsee Fig.

2sbdg. Finally, from the spectral shape of the signal in T fFig.

3sadg, the relative extinction ratio for the extracted wave-

lengths is 20 and insertion losses are about −3 dB.

A spectrally resolved set of optical data was obtained

using sample B, with excitation at the guide entrance and

collection at a cleaved edge, and TE polarized collection, as

practiced for other complex structures.
17

The advantage is

that only the etching step is needed. Spatial resolution results

in better spectral resolution, for reasons to be investigated in

depth yet. The spectra for the same W3K A-based wedged

PXCW are shown on Fig. 3sbd. The overall results are very

comparable to that obtained with the heterostructure A: a

shifting, asymmetrical peak clearly shows up. Thanks to the

finer spectral resolution, the measured quality factor reaches

Q=300 at l=1.55 mm, which converts into a channel inter-

spacing of 550 GHz, already suited to C-WDM.

In conclusion, we have simulated and characterized a

very compact photonic crystal integrated wavelength moni-

tor toward C-WDM applications. The polarization issue is

not addressed here. In its present state, this principle could

be used to monitor the wavelength emitted by a laser or a

laser array in a monolithic manner. Further engineering will

target devices for C-WDM photonic integrated circuits. Pri-

mary trends are: sid monitored wavelengths are chosen by

adjusting the width of the waveguide and/or the filling factor

of the photonic crystal; siid crosstalk can be limited by con-

trolling backward propagation of the higher-order mode; siiid
the relative amount of laterally extracted power can be ad-

justed by varying the width of the wall; and finally, sivd the

number and lengths of the different sections can be chosen as

desired.
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FIG. 3. sad Experimental spectra of photocurrents in the four photodiodes

Ph1,… ,Ph4 lying on the thinned side of the 300a long W3K waveguide, and

for the photodiode T monitoring the guide end and sbd experimental spectra

of the intensities collected at the six lateral channels of the 300a long W3K

waveguide. Excess signals at u.0.264 in channel 1 is stray light from the

nearby laser spot, not going through the device.
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