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Abstract: In advanced field theories there can be more than four dimensions to space, the 
excess dimensions described as compacted and unobservable on everyday length scales. We 
report a simple model, unconnected to field theory, for a compacted dimension realised in a 
metallic metasurface periodically structured in the form of a grating comprising a series of 
singularities. An extra dimension of the grating is hidden, and the surface plasmon 
excitations, though localised at the surface, are characterised by three wave vectors rather 
than the two of typical two-dimensional metal grating. We propose an experimental 
realisation in a doped graphene layer.  
One Sentence Summary: Plasmonic excitations of a singular metallic grating serve as a 
model for compacted dimensions. 

 
Main Text: A conventional two dimensional object is characterised by two quantum 
numbers. For example the frequencies of surface plasmons on a periodic surface are labelled 
by the components of their momentum projected onto the surface axes. We describe 
theoretically systems that instead require three quantum numbers to label them: the two 
conventional in-plane momenta plus a third momentum corresponding to a compacted 
dimension hidden from view inside a singularity. Compacted dimensions are ingredients of 
advanced string theories (1,2)  where the extra dimensions in a 4+N dimensional theory are 
said to be compacted and so not directly observed on everyday length scales. As far as we 
know our singular surfaces are the only physically realisable model of this curious effect. We 
give two instances of how this might be done. 
We make use of the technique of transformation optics (3-5) which exploits the invariance of 
Maxwell’s equations under a coordinate transformation: only the values of ε ,µ  are affected 
by the transformation. We use this theory to compact a dimension through a singular 
transformation that compresses one of the dimensions of a 3D system into one or more 
singular points. An example of the process is given (Fig. 1) for a 3D system (Fig. 1A), 
periodic in one of the dimensions and translationally invariant in the two other directions. 
The blue shaded areas are metallic and support surface plasmons (6) whose spectrum is 
characterised by three wave vectors: kx ,ky,ku  where ku  is the wave vector heading out of 
the plane of the paper. 

Our intent is to show that the x  dimension can be hidden using 2D conformal 
transformations where the x, y  coordinates are represented by a complex number z = x + iy . 
Conformal transformations in 2D have the property of conserving the permittivity and 
permeability, ε ,µ , in the plane of the transformation so that in this plane we are working 
with the same materials in all coordinate frames. Under each successive transformation the 
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spectral properties are preserved, and the modes once calculated in the initial frame can be 
found in the other frames through the properties of the transformation. 

In the first step we compress x = −∞  to a point at the origin, 

  z ' = exp z( )  (1) 
which gives rise to Fig. 1B. This transformation produces knife edges which have been 
discussed previously (7) and Davis has commented on the continuous nature of the spectrum 
(8). Next we compress z ' = +∞  to a point by inverting about z ' = −a  giving rise to a structure 
shown in Fig. 1C that is finite in the x '', y ''  plane, 

  z '' = 1
z '+ a

 (2) 

Finally we add a further transformation to create a periodic metasurface (Fig. 1D). 

  z ''' = d
2π
ln z ''− 1

2a
⎡
⎣⎢

⎤
⎦⎥

 (3) 

The metasurface shown in Fig. 1D has some unusual properties. The modes of Fig. 1A are 
truly three dimensional being spread out over the whole structure and, are characterised by 
the three wave vectors, kx ,ky,ku . In contrast, these modes when transformed through to 
Fig. 1D are now found to be exponentially localised at the interface and at first sight would 
seem to be two-dimensional objects. However, this is not the case: the structure inherits the 
spectral characterisation of the mother structure and therefore is labelled by the same three 
wave vectors, kx ,ky,ku . This affects the response of the metasurface to external stimulae. A 
conventional grating, free of any singularities such as sharp edges, is characterised by only 
two wave vectors which are defined by the angle of incidence of external radiation. This 
leads to a discrete excitation spectrum. In other words ordinary gratings appear coloured to 
the eye. In contrast, external radiation incident on our metasurface defines only two of the 
three wave vectors, the third being selected by the frequency. Thus, the modes form a 
continuum and can be excited whatever the incident angle or frequency. Our singular 
metasurfaces are not coloured: they are grey, or black in the limit of strong coupling as we 
shall show. 

For these transformed modes, radiation is captured in the broad smooth portions of the 
metasurface, and travels towards the cusps becoming increasingly compressed, but never 
reaching the cusp. The effect of compression is to increase the field strength which is 
inversely proportional to the local group velocity and in an ideal loss free system would rise 
to infinity at the cusp. However, in a realistic system losses would intervene and result in a 
finite but very large field enhancement as in a SERS experiment. 

In the following, we provide detailed calculations made using the techniques of 
transformation optics (9) which we have successfully deployed on non-singular gratings. 

The dispersion of the modes for Fig. 1A are calculated assuming a Drude form for the 
metallic component, 

  ε = 1−
ω p
2

ω 2
  (4) 

The dielectric separating the metal layers is taken to be vacuum. 
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Fig. 2A shows the dispersion of the modes at ky = ku = 0  with respect to the hidden variable, 
kx  calculated for the structure in Fig. 1A. The ratio of metal to vacuum is 1:4 which makes 
the angle of the cusp in Fig. 1D to be 72° . Fig. 2B shows the same calculation extended to 
include ky , whilst ku = 0 . There are two modes, one symmetric the other antisymmetric 
about the point of the cusp in Fig. 1D, the lower mode being dark. 
The singularity harvests photons incident on the metasurface concentrating their density at 
the tip. Fig. 3 shows the phase and amplitude of the electric field at the metal dielectric 
interface for a mode with hidden variable kx = 10  at ky = ku = 0 . In a lossless system the 
amplitude rises to infinity at the singular points and the phase oscillates infinitely rapidly 
resulting from compression of the infinite hidden dimension into a singular point. In a system 
with loss, this is still the case until a critical value of the loss is exceeded at which point the 
amplification mechanism breaks down. The total energy content remains finite at all times. 

In the second realisation we start from a thin slab of conductor, which could represent doped 
graphene, and use transformations previously reported (10) to transform the slab into a 2D 
grating (Fig. 4).  

  z ' = d '
2πd

ln 1
ez+x0 − iw0

+ iy0
⎡

⎣
⎢

⎤

⎦
⎥  (5) 

where x0, y0,w0  are parameters that can be used to adjust to shape of the grating. Then we 
add a further step taking the limit where the thickness of the grating vanishes at the minima 
marked by asterisks separated by period d ' . The corresponding points marked in A are 
separated by d .  If we choose to keep the grating period and maximum thickness constant 
during the limiting process, this implies that d→∞  and the asterisks recede to ±∞ . This 
implies that the whole of the continuous spectrum of the infinite y  dimension in A is 
compressed into the finite segment length d '  in C, the infinity vanishing into the singularity. 
At the same time y '  remains infinite in extent so we have in fact compressed two dimensions 
into one. The original y  dimension and its spectrum is hidden in the  singularities, and C is 
still outwardly a 2D system characterised by three wave vectors, ky  for the hidden 
dimension, ky '  the new dimensions and ku  the out of plane dimension. These steps comprise 
our second route to hidden dimensions through a different sort of singularity.  

We propose an experimental realisation: doped graphene supports plasmonic excitations in 
the THz regime and doping can be controlled by the proximity of a charged surface which 
attracts or repels electrons to or from that region of the graphene. In this way graphene can be 
periodically doped to form a grating. Since graphene is very thin, the variation in 
conductivity can be modelled as a constant permittivity material varying in thickness and 
hence mapped onto the system illustrated in Fig. 4. Transformation optics has been shown to 
be a powerful tool for studying graphene (10) and as we have shown in a previous paper (11), 
the grating can strongly couple incident radiation to plasmons leading to strong absorption at 
the resonant frequency. In this sense graphene patterned with a smooth grating is ‘coloured’: 
absorption happens only at discrete frequencies. However we can model our singular grating 
by increasing the modulation until the electron density and therefore the conductivity 
approaches zero at a singular point following the sort of profile shown in Fig. 4. Our 
simulations for a succession of narrowing gaps show a series of peaks in  the transmissivity 
merging into a continuous absorption spectrum at the singularity. 
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We calculate the electromagnetic response of the graphene metasurface by considering a 
plane wave incident normal ( ky '' = ku = 0 ) to the graphene layer with modulated conductivity 
and transforming it to a frame where graphene is homogenously doped. The homogeneously 
doped graphene can be modelled as a thin slab of constant thickness (Fig. 4A). Then we 
apply boundary conditions for the electromagnetic fields in the slab frame and include the 
radiative reaction of the graphene grating as it couples to external radiation. In order to 
approach the singularity smoothly, we use the transformation shown in equation (5). By 
allowing the grating minimum to approach a touching point, we can model periodic gratings 
that tend towards a singular metasurface.  
Evolution of the transmissivity for three graphene metasurfaces as the singularity is 
approached is shown in Figs. 4C-E(solid lines correspond to our analytical modelling based 
on transformation optics, dots represent full electrodynamic simulations). In our calculations 
we use the conductivity of graphene from the random phase approximation, which depends 
on frequency, chemical potential, mobility (we use 104 cm2V-1s-1 for the blue lines in C-E) 
and temperature (we use T=300K). For all of them the period is 2.5µm  and the periodic 

conductivity profile peaks at 2.13×10−3Ω−1 at a frequency of 15 THz while the minimum 
doping value approaches zero from 4C to 4E (see 4B). Our calculations show that, as the 
metasurfaces tend to the singular case, the transmissivity peaks are crushed closer together, 
finally merging into a continuum. Every point in the transmission spectrum defines a hidden 
wave vector, ky , through the dispersion relationship ω ky( ) . In this way a discrete spectrum 
with absorption peaks at the Wood’s anomaly positions is broadened into a continuum. We 
find it quite remarkable that one layer of a singular graphene metasurface can reject almost 
half of the THz radiation incident upon it over a broad band width.  
Some qualifications should be made. We have assumed a local form for ε , ignoring the fact 
that at very short distances this assumption breaks down (12,13,14) which will remove the 
possibility of a perfect singularity as postulated here. Systems also have resistive loss as we 
have discussed and to some extent the two effects compensate for one another: non locality 
by removing the perfect singularity will tend to produce a discrete spectrum; on the other 
hand loss will smear a discrete but still dense spectrum into a continuum leaving the broad 
band absorption intact. This is shown in Fig 4E where the green line corresponds to a lower 
mobility of 5x103 cm2V-1s-1 
The model system described here is a realisation of the exotic phenomenon of a compacted 
dimension. The hidden dimension has a dramatic effect on electromagnetic properties of the 
system: transmission through a single sheet of graphene structured according to our 
prescription shows strong broad band absorption of THz radiation, as opposed to the isolated 
absorption peaks of a conventional grating.  
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Figure Captions 
Fig. 1. A series of transformations compacts 3D into 2D.  The infinite dimension along x  in 
panel A is transformed into singular points in panel D.The u  axis lies out of the plane. 
 

Fig. 2. Dispersion with respect to the hidden variable. (A) showing kx  alone. (B) showing kx  
and ky  for ku = 0 .   

Fig. 3. Profile of the grating and associated mode. Left: phase of a mode for kx = 10  at 
ky = ku = 0 . Right: field amplitude on the surface of the grating. 

Fig. 4. Merging the spectrum of graphene gratings into a continuum. Panel A shows the 
transformation to a periodically doped grating. Panels C-E show transmittance through 
gratings whose doping level approaches zero at the grating minimum as given in B. 
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Fig. 1. A series of transformations compacts 3D into 2D.  The infinite dimension 
along x  in panel A is transformed into singular points in panel D.The u  axis lies out 
of the plane. 
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Fig. 2. Dispersion with respect to the hidden variable. (A) showing kx  alone. 
(B) showing kx  and ky  for ku = 0 .   
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Fig. 3. Profile of the grating and associated mode. Left: phase of a mode for kx = 10  
at ky = ku = 0 . Right: field amplitude on the surface of the grating. 
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Fig. 4. Merging the spectrum of graphene gratings into a continuum. Panel A shows 
the transformation to a periodically doped grating. Panels C-E show transmittance 
through gratings whose doping level approaches zero at the grating minimum as given 
in B. 
 


