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0°. By a compactification of a complex manifold V we mean a
compact complex manifold S together with an analytic set C in S such
that S - C is biholomorphic to V. It is known that every compactifica-
tion of C is a rational surface. (Kodaira [4], Morrow [5]) In this note
we shall prove the following two theorems:

THEOREM 1. Every compactification of C x C* is a rational surface.

THEOREM 2. Every compactification of (C*)2 is of one of the follow-
ing three types:

(0) a rational surface,
(1) a Hopf surface containing only one irreducible curve, or a

manifold obtained from a Hopf surface of this type by blowing up at
points of the curve (see 4°, case (d)).

(2) a unique Pι-bundle S over an elliptic curve admitting a unique
global section C with I(C, C) = 0 such that S — C is an analytically non-
trivial principal C-bundley i.e., the "Serre variety" according to Simha
[9], or a manifold obtained from S by blowing up at points of C.

As for Theorem 2, the existence of such three types has been pointed
out by several authors (see for example the footnote of [10]), and recently
Simha ([9]) has shown that every non-rational algebraic compactification
with irreducible C is of type (2).

Our proof is based on (i) a result obtained by Kodaira from the
value distribution theory, from which follows the vanishing of the
geometric genus of S, (ii) the method used by Mumford to see the
topology of the neighborhood of a compact curve in a surface, in
particular his criterion for simplicity, by which we shall show that, in
the non-rational case, C can be reduced to an irreducible elliptic curve,
and (iii) Kodaira's classification theory of complex surfaces.

1°. Let S be a compact complex manifold of dimension 2. We
denote by bk(S)f Pm(S), and pg(S) respectively, the fc-th Betti number, the
m-genus and the geometric genus of S. The intersection multiplicity
I(ΓV Γ2) of Γlf Γ2 6 HZ(S, R) is a non-singular symmetric bilinear form on
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H2(S, R). We denote by (&+, 6") the signature of this form.
By Kodaira [4, p. 45-46] we have

PROPOSITION 1. If S is a compactificatίon of C x C* or (C*)2, then
Pm(S) = 0 for all m, in particular pg(S) = 0.

For (C*)2 this is not stated in [4], but we can easily verify it in the
same manner as for C x C* calculating the order of the mean degree of
the mapping /: C2 -> (C*)2 defined by f(zl9 z2) = (e*1, ez*).

COROLLARY. S being as in the proposition,

b+ = 2pg(S) + 1 = 1 if b^S) is even ,

6+ = 2pg(S) = 0 if 6,(5) is odd .

This follows from Theorem 3 in [2] and the proposition.

2°. Proof of Theorem 1. Let S be a compactification of C x C*
with an analytic set C, S — C — C x C*. C is connected, since there is
no pair of open sets U1 and U2 in C x C * , which are not relatively
compact such that U1^U2 = 0 and that (C x C*) — (f^ U E/"2) is compact.
C is of dimension 1. In fact, if C were a point, every holomorphic
function on C x C* would be extended to the whole S by Hartogs'
theorem, and would be constant. Let us next consider the following
exact homology sequence with real coefficients:

0 -> H,(S) - HAS, C) -> H2(C) H H2(S) - H%(S, C) .

We have dimiϊ3(S,C) = dimiΓ(S-C) = l and άimHt(S,C) = dimH\S-C) = O
by the Poincare-Lefschetz duality. Therefore b^S) = 63(S) = 0 or 1. It
is proved in [4] (using Proposition 1) that, if b^S) = 0, then S is rational.
We shall show that the case bx(S) = 1 does not occur. Suppose that
bλ(S) = 63(S) = 1. Then ί̂  is an isomorphism and induces on H2(C) a
non-singular symmetric bilinear form, which is represented by the
intersection matrix (I(Cίf Ck)) with respect to the irreducible components
Cj of C. By the corollary to Proposition 1, this matrix is negative
definite. Then by a theorem of Grauert ([1]), C is exceptional and by
collapsing C to a point we obtain a normal complex space S/C. But
this is a contradiction, since any holomorphic function on S — C = C x C*
would be extended to the whole S/C (see Narasimhan [7] p. 118, Pro-
position 4), and would be constant, q.e.d.

3°. Let S be a complex manifold of dimension 2 and consider a
connected compact analytic set C of dimension 1 in S with n irreducible
components, C = Ui=i Cjf satisfying the following conditions:
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(#) i) each irreducible component Cs is regular,
ii) if Cj Π Ck Φ 0 for j Φ k, Cά and Ck intersect transversally at

only one point,
iii) Cx Π Cj Π Ck = 0 , if i, j and & are distinct.
Following Mumford [6] and Ramanujam [8], we construct the

boundary of a tubular neighborhood of C, as follows: For every singular
point pv of C we choose a coordinate neighborhood Uv = {fo, z2); |sj, |z2|<iϋ}
(R > 1), such that C is defined by the equation zxz2 = 0, and that Z7V Π
JJμ = 0 for v Φ μ. Next we introduce a Riemannian metric ds in a
neighborhood of C, which is of the form ds2 = IdzJ2 + |d22|

2 in Uv. Using
this metric we define the exponential map exp,: Wjyε —> S, where TFitβ is a
closed ε-neighborhood of the zero section of the normal bundle of C3. If
we take ε sufficiently small, we may assume that exp^ is a homeomor-
phism from Wj>ε onto Vj9 where V, is a closed neighborhood of C3 such
that Vi Π Vk = 0 if C, Π Cfc = 0 , and Vά Γ)Vk(zUl ={pe Uv; |^(p)|,
|2,(p)| < 1} if Cj f)Ck = pv. We define M = d(\JU Vs). M is a topologi-
cal manifold of dimension 3.

Let us next define a continuous map Φ of [0, 1] x M onto Ui-i V,
such that Φ(0 x M) = C and that Φ|(0,1] x Λί is a homeomorphism of
(0,1] x M onto (U Vj) - C, in the following manner (cf. [8]):

i) for (£, p) with p e i k f n ^ . The coordinates (z19 z2) of p satisfy
^l, \z2\} = ε. Define Φ by

i + (1 t)
(1 —

(ί, *i, *.) ^ (ί«i,««. + (1 - t)^ - ^ ) if |2.| ^ 1̂1 = ε

ii) for (ί, p) with p e ikf — (U U[). There is a unique j with p 6 dVά.
Define Φ by Φ(t, p) = exp. (ί expj1 (p)), where ί denotes the multiplication
by t on the fiber of the normal bundle.

Let S/C be the topological space obtained by collapsing C, and let
π: S —> S/C denote the canonically defined continuous map. Set π(C) = p0

and πoφ = φQ. Then M has the following property: There exists a
continuous map Φo: [0,1] x M^S/C such that Φ0(0 x Λf) = p0 and that
Φo I (0, 1] x M is a homeomorphism. Let us see that any topological space
with this property is of the same homotopy type. We take any topologi-
cal space M' with a continuous map Φ': [0,1] x M' —> S/C such that
Φ'(0 x M') = 2>o and that Φ' | (0,1] x M! is a homeomorphism, and show
the homotopy equivalence of M and M'. Take ί, V e (0,1] sufficiently
small, such that Φ0(t xilί)cΦ'([0,1] x IT) and Φ'(t' x Λf)cΦ0([0, 1] x AT),
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respectively. Let (Φ0|(0,1] x M)~ι = (τ, σ) and (Φ' | (0,1] x M'Y1 = (V, σ'),
and define f:M->M' bγf(p)=σΌφo(t,p) and g: M'->Mby g(p') = σoφ'(t',p').
Then #o/: ikf—>Λf is homotopic to the identity map of M, since we have
the homotopy h: [0,1] x Λf —> M defined by

h(s, p)=σoφ\sf + (1 - s)τ'oφo(«, p), <τ'oφo(«, p)) .

Indeed, Λ(0, p) = <τ ° Φ'(τ' o φo(ί, p), cr' o φo(£, p)) = σ<> φo(t, p) = p, and Λ(l, p) =
σoφ'(t', σΌφo(tf p)) = g°f(p). Similarly we see that /©# is homotopic to
the identity map of M'. Thus M and ikί' are homotopically equivalent.

Now we consider the continuous map φ of M onto C defined by
φ{p) = φ(0, p). φ induces surjective homomorphisms πx(M) —> ^(C) and

PROPOSITION 2. (Mumford [6, p. 10]). The kernel K of the homo-
morphίsm φ* is described as follows:

i) K is generated by aί9 •••,«», where a5 is a loop in M which
goes around C3- with positive orientation.

ii) the fundamental relations of these generators are

COROLLARY, rank (/(Cy, Ck)) =n - rank H^M, Z) + rank H^C, Z).

In fact rank (I(Cjf Ck)) =n- rank K, and rank i ί = rank fl^Af, Z) -
rank H^C, Z).

C is said to be exceptional if there is a complex space S and a
holomorphic map f:S-+S such that /(C) is a point and that / | S — C is
a homeomorphism. By the theorem of Grauert referred to in 2°, C is
exceptional if and only if the intersection matrix is negative definite.
If S is a manifold, C is said to be exceptional of the first kind.

THEOREM (Mumford [6]). // C is exceptional, C is of the first kind
if and only if M is simply connected.

4°. Proof of Theorem 2. Let S be a compactification of (C*)2 with
C, S — C = (C*)2. C is connected and of dimension 1. We may assume
that C = U*=i Ci satisfies the conditions (#) by blowing up at points in
C if necessary. M defined in 3° with respect to C is homotopically
equivalent to a 3-dimensional torus. Indeed, C* = S1 x Λ, (C*)2 = S1 x
S1 x Λ2 = S1 x S1 x S2 - S1 x S1 x p (p e S2) as differentiable manifolds.
The construction of M is also valid in this situation. So M = S1 x S1 x S1.
Hence πx(AO = flι(AΓ, Z) - Z © Z 0 Z. Since πx(M) -> πx(C) is sur jective,

is commutative.
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In general π^C) = TΓ^CJ* *τr1(CJ*τr1(G), the free product of the
fundamental groups of the irreducible components CQ and that of the
graph G of U C3. πt(G) is a free group with p generators when G is
of the first Betti number p. In order that πx(C) is commutative, all
but one of the components of the product must vanish, moreover if
πi(Cj) ^ 1> the genus of C3- is 1, and if πx(G) Φ1, G contains only one loop.

Thus we have the following three possibilities regarding the configura-
tion of C:

i) π^C) = H^C, Z) = 0, all G5 are rational curves and the graph
is a tree,

ii) π^C) = H^C, Z) — Z, all C3 are rational curves and the graph
contains only one loop.

iii) πγ{G) = H^C, Z) = Z<&Z, there is only one elliptic curve, the
others are, if they exist, all rational, and the graph is a tree.

Let us next consider the exact homology sequence with real coefficients:

0 - HΛ(S) - HZ(S, C) - H2(C) h H2(S) - H2(S, C) - H^C) -> H^S) -> 0 ,

where b^S) = 68(S), dim fl,(S, C) = dim H\S - C) - 2, and dim H%(S, C) =
dim H2(S - C) = 1, by duality; dim H2(C) = n, the number of the
irreducible components of C.

Combining these we have the following five cases:
(a) 6X(C) = 0, 6,(5) = 0, 62(S) = n - 1, 6+ = 1,
(b) WO = 1, bx(S) = 0, 62(S) = n - 2, 6+ = 1,
( c) WO = 1, 6,(5) = 1, 62(S) =n, b+ = 0,
(d) WO = 2, WS) - 1, WS) - n - 1, 6+ = 0,
(e) WO = 2, WS) = 2, 62(S) = w + 1, 6+ = 1.
Before dealing with each case we prove two lemmas.

LEMMA 1. Let E be an N-dimensional vector space over the field
of real numbers and I(x, y) a non-singular symmetric bilinear form
defined on E with signature (1, N — 1). // the restriction Γ of I to an
(N — lydimensional subspace E' is of rank N — 2, then Γ is negative
semi-definite.

PROOF. There is an orthogonal decomposition E = E+ φ E~,
diπuS^ = 1, dim£7" = N — 1, I\E+ is positive definite, I\E~ is negative
definite. Since dim E' Π E~ ^ N - 2, Γ = I\ E' has at least N - 2
negative eigenvalues. Then Γ cannot have any positive eigenvalue.

q.e.d.

LEMMA 2. Let C = \J]=iCj be as in 3°, and suppose that the inter-
section matrix (I(C3 , Ck)) is negative semi-definite, then
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i) if Γ(Σ?=i r*Cjf Σ*=i f A ) = 0 0 ; e β)> ^ ^ ro a r e al1 Positive,
negative or zero simultaneously.

ii) rank (I(Cjf Ck)) ̂  n - 1,
iii) i/ {i(l), , j(n')} ξ= {1, , w}, £fcew the n' x %' matrix (I(CjM,

Cj(μ))) is negative definite.

PROOF, i) Set J+ = {i; r, > 0} and J~ = {i; ry < 0}. Then

K Σ r A, Σ r A) + /( Σ nC4, Σ r A) + 2 Σ r,r,7(C, , C4) = 0 .
jej + jej+ kej- kej~ jej+,kej~

Since all the terms are non-positive, each term is zero. If J+ Φ 0 or
{1, -- ,n}, there would exist, since C is connected, a jQίJ+ such that
I(CJ0, ΣJ£J+ r5Cό) > 0, and then

I(C,0 + r .Σ+ r A , C,o + r .Σ+ r A ) = UPh, CJQ) + 2r/(Cio, .Σ+ rόCά)

would be positive for sufficiently large r. Therefore J+ = 0 or {1, , w}.
Similarly J~ — 0 or {1, , w}. ii) and iii) are easily derived from i).

We now return to the proof of the theorem.

Case (a). We shall show that this case does not occur. Let us
suppose S and C satisfy the conditions in (a). By the corollary to Pro-
position 2, rank (I(C3 , Ck)) = n — 3. dim H2(S) = n — 1, dim Im ί* = n — 2
and rank (J| Im ΐ j = rank (I(C, , Ck)) = n - 3. Then by Lemma 1, (JΓ(Cy, C,))
is negative semi-definite. This contradicts Lemma 2 ii).

Case (b). S is rational by Proposition 1. Examples of this case are
( i ) S: the complex projective plane P2, C: the union of three lines

Lj(j = 1, 2, 3) in general position,
(ii) S: a line bundle over a rational curve compactified with infinity

section, i.e., /^-bundle over P1 (Hirzebruch manifold Σn or Nagata's Fn),
C: the union of zero section, infinity section and two fibers. It is diffi-
cult for the author to determine all the types of configuration of C.
Some remarks on this case will be made at the end of this paper.

Case (c). This case does not occur. In fact, by the exact sequence
dim Im ί* = n — 1. Since / is negative definite, rank (I(Cjf Ck)) =
rankίlllmi*) = n — 1. This contradicts the corollary to Proposition 2.

In cases (d) and (e), C is the union of an elliptic curve Cx and a
certain number of trees D19 D2, composed of rational curves, Du Π
Dμ = 0, DuΓϊCί = p». We shall prove that each Dv is exceptional of
the first kind. It suffices to show the following:

i) The intersection matrix with respect to the components of Dv is
negative definite.
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In fact, in case (d), (/(C, , Ck)) is negative semi-definite. We can
apply Lemma 2 iii). In case (e), dim Im ΐ* = n, rank (I(Cί9 Ck)) = n — 1.
Therefore by Lemma 1, (I(CJf Ck)) is negative semi-definite, and we can
apply Lemma 2 iii).

ii) Mv9 the boundary of a tubular neighborhood of D^ is simply
connected.

We define everything as in 3°, then by definition Mv = d(\JCjCDv Vj).
In the coordinate neighborhood U» of pu9 let Cx Π U» = {zλ = 0} and
D»f)Uv = {z2 — 0}. Let Δ be a disc in d with center p, defined by Δ —
{zt = 0, \z2\ < ε}. We form M' = Mv U (Cx - J) U (U/*** ̂ ) and define a
continuous map ψ: Λf —> ikf' by

) for p e M n Ul ,

= p ΐor pe(M - Ul) IΊ MP ,

= 9>(p) for pe(M - Ul) - Mv .

The homomorphism π^M) -+ πλ{M') induced by ψ is surjective as is easily
verified. Hence πx(Mr) is commutative. From this fact we shall derive

^i(Λfv) = 1.

Let us recall here the notion of free product of groups with amal-
gamation. Let groups G and G' be represented by sets of generators
and fundamental relations:

G = (Xl9 . . . , ^ 1 ^ = 1, . . . f Λ. = l > ,

G' = (X[, , X'r, R[ — 1, , R's> = 1) .

If G and G; contain subgroups H and ίΓ respectively with an isomor-
phism i:H-^Hf, then the free product of G and G' with amalgamation
along H and i ί ' is defined by

(Xί9 , Xr, XI, , X'r,\Rι = 1, , Λ. = 1, ,Λ;, = 1, Φ ) ^ ( ^ e J ί ) ) .

It is known that this contains subgroups isomorphic to G and to G'.
We set πγ(Mv) = (aίf , ar\R% = 1, , Rs = 1>, and π^C, - Δ) U

(XJμψ^Dμ)) = ^ ( d — 4) = </9, 7>, the free group generated by β and 7.
By van Kampen's theorem,

^(ΛΓ) = <αlf , ar9 β, Ύ\R1 = 1, , Rs = 1, a = βΊβ^Ί'1) ,

where α e π^ΛίJ is the element represented by the loop dΔ = Λίv Π
((Cx - J) U (U ^ ) ) If the order of a in ^(AfJ is infinite, π^M') is the
free product of π^MJ) and ^ ( ( d — Δ) U (U W ) with amalgamation along
<α> and (βΎβ^Ύ'1), which contains a subgroup isomorphic to </3, 7>, and
is therefore not commutative. This is a contradiction. Hence a must
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be of a finite order m. It is easily seen that, in </3, rr\(βyβ~1Ί~ι)m = 1>,
βyβ~ιΊ~ι is of order m. Then π^M1) is the free product of π^MJ and
</3, 71 (β7β~ί7~1)m = 1> with amalgamation along the subgroups <α> and
(βyβ^Ύ*1). (β, Ύ\(βyβ~1i~1)m = 1> is commutative if and only if m = 1.
Hence π^M') is the free product of π^M,) and {βΊ\βyβ~xΊ~ι = 1> and
is not commutative when π^MJ) Φ 1. ii) is thus proved.

Case (d). By blowing down all the Dy's, we obtain a compactification
S with an irreducible curve C, and S - C = (C*)2. We have b2(S) = 0.
Hence any curve on S is homologous to zero and the intersection
multiplicity of any two curves is zero. In particular there is no irreduci-
ble curve different from C which meets C. On the other hand, there
is no curve which does not meet C, since S — C = (C*)2 does not contain
any compact curve. Thus there is no curve on S other than C, and
consequently there is no non-constant meromorphic function on S. Now
we apply a theorem of Kodaira ([3] Theorem 34): If b^S) = 1, 62(S) = 0,
and if S contains at least one curve and admits no non-constant mero-
morphic function, then S is a Hopf surface. Therefore S is of the form
(C2 — O)/Gr, where G is a group of transformations generated by a trans-
formation (A) or by transformations (A) and (B).

(A): (z19 z2) -> (a.z, + λz2

w, a2z2),

(B): (zi9 z2) -» (ε^i, ε2z2)

where m is an integer, alf a2 and λ are complex numbers, εί and ε2 are
primitive ϊ-th roots of unity, with conditions 0 < \a^\ ^ \a2\ < 1,
(a, - α2

m)λ = 0, and (ex - ε2

w)λ = 0. ([3] Theorem 32).
In our case we have λ Φ 0, since otherwise S contains two curves

defined by z1 = 0 and z2 = 0. Conversely, if λ =£ 0, S contains only one
irreducible curve C defined by z2 = 0, and S — C = (C*)2 as is easily
verified. This is the type (1) of the theorem.

Case (e). By blowing down all the Du's we obtain a compactification
S with C. S is algebraic ([2] Theorem 10), and C is irreducible. This
situation was investigated by Simha [9]: By the Albanese mapping, S
is mapped onto an elliptic curve T, and each fiber is regular and rational,
i.e., § is a /^-bundle over T. C is a global section, and S — C is a non-
trivial principal C-bundle. Conversely a unique /^-bundle of this type
is a compactification of (C*)2. This is the type (2) of the theorem.

REMARK. It is not known to the author whether, for every rational
compactification S with C of (C*)2, there exists a bimeromorphic map /
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of S to P2 such that f\S — C is a biholomorphic map of S — C onto

This problem can be, in the following special case, affirmatively
answered.

PROPOSITION 3. Assume that C = Ui=i Cs satisfies the condition (#),
and I(Cj, Cs+1) = 1, j = 1, , n9 where we let Cn+1 = Clf and that Cj's
have no other intersection. Then, blowing down successively irreducible
components Cj with I(CJ9 Cj) = — 1, we can reduce S with C to (i) or (ii)
of the case (b).

PROOF. The kernel K of the surjective homomorphism Hλ(M, Z) —>
H^C, Z) is isomorphic to Z © Z . On the other hand, by Proposition 2,
K is generated by al9 •••, an9 with the relations

«,-_! + tfytfy + aj+1 = 0 , i = 1, , n ,

where α0 = anί an+1 = αx, and v,- = /(C, , C, ).
These relations are written in the form

* ' - ) AI"' ) where A, _ ("»' "*) , i - I , . . . . . .
\ 1 0/

Hence we see, eliminating a2, •• ,α ? ι _ 1 , that K is generated by α0 and
at with the relation

In order that K ~ Z φ Z, this relation must be trivial, i.e., Ax An =

ί1

Vo
By direct computation we have, in the case n — 3, ^ = v2 = v% — 1,

and in the case n = 4, ^ = v3 = v2 + v4 — 0, or v2 = v4 = Vj_ + v3 — 0.
These are cases (i) and (ii) as is readily seen.

We prove that, if n^5, there exists a Cj with v, = — 1. First we
see that, if n ^ 6, there is no pair Cίf Ck such that vί9 vk^>0 and
I(Cj, Ck) = 0. Assume the contrary, and take Cjf and Ck, such that

α O = I(Ck, Ck) = 1 , /(C i f C,0 = /(Cfc, Cάf) = I(C0,, Cv) = 0 .

Then we have I ( r A + Cy, r,Cfe + Ck.) = 0, I ( r A + Cy,, r A + C,v) > 0
and I(rkCk + Cv, rkCk + Cv) > 0, for sufficiently large ri9 rk. This con-
tradicts the fact that 6+ = 1. We see similarly that, if n — 5, there is no
pair Gj, Ck with vs > 0, vk ^ 0 and J(Cy, Cfc) = 0. It suffices to consider
the following four cases: (a) v5 < 0, j = 1, , ?ι. (b) ^ ^ 0, Vy < 0,
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j = 2, , n. (c) vl9 v2 ^ 0, Vj < 0, i = 3, , w. (d) n = 5, v1 = vz = 0.
The case (d) is omitted by direct computation. In the first three cases,
we have one of the equations, I = Άx An, AT1 — A2 Anf or A^Aϊ1 =
A3 An, where the left term is

(1 0\ / 0 1 \ /-I -i

U l ] '
If Vj Φ — 1, setting the right term = ( α A we have α > c > 0, which

is a contradiction. The above assertion is proved by induction using
the fact:

In the equation (a, S\ = ί- "~Q)(α ^j? if fc ^ 2 and if a > c > 0,

then α' > c' > 0.
Thus one of the irreducible components of C can be blown down and

n is diminished until we have n = 4, and the proof is completed.
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