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Abstract. We introduce the notion of a relative log scheme with boundary: a morphism
of log schemes together with a (log schematically) dense open immersion of its source into a
third log scheme. The sheaf of relative log differentials naturally extends to this compactifi-
cation and there is a notion of smoothness for such data. We indicate how this weak sort of
compactification may be used to develop useful de Rham and crystalline cohomology theories
for semistable log schemes over the log point over a field which are not necessarily proper.

Introduction. Let X be a smooth variety over a field k. It is well known that for the
study of the cohomology of X — or even for its very definition (e.g., crystalline [9], rigid [1]),
or the definition of nice coefficients for it (e.g., integrable connections with regular singular-
ities) — it is often indispensable to take into account also a boundary D = X − X of X in a
smooth compactification X ⊂ X of X. If D ⊂ X is a normal crossing divisor on X, the coho-
mology can conveniently be studied in the framework of logarithmic algebraic geometry. On
the other hand, log geometry proved also useful to define the cohomology of proper normal
crossing varieties X over k which occur as a fibre of a semistable family, or more generally are
d-semistable ([6]), see [13], [8]. In the present paper we attempt to develop a concept in log
geometry particularly suitable to treat the mixed situation: given a non-proper d-semistable
normal crossing variety X/k, we want to explain how an open immersion of X into a proper
k-scheme X can be used to investigate the cohomology of X, the stress lying on the fact that
we avoid the assumption that X be d-semistable and require a weaker condition instead.

Fix a base scheme W for all occuring schemes. Let T be a log scheme. The central
definition of this note is that of a T -log scheme with boundary: A morphism of log schemes
X → T together with an open log schematically dense embedding of log schemes i : X → X.
For brevity, we often denote it simply by (X,X). Morphisms of T -log schemes with boundary
are defined in an obvious way. There are notions of exact and of boundary exact closed
immersions of T -log schemes with boundary. The relative logarithmic de Rham complex
Ω•

X/T on X extends canonically to a complex Ω•

(X,X)/T
on X. These definitions are justified

by a theory of smoothness for T -log schemes with boundary, well suited for cohomology
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purposes. Roughly, a T -log scheme with boundary (X,X) is said to be weakly smooth if it
satisfies a lifting property for morphisms from a nilpotent exact closed immersion of T -log
schemes with boundary to (X,X). Weak smoothness implies that Ω•

(X,X)/T
is locally free.

(X,X) is said to be smooth if it is weakly smooth and if for boundary exact closed immersions
(Y , Y ) → (V , V ) of T -log schemes with boundary, and morphisms (Y , Y ) → (X,X) of
T -log schemes with boundary, the projections X×T V → V lift log étale locally near the
image of Y in X×T V to strict and smooth morphisms of log schemes (see the text for the
definition of X×T V ). This definition is of course geared to its application to (crystalline)
cohomology. However, our main theorem gives a convenient criterion for smoothness in terms
of morphisms of monoids, very similar to Kato’s criterion for usual log smoothness. We
emphasize that even if f : X → T actually extends to a morphism of log schemes f :

X → T , our notion of smoothness is more general: (X,X) might be smooth as a T -log
scheme with boundary while f is not a log smooth morphism in the usual sense (or even not
ideally smooth as defined by Ogus [10]). See for example the discussion at the beginning of
Section 3. In this regard, the theme of this paper is that (usual) log smoothness in an ‘interior’
X ⊂ X of a morphism of log schemes f : X → T should already ensure that f has nice
cohomology. (A similar principle underlies the definition of rigid cohomology [1].) We hope
that our definitions are useful for a definition of log rigid cohomology, in the case of nontrivial
log structures on the base; in special cases they already turned out to be so, see [4].

Section 1 contains the basic definitions and presents several examples. The main section
is the second one which is devoted to smoothness. The main theorem is the smoothness cri-
terion 2.5. In Section 3 we discuss the example of semistable k-log schemes with boundary
(here T is the log point over a field). These are smooth in the sense of Section 2 and we try
to demonstrate how they can be used as substitutes for compactifications by usual semistable
proper k-log schemes. We indicate several applications to de Rham cohomology and crys-
talline cohomology.

1. T -log schemes with boundary.

1.1. We fix a base scheme W ; all schemes and morphisms of schemes are to be un-
derstood over W . All morphisms of schemes are quasi-separated. We also assume that all
morphisms of schemes are quasi-compact: the only reason for this additional assumption is
that it implies the existence of schematic images (=“closed images”) of morphisms: see [3]
I, 9.5. We say that an open immersion i : X → X is schematically dense if X coincides
with the schematic image of i. For the basic notions of log algebraic geometry we refer to
K. Kato [7]. Log structures are understood for the étale topology. By abuse of notation, for
a scheme X and a morphism of monoids α : N → OX(X) (where OX(X) is understood
multiplicatively), we will denote by (X, α) the log scheme with underlying scheme X whose
log structure is associated with the chart α. For a log scheme (X,NX) = (X,NX → OX)

we will often just write X if it is clear from the context to which log structure on X we re-
fer, i.e., in those cases the log structure is dropped in our notation. Similarly for morphisms



COMPACTIFICATIONS OF LOG MORPHISMS 81

of log schemes. An exactification of a closed immersion of fine log schemes Y → X is a

factorization Y
i

→ Z
f
→ X with i an exact closed immersion and f log étale. Recall that

a morphism of log schemes f : (X,NX) → (Y,NY ) is said to be strict if f ∗NY → NX

is an isomorphism. For a monoid N we denote by Ngp the associated group. For a finitely
generated integral monoid Q we let

W [Q] = W ×Spec(Z) Spec(Z[Q])

and give it the canonical log structure for which Q is a chart.

DEFINITION 1.2. (i) A morphism of log schemes f : (X,NX) → (Y,NY ) factors
over the log schematic image (X,NX) of f which is defined as follows: The underlying
scheme X is the schematic image of the morphism of schemes X → Y underlying f . Let

X
i

→ X
f
→ Y be the corresponding morphisms of schemes. The log structure NX is by

definition the image of the natural composite map of log structures f
∗
NY → i∗f

∗NY →

i∗NX on X. Here i∗ denotes the functor push forward log structure.
(ii) A morphism of log schemes f : (X,NX) → (Y,NY ) is said to be log schemat-

ically dominant if (Y,NY ) coincides with the log schematic image of f ; it is said to be log
schematically dense if in addition the underlying morphism of schemes is an open immersion.

A morphism of log schemes i : (X,NX) → (X,NX) is log schematically dense if and
only if the underlying morphism of schemes is a schematically dense open immersion and the
canonical morphism of log structures NX → i∗NX is injective.

LEMMA 1.3. Let (X,NX) be a log scheme and i : X → X a schematically dense
open immersion of its underlying scheme into another scheme X. Denote by i∗,shNX the sheaf
theoretic push forward of the sheaf of monoids NX. There exists a unique map i∗,shNX →

(i∗NX)gp compatible with the natural maps i∗NX → i∗,shNX and i∗NX → (i∗NX)gp.

PROOF. First observe that OX → i∗OX is injective, so henceforth we regard OX as a
subsheaf of i∗OX. Also note (i∗OX)× = i∗(O

×
X). It follows that we can view i∗NX as the

subsheaf of i∗,shNX formed by those sections which map to OX under the map α : i∗,shNX →

i∗OX which we get by functoriality of sheaf theoretic push forward. To prove the lemma it
is enough to show that i∗,shNX arises from i∗NX by inverting those sections m for which
the restrictions α(m)|X are invertible. But this is the case: Take m ∈ i∗,shNX. Since i∗OX

arises from OX by inverting those sections for which the restrictions to X are invertible, we
find f, g ∈ OX with g|X invertible and with α(m) = g

−1f . We saw g = α(n) for some
n ∈ i∗NX. Now nm ∈ i∗NX and our claim and hence the lemma follows.

LEMMA 1.4. The log schematic image (X,NX) of a morphism of fine log schemes
f : (X,NX) → (Y,NY ) is a fine log scheme.
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PROOF. The coherence of NX follows from that of NY . We have NX ⊂ i∗NX ⊂

i∗,shNX, for the second inclusion see the proof of Lemma 1.3. Therefore the integrality of
NX implies that of NX.

DEFINITION 1.5. A log scheme with boundary is a triple ((X,NX), (X,NX), i) where
i : (X,NX) → (X,NX) is a log schematically dense morphism such that i∗NX = NX and
(i∗NX)gp = N

gp
X

. Let (T ,NT ) be a log scheme. A (T ,NT )-log scheme with boundary is a

log scheme with boundary ((X,NX), (X,NX), i) together with a morphism of log schemes
g : (X,NX) → (T ,NT ).

We think of X−X as a boundary of X. We will often drop i, g and the log structures from
our notation and just speak of the T -log scheme with boundary (X,X). So in the following
definition which justifies the whole concept.

DEFINITION 1.6. The sheaf of relative differentials of a T -log scheme with boundary
(X,X) is defined as follows: Denote by τ the composite map

i∗,shg
−1NT → i∗,shNX → (i∗NX)gp = N

gp
X

where the second arrow is the one from Lemma 1.3. Let Ω1
X/W

be the sheaf of differentials

of the morphism of underlying schemes X → W . Then Ω1
(X,X)/T

is the quotient of

Ω1
X/W

⊕ (OX ⊗Z N
gp
X

)

divided by the OX-submodule generated by local sections of the forms

(dα(a), 0) − (0, α(a) ⊗ a) with a ∈ NX

(0, 1 ⊗ a) with a ∈ Im(τ ) .

We define the de Rham complex Ω•

(X,X)/T
by taking exterior powers and the differential as

usual.

LEMMA 1.7. Let (X,X) be a T -log scheme with boundary.
(1) The restriction Ω1

(X,X)/T
|X naturally coincides with the usual sheaf of relative log-

arithmic differentials of g : (X,NX) → (T ,NT ).
(2) Suppose g extends to a morphism of log schemes g : (X,NX) → (T ,NT ). Let us

assume the following conditions:
(i) The underlying scheme of T is the spectrum of a field.

(ii) For any étale morphism V → X with V connected, the scheme V = V ×X X is
also connected.
Then Ω1

(X,X)/T
naturally coincides with the usual sheaf Ω1

X/T
of relative logarithmic differ-

entials of g .

PROOF. (1) is immediate. (2) and its proof were suggested by the referee. Write T =

Spec(k). By base change, we may assume that k is separably closed. It suffices to prove that
the morphism g

−1NT → i∗,shg
−1NT is an isomorphism. Let x be a geometric point of X
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and let V be the strict Henselization of X at x. Put V = V ×X X. Then, by the assumption
(i), we see that both V and V are connected. Hence we have

( g
−1NT )x = Γ (V , g−1NT ) = Γ (T ,NT )

(i∗,shg
−1NT )x = Γ (V , g−1NT ) = Γ (T ,NT )

and the lemma follows.

One class of examples where the condition (i) + (ii) of Lemma 1.7 (2) holds true are the
semistable T -log schemes discussed in Section 3; but for them, the conclusion Ω1

(X,X)/T
=

Ω1
X/T

(if g extends to g) is immediate anyway. Undoubtly, if g extends to g , the conclusion of

Lemma 1.7 (2) holds under much more general conditions than the stated condition (i) + (ii).
1.8 Examples. The following examples will be discussed later on.
(a) Let Q,P be finitely generated monoids and let ρ : Q → P gp be a morphism. Let

P ′ be the submonoid of P gp generated by P and Im(ρ). Then

(W [P ],W [P ′])

is a T = W [Q]-log scheme with boundary.
(b1) Let Q = N with generator t ∈ Q. Let t1, . . . , tr be the standard generators of

N r . Let X = W [N r ], the affine r-space over W with the log structure defined by the divisor
V (t1 · · · · · tr ). By means of t �→ t1 · · · · · tr this is a T = W [Q]-log scheme. We compactify
X by

X = W ×Spec(Z) (×Spec(Z)(Proj(Z[t0, ti ])1≤i≤r)) = (P1
W )r

and take for NX the log structure defined by the normal crossing divisor

(X − X) ∪ (the closure of V (t1 · . . . · tr ) ⊂ X in X) .

(b2) Let X and T be as in (b1). Another compactifiction of X is projective r-space, i.e.,
X

′
= Pr

W ; similarly we take N
X′ as the log structure defined by the normal crossing divisor

(X
′
− X) ∪ (the closure of V (t1 · · · · · tr ) ⊂ X in X

′
).

(c) Let k be a field, W = Spec(k) and let again Q = N with generator t ∈ Q.
The following type of S = W [Q]-log scheme with boundary (which generalizes 1.8(b1)
if W = Spec(k) there) gives rise, by base change t �→ 0, to the T -log schemes with boundary
discussed in Section 3 below. Let X be a smooth W -scheme, X ⊂ X a dense open subscheme,
D = X−X. Let X → S be a flat morphism, smooth away from the origin. Let X0 be the fibre
above the origin, let X0 be its schematic closure in X and suppose that D ∪ X0 is a divisor
with normal crossings on X.

(d) Let k be a field and let T = (Spec(k), N
0

→ k), the standard logarithmic point ([6]).
Let Y be a semistable k-log scheme in the sense of [8] 2.4.1 or [6]. That is, Y is a fine T -log
scheme (Y,NY ) satisfying the following conditions. Étale locally on Y there exist integers
i ≥ 1 and charts N i → NY (Y ) for NY such that

(i) if on the log scheme T we use the chart N → k, 1 �→ 0, the diagonal morphism

N
δ

→ N i is a chart for the structure morphism of log schemes Y → T , and
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(ii) the induced morphism of schemes

Y → Spec(k) ×Spec(k[t ]) Spec(k[t1, . . . , ti ])

is smooth in the classical sense. Let X be the union of some irreducible components of Y and
let X be the open subscheme of X which is the complement in Y of the union of all irreducible
components not contained in X. Then X inherits a structure of T -log scheme, but it is not log
smooth over T . However, we can view (X,X) as a T -log scheme with boundary (forgetting
that the morphism X → T actually extends to X): as such it is what we will call smooth
below.

1.9. A concrete example for 1.8(c) (see [4] for more details). Again let k be a field
and let S = W [N] with generator q of N. Let Y be a semistable k-log scheme with set of
irreducible components {Yj }j∈R all of which we assume to be smooth. As in [7] p. 222/223
we define for every j ∈ R an invertible OY -module Fj as follows: Let NY,j be the subsheaf
of the log structure NY of Y which is the preimage of Ker(OY → OYj ). This NY,j is a
principal homogeneous space over O×

Y , and its associated invertible OY -module is Fj . Now
fix a subset I ⊂ R with |I | = i and let L = R − I . Suppose M =

⋂
j∈I Yj is nonempty. Let

VM = Spec(SymOM
(⊕(Fj )j∈I )) = ×M(Spec(SymOM

(Fj )))j∈I .

By its definition, the affine vector bundle VM over M comes with a natural coordinate cross,
a normal crossing divisor on VM . The intersection of M with all irreducible components of
Y not containing M is a normal crossing divisor D on M . Let D′

V ⊂ VM be its preimage
under the structure map VM → M and let DV ⊂ VM be the union of D′

V with the natural
coordinate cross in VM . Then DV is a normal crossing divisor on VM . Let NVM be the
corresponding log structure on VM . There exists a distinguished element a ∈ Γ (VM ,OM)

having DV as its set of zeros and such that the assignment q �→ a defines a morphism of log
schemes VM → S with the following property: The induced S-log scheme (M,NVM |M) on
the zero section M → VM coincides with the S-log scheme (M,NY |M) induced by Y . This
a ∈ Γ (VM ,OM ) = SymOM

(⊕(Fj )j∈I )(M) can be described as follows: Denote the image
of q ∈ NS(S) (here NS is the log structure of S) under the structure map NS(S) → NY (Y ) →

NY |M(M) again by q . Locally on M it can be (non-uniquely) factored as q = t0
∏

j∈I vj

where vj is a (local) generator of Fj |M and t0 maps to a (local) defining equation a0 ∈ OM of
the divisor D in M . Then a = a0.(

⊕
j∈I vj ) ∈ SymOM

(
⊕

j∈I Fj )(M) is the wanted element,
globally well defined. We can view VM in a canonical way as a (schematically) dense open
subscheme of

PM = ×M(Proj(SymOM
(OM ⊕ Fj )))j∈I

by identifying a homogenous section s ∈ SymOM
(Fj ) of degree n with the degree zero

section s/1n
OM

of SymOM
(OM ⊕ Fj )[1

−1
OM

]. We give PM the log structure defined by the

normal crossing divisor (PM − VM) ∪ DV , where DV is the closure of DV in PM . Then
(PM , VM) is a S-log scheme with boundary.
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1.10. A morphism of T -log schemes with boundary f : (X,X) → (X
′
,X′) is a mor-

phism of log schemes

f : (X,NX) → (X
′
,N

X
′)

with X ⊂ f −1(X′) and restricting to a morphism of T -log schemes (X,NX) → (X′,NX′).
We have a fully faithful functor from the category of T -log schemes to the category of T -log
schemes with boundary. Namely, take Y to (Y, Y ). Beware that (T , T ) is not a final object
in the category of T -log schemes with boundary. We have obvious base change functors
for morphisms W ′ → W to our underlying base scheme W and everything we develop here
behaves well with respect to these base changes. We also have base change functors for closed
immersions of log schemes T ′ → T as follows: if (X,X) is a T -log scheme with boundary,
let XT ′ = X ×T T ′ be the fibre product in the category of log schemes. Define the log scheme
XT ′ as the log schematic image of the morphism of log schemes XT ′ → X. Then (XT ′ ,XT ′)

is a T ′-log scheme with boundary.
1.11. For the rest of this paper we always assume that the log scheme T is fine. All fibre

products of fine log schemes are taken in the category of fine log schemes, unless specified
otherwise. A T -log scheme with boundary (X,X) is said to be fine if the log scheme (X,NX)

is fine.

LEMMA 1.12. In the category of fine T -log schemes with boundary, products exist.

PROOF. Given fine T -log schemes with boundary (X1,X1) and (X2,X2), set

(X1,X1) ×T (X2,X2) = (X1×T X2,X1 ×T X2) .

Here X1 ×T X2 denotes the fibre product in the category of fine T -log schemes, and X1×T X2

is defined as the log schematic image of X1 ×T X2 → X1 ×W X2. (So X1×T X2 depends
also on X1 and X2, contrary to what the notation suggests. Note that by the construction [7]
2.7, the scheme underlying X1 ×T X2 is a subscheme of the scheme theoretic fibre product,
hence is a subscheme of the scheme underlying X1 ×W X2.) That X1×T X2 is fine follows
from Lemma 1.4.

1.13. It is to have fibre products why we did not require X = f −1(X′) in the definition
of morphisms of T -log schemes with boundary. If the structural map from the underlying
scheme of the log scheme T to W is an isomorphism, one has (X,X) ∼= (X,X) ×T (T , T ).
However, we stress that in contrast to taking the base change with the identity T → T (cf.
1.10), the operation of taking the fibre product with the T -log scheme with boundary (T , T ) is
non-trivial in general. For example, let Q = N with generator q ∈ Q, let T = W [Q] and let
U1, U2 be the standard generators of N2. For i ∈ Z let Xi = W [N2], and let Xi = W [Z ⊕N],
the open subscheme of Xi where U1 is invertible. Define a structure of T -log scheme with
boundary on (Xi ,Xi) by sending q �→ U i

1U2. Then

(Xi,Xi) ∼= (Xi ,Xi) ×T (T , T ) if i ≥ 0

(Xi,Xi) ∼= (Xi,Xi) ×T (T , T ) if i < 0 .
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Indeed, Xi×T T is the closure in W [Q ⊕ N2] of the closed subscheme V (q − U i
1U2) of

W [Q ⊕ Z ⊕ N]. If i ≥ 0 this is the subscheme V (q − U i
1U2) of W [Q ⊕ N2] which maps

isomorphically to W [N2]. If i < 0 this is the subscheme V (qU−i
1 −U2) of W [Q⊕N 2] which

does not map isomorphically to W [N2].
1.14. Let (X,X) be a fine T -log scheme with boundary. A chart (Q → P gp ⊃ P) for

(X,X) over T is a chart λ : P → Γ (X,NX) for (X,NX), a chart σ : Q → Γ (T ,NT ) for
(T ,NT ) and a morphism ρ : Q → P gp such that λgp ◦ ρ = τ ◦ σ , where τ : Γ (T ,NT ) →

Γ (X,NX) → Γ (X,N
gp
X

) is the composite of the structural map with that from Lemma 1.3.

LEMMA 1.15. Étale locally on X, charts for (X,X) exist.

PROOF (corrected version due to the referee). We may by [7] assume that (X,NX) has
a chart g : G → Γ (X,NX) and (T ,NT ) has a chart σ : Q → Γ (T ,NT ). Let x ∈ X and let
NX,x be the stalk of NX at the separable closure x of x. Let ϕ be the composite

Q
σ
→ Γ (T ,NT )

τ
→ Γ (X,N

gp
X

) → N
gp
X,x

.

Choose generators q1, . . . , qm of Q and elements xi, yi ∈ NX,x (1 ≤ i ≤ m) such that

ϕ(qi) = xiy
−1
i . Next, choose elements ai, bi ∈ G and ui , vi ∈ O×

X,x
(1 ≤ i ≤ m) satisfying

g(ai) = xiui and g(bi) = yivi : these elements exist because g is a chart. Now let

f : Ggp ⊕ Qgp ⊕ Zm ⊕ Zm → N
gp
X,x

be the morphism defined by

(h, q, (ki)
m
i=1, (li)

m
i=1) �→ g

gp(h)ϕgp(q)

m∏

i=1

u
ki

i

m∏

i=1

v
li
i ,

and define P by P = f −1(NX,x). Then f |P : P → NX,x extends to a chart around x by [7]
2.10. It remains to prove that the canonical inclusion Q → Ggp ⊕ Qgp ⊕ Zm ⊕ Zm, q �→

(1, q, 0, 0) actually takes values in P gp. Write a given q ∈ Q as q =
∏m

i=1 q
ni

i with ni ∈ N.
Then we have

f (q)p =

m∏

i=1

(
xi

yi

)ni

=

m∏

i=1

(
xiui

yivi

·
vi

ui

)ni

=
f ((

∏
i a

ni

i , 0, (0), (ni)i))

f ((
∏

i b
ni

i , 0, (ni)i, (0)))
.

Put α = (
∏

i a
ni

i , 0, (0), (ni)i) and β = (
∏

i b
ni

i , 0, (ni)i, (0)). Then we have α, β ∈ P and
f (qβ) = f (α). So qβ is in P by the definition of P and so q maps to P gp.

2. Smoothness.

DEFINITION 2.1. (1) A morphism of T -log schemes with boundary (Y , Y ) → (X,X)

is said to be a boundary exact closed immersion if Y → X is an exact closed immersion and
if for every open neighbourhood U of Y in X, there exists an open neighbourhood U of Y in
X with U schematically dense in U .

(2) A first order thickening of T -log schemes with boundary is a morphism (L
′
, L′) →

(L,L) such that L
′
→ L is an exact closed immersion defined by a square zero ideal in OL.



COMPACTIFICATIONS OF LOG MORPHISMS 87

(3) A fine T -log scheme with boundary (X,X) is said to be weakly smooth if X is
locally of finite presentation over W and if the following condition holds: for every first order
thickening η : (L

′
, L′) → (L,L) and for every morphism µ : (L

′
, L′) → (X,X) there is

étale locally on L a morphism ε : (L,L) → (X,X) such that µ = ε ◦ η.
(4) A T -log scheme with boundary (X,X) is said to be smooth if it is weakly smooth

and satisfies the following property: For all morphisms (Y , Y ) → (X,X) and all boundary
exact closed immersions (Y , Y ) → (V , V ) of fine T -log schemes with boundary, there exists
étale locally on (X×T V ) an exactification

Y → Z → (X×T V )

of the diagonal embedding Y → (X×T V ) (a morphism of log schemes in the usual sense)
such that the projection Z → (X×T V ) → V is strict and log smooth.

Recall that by [7] 3.8, ‘strict and log smooth’ is equivalent to ‘strict and smooth on
underlying schemes’. A T -log scheme X is log smooth if and only if (X,X)/T is weakly
smooth. Assume this is the case. Then (X,X)/T satisfies the smoothness condition with

respect to test objects (X,X)←(Y , Y ) → (V , V ) (i.e., for which V = V ), because X×T V
p
→

V is clearly log smooth. For general (V , V ) (and log smooth T -log schemes X) we have at
least Theorem 2.4 and Theorem 2.5 below (note that the hypotheses of Proposition 2.3 below
for (X,X)/T are equivalent to log smoothness of X/T , by [7] 3.5 and as worked out in [6]).

PROPOSITION 2.2. Let (X,X) be a weakly smooth T -log scheme with boundary and
let T1 → T be an exact closed immersion. Then (XT1,XT1) is a weakly smooth T1-log scheme
with boundary.

PROOF. Let

(XT1,XT1)
µ
← (L

′
, L′)

η
→ (L,L)

be a test object over T1. By the weak smoothness of (X,X)/T we get ε : (L,L) → (X,X)

étale locally on L such that µ = ε ◦ η. The restriction ε|L : L → X goes through XT1 ; since
L is log schematically dense in L this implies that ε goes through (XT1 ,XT1) (the schematic
image is transitive, [3] I, 9.5.5).

PROPOSITION 2.3. Suppose W is locally noetherian. Let Q be a finitely generated
integral monoid, let S = W [Q] and let T → S be an exact closed immersion. Let (X,X) be a
T -log scheme with boundary. Suppose that étale locally on X there are charts Q → P gp ⊃ P

for (X,X) over T as in 1.14 such that the following conditions (i), (ii) are satisfied:

(i) The kernel and the torsion part of the cokernel of Qgp → P gp are finite groups of
orders invertible on W .

(ii) Let P ′ be the submonoid of P gp generated by P and the image of Q → P gp and let
W [P ]T be the schematic closure of W [P ′]×S T = W [P ′]T in W [P ]. Then λ : X → W [P ]T

is smooth on underlying schemes.
Then (X,X)/T is weakly smooth.
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PROOF. (Note that λ in (ii) exists by the schematic density of X → X.) Let

(X,X)
µ
← (L

′
, L′)

η
→ (L,L)

be a test object over T . Using (i), one can follow the arguments in [7] 3.4 to construct mor-
phisms (L,L) → (W [P ],W [P ′]) of S-log schemes with boundary. Necessarily L maps in
fact to W [P ′]T . Since L → L is log schematically dense, L maps in fact to W [P ]T . By (ii)
this morphism can be lifted further to a morphism L → X inducing (L,L) → (X,X) as
desired.

THEOREM 2.4. In the situation of Proposition 2.3, suppose in addition S = T and
T → S is the identity. Then for every S-log scheme with boundary (V , V ), the projection

X×SV
p
→ V is log smooth.

PROOF. We may assume that (X,X) over T has a chart as described in Proposition 2.3
and that (V , V ) over T has a chart Q → F gp, F → NV (V ). Our assumptions imply that

X ×W V → W [P ] ×W V

is smooth on underlying schemes. It is also strict, hence log smooth. Perform the base change
with the closed immersion of log schemes

W [P ]×SV → W [P ] ×W V

to get the log smooth morphism

X×SV → W [P ]×SV

(by our construction of fibre products, W [P ]×SV is the log schematic closure of W [P ′]×SV ).
Its composite with the projection

W [P ]×SV
β
→ V

is p, hence it is enough to show that β is log smooth. Now β arises by the base change
V → W [F ] from the projection

W [P ]×SW [F ]
γ
→ W [F ]

so that it is enough to show that γ is log smooth. Let F ′ be the submonoid of F gp generated
by F and the image of Q → F gp. Let (P ′ ⊕Q F ′)int be the push out of P ′ ← Q → F ′ in the
category of integral monoids, i.e., (P ′ ⊕Q F ′)int = Im(P ′ ⊕Q F ′ → (P ′ ⊕Q F ′)gp) where
P ′ ⊕Q F ′ is the push out in the category of monoids. (If Q is generated by a single element
then actually (P ′ ⊕Q F ′)int = P ′ ⊕Q F ′ by [7] 4.1.) Define the finitely generated integral
monoid

R = Im(P ⊕ F → (P ′ ⊕Q F ′)int) .

Then γ can be identified with the natural map W [R] → W [F ]. That this is log smooth
follows from [7] 3.4 once we know that

a : F gp → Rgp = (P gp ⊕Qgp F gp)
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has kernel and torsion part of the cokernel finitely generated of orders invertible on W . But
this follows from the corresponding facts for b : Qgp → P gp because we have isomorphisms
Ker(b) ∼= Ker(a) and Coker(b) ∼= Coker(a).

THEOREM 2.5. In the situation of Proposition 2.3, (X,X)/T is smooth.

PROOF. It remains to verify the second condition in the definition of smoothness. Let
(Y , Y ) → (X,X) and (Y , Y ) → (V , V ) be test objects. We may assume that Y is connected.
Remove all irreducible components of V not meeting Im(Y ) so that we may assume that each
open neighbourhood of Im(Y ) in V is schematically dense. After étale localization we may
assume that (X,X) has a chart P → Γ (X,N

gp
X

) as in Proposition 2.3. Viewing our test
objects as objects over S we can form the fibre product of fine S-log schemes with boundary
(W [P ]×SV ,W [P ′] ×S V ). Étale locally on W [P ]×SV we find an exactification

Y
i

→ Z̃
g̃

→ W [P ]×SV

of the diagonal embedding Y → W [P ]×SV . We may assume that Z̃ is connected. After
further étale localization on Z̃ we may also assume that q̃ = p̃ ◦ g̃ : Z̃ → V is strict, where
p̃ : (W [P ]×SV ) → V is the projection: this follows from the fact that for y ∈ Y the stalks

of the log structures NZ̃ and q̃∗NV at the separable closure of i(y) coincide, because Y
i

→ Z̃

and Y → V are exact closed immersions. By Theorem 2.4, p̃ is log smooth. Thus q̃ is also
log smooth, hence is smooth on underlying schemes. Let

Z̃0 = Z̃ ×(W [P ]×SV ) (W [P ′] ×S V ) ,

an open subscheme of Z̃ containing Im(Y ). Consider the restriction q̃0 : Z̃0 → V of q̃. Since
it is smooth on underlying schemes, it maps schematically dominantly to an open neigh-
bourhood of Im(Y ) in V (here a morphism of schemes X → Y is said to be schematically
dominant if its schematic image coincides with Y). It follows that q̃0 maps schematically
dominantly also to V because of our assumption on V and the fact that (Y , Y ) → (V , V )

is boundary exact. Thus q̃ is a classically smooth morphism from the connected scheme Z̃

to another scheme V such that its restriction to the open subscheme Z̃0 maps schematically
dominantly to V . This implies that Z̃0 is schematically dense in Z̃, because (schematically)
dominant classically smooth morphisms from a connected scheme induce bijections between
the respective sets of irreducible components. It follows that g̃ factors as

Z̃
g

→ (W [P ]T ×T V )
k

→ W [P ]×SV :

first as a morphism of underlying schemes because its restriction to the open schematically
dense subscheme Z̃0 factors through

W [P ′]T ×T V = W [P ′] ×S V ;

but then also as a morphism of log schemes, because k is strict. The morphism g is log étale
because the composite g̃ with the closed embedding k is log étale. Let

Z = Z̃ ×(W [P ]T ×T V ) (X×T V ) .
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From the assumption (ii) in Proposition 2.3 we deduce that X×T V → W [P ]T ×T V is log
smooth and strict, hence Z → Z̃ is log smooth and strict, hence smooth on underlying
schemes. Together with the smoothness of q̃ it follows that Z → V is smooth on underlying
schemes. Furthermore Z → X×T V is log étale because g is log étale. Finally, Y → Z is an
exact closed immersion because Z → Z̃ is strict and Y → Z̃ is an exact closed immersion.
The theorem is proven.

The interest in smoothness as we defined it lies in the following proposition, which en-
ables us to develop nice cohomology theories for T -log schemes with boundary.

PROPOSITION 2.6. Let (Y , Y ) → (Xi,Xi) be boundary exact closed immersions into
smooth T -log schemes with boundary (i = 1, 2). Then there exist étale locally on (X1×T X2)

factorizations

(Y , Y )
ι

→ (Z,Z) → (X1×T X2,X1 ×T X2)

of the diagonal embedding such that ι is a boundary exact closed immersion, the map Z →

X1×T X2 is log étale, and the projections pi : Z → Xi are strict and log smooth, hence
smooth on underlying schemes.

PROOF. By the definition of smoothness we find étale locally exactifications (i = 1, 2)

Y → Zi → X1×T X2

such that the projections Zi → Xi are strict and log smooth. Let

Z
′
= Z1 ×(X1×T X2)

Z2

and let Y → Z → Z
′

be an exactification of Y → Z
′
. After perhaps étale localization on Z

as in the proof of Theorem 2.5 we may assume that the projections Z → Zi are strict. Hence
the projections pi : Z → Xi are strict and log smooth. This implies that

Z = p−1
1 (X1) ∩ p−1

2 (X2)

is log schematically dense in Z. Indeed, it suffices to prove the log schematic density of Z in
p−1

1 (X1) and of p−1
1 (X1) in Z. Both assertions follow from the general fact that for a strict

and log smooth (and in particular classically smooth) morphism of log schemes h : L → S

and a log schematically dense open immersion S′ → S, also h−1(S′) with its pull back log
structure from S′ is log schematically dense in L: this is easy to prove since the question is
local for the étale topology and we therefore may assume that h is a relative affine space. The
classical smoothness of (say) p1 and the boundary exactness of (Y , Y ) → (X1,X1) imply
that (Y , Y ) → (Z,Z) is boundary exact (for each connected component Z

′
of Z the map

π0(Z
′
) → π0(X1) between sets of irreducible components induced by p1 is injective). We

are done.

2.7 Examples. We make the exactification Z → X×T V in Theorem 2.5 explicit in
some examples, underlining the delicacy of the base change argument in Theorem 2.5. In
the following, for free variables U1, . . . , V1, . . . we denote by W [U1, . . . , V

±
1 , . . . ] the log



COMPACTIFICATIONS OF LOG MORPHISMS 91

scheme
W [N ⊕ · · · ⊕ Z ⊕ · · · ]

with generators U1, . . . for N ⊕ · · · and generators V1, . . . for Z ⊕ · · · . For f ∈ Z[U1, . . . ,

V ±
1 , . . . ] we denote by W [U1, . . . , V

±
1 , . . . ]/f the exact closed subscheme defined by f .

(a) Let Q = N with generator q . Let X = W [U±
1 , U2] ⊂ X = W [U1, U2]. Define

X → S by sending q �→ U−1
1 U2, thus (X,X) is a smooth S-log scheme with boundary. The

self fibre product of S-log schemes with boundary is

(X1,X1)=(X,X)×S(X,X)

=(W [U1, U2, V1, V2]/(V1U2−V2U1),W [U±
1 , U2, V

±
1 , V2]/(U

−1
1 U2 − V −1

1 V2)) .

Note that the projections qj : X1 → X are not flat (the fibres above the respective origins are

two dimensional), although they are log smooth. We construct the desired log étale map Z
g

→

X1 according to the procedure in [7], 4.10. Embed Z → Z4 by sending n �→ (n,−n,−n, n)

and let H be the image of the canonical map N4 → (Z4/Z). Then X1 = W [H ]. Let h :

(Z4/Z) → Z 2 be the map which sends the class of (n1, n2, n3, n4) to (n1 + n3, n2 + n4),
and let K = h−1(N2). Then Z = W [K] works. More explicitly: We have an isomorphism
K ∼= N2 ⊕ Z by sending the class of (n1, n2, n3, n4) to (n1 + n3, n2 + n4, n1 + n2). Then

Z = W [S1, S2, S
±
3 ]

and g is given by U1 �→ S1S3, U2 �→ S2S3, V1 �→ S1, V2 �→ S2 .
Now consider the base change with T = W [q]/q → S defined by sending q �→ 0.

For j = 1, 2 let X1,j = X1 ×X XT where in the fibre product we use the j -th projec-
tion as the structure map for the first factor. Let XT ,1 = XT ×T XT . Then we find X1,1 =

W [U1, V1, V2]/(V2U1), X1,2 = W [U1, U2, V1]/(V1U2), thus containing XT ,1 = W [U1, V1]

as a proper subscheme.
(b) Let S,X,X be as in (a), but this time define X → S by sending q �→ U1U2. Again

(X,X) is smooth. We use the embedding Z → Z4 which sends n �→ (n, n,−n,−n), to
define H = Im(N4 → (Z4/Z)). Let h : (Z4/Z) → Z2 be the map which sends the class
of (n1, n2, n3, n4) to (n1 + n3, n2 + n4), and let K = h−1(N2). We have an isomorphism
K ∼= N2 ⊕ Z by sending the class of (n1, n2, n3, n4) to (n1 + n3, n2 + n4, n1 − n2). We thus
find

X1 = W [H ] = W [U1, U2, V1, V2]/(U1U2 − V1V2) ,

Z = W [S1, S2, S
±
3 ] and g : Z → X1 is given by U1 �→ S1S3, U2 �→ S2S

−1
3 , V1 �→

S1, V2 �→ S2. Note that in this case the projections qj : X1 → X are flat. Now consider the
base change with T = W [q]/q → S defined by sending q �→ 0. Then, in contrast to (a), we
find X1,1 = X1,2 = XT ,1 (with X1,1,X1,2,XT ,1 as in (a)).

(c) Using the criterion 2.5 one checks that the log schemes with boundary mentioned
in 1.8(b)–(d) 1.9 are smooth. In fact, the example (a) just discussed is a special case of 1.8 (b)
or 1.9. Example (b) (or rather its base change with T = W [q]/q → S as above) is a special
case of 1.8(d).
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LEMMA 2.8. Ω1
(X,X)/T

is locally free of finite rank if (X,X) is weakly smooth over T .

PROOF. The same as in the classical case.

3. Semistable log schemes with boundary. In this section k is a field, Q = N with

generator q and T = (Spec(k),Q
0

→ k).
3.1 Definitions.
3.1. A standard semistable T -log scheme with boundary is a T -log scheme with bound-

ary isomorphic to:

(X,X) =

(
Spec

(
k[t1, . . . , ti2 ]

(t1, . . . , ti1)

)
, Spec

(
k[t1, . . . , ti1 , t

±
i1+1, . . . , t

±
i2

]

(t1, . . . , ti1)

))

for some integers 1 ≤ i1 ≤ i2 such that

P = N i2 → NX(X) , 1i �→ ti for 1 ≤ i ≤ i2

Q = N → P gp = Z i2 , q �→ (11, . . . , 1i1, ri1+1, . . . , ri2 )

with some rj ∈ Z for i1 + 1 ≤ j ≤ i2 is a chart in the sense of 1.14. A semistable T -log
scheme with boundary is a T -log scheme with boundary (Y , Y ) such that étale locally on Y

there exist morphisms (Y , Y ) → (X,X) to standard semistable T -log schemes with boundary
such that Y → X is strict and log smooth, and Y = Y ×X X. Note that Y is then a semistable
k-log scheme in the usual sense defined in 1.8(d).

A normal crossing variety over k is a k-scheme which étale locally admits smooth mor-
phisms to the underlying schemes of semistable k-log schemes.

Following [6] we say that a log structure NY on a normal crossing variety Y over k is
of embedding type if étale locally on Y the log scheme (Y ,NY ) is isomorphic to a semistable
k-log scheme. (The point is that we do not require a global structure map of log schemes
(Y ,NY ) → T .)

3.2. Let us discuss for a moment the standard semistable T -log schemes with boundary
(X,X). If in the above definition rj ≥ 0 for all j , then f : X → T actually extends to a (non
log smooth in general) usual morphism of log schemes f : X → T . If even rj = 0 for all
j then f is nothing but a semistable k-log scheme with an additional horizontal divisor not
interfering with the structure map of log structures; in particular it is log smooth. If at least
rj ∈ {0, 1} for all j the morphism f is ideally smooth in the sense of Ogus [10]. Examples
with rj = 1 for all j are those in 1.8(d).

The concept of semistable T -log schemes with boundary helps us to also understand the
cases with local numbers rj /∈ {0, 1}: Any (Y , Y ) semistable T -log scheme with boundary is
smooth, by Theorem 2.5, and as we will see below this implies analogs of classical results for
their cohomology. Examples of semistable T -log schemes with boundary with local numbers
rj possibly not in {0, 1} are those in 1.9 or those from 3.5 below. Or think of a flat family
of varieties over Spec(k[q]) with smooth general fibre and whose reduced subscheme of the
special fibre is a normal crossing variety, but where some components of the special fibre
may have multiplicities > 1: then unions of irreducible components of this special fibre
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with multiplicity = 1 are semistable T -log schemes with boundary. One more big class of
examples with local numbers rj possibly not in {0, 1} is obtained by the following lemma,
which follows from computations with local coordinates:

LEMMA 3.3. Let Y → Y be an embedding of k-schemes which étale locally looks like
the underlying embedding of k-schemes of a semistable T -log scheme with boundary (i.e.,
for each geometric point y of Y there is a semistable T -log scheme with boundary which on
underlying schemes looks like Y → Y around y). Suppose NY is a log structure of embedding
type on Y such that (Y,NY |Y ) is a semistable k-log scheme ( for an appropriate structure
morphism to T ). Then ((Y ,NY ), Y ) is a semistable T -log scheme with boundary.

3.4. Fumiharu Kato in [6] has worked out precise criteria for these two properties of
normal crossing varieties over k — to admit a log structure of embedding type, resp. to admit
a log structure of semistable type. Now suppose we are given a semistable T -log scheme Y .
An “optimal” compactification would be a dense open embedding into a proper semistable
k-log scheme in the classical sense, or at least into an ideally smooth proper k-log scheme;
however, advocating the main idea of this paper, a dense open embedding Y → Y into a log
scheme Y such that (Y , Y ) is a proper semistable T -log scheme with boundary is also very
useful, and this might be easier to find, or (more importantly) be naturally at hand in particular
situations.

3.2 De Rham cohomology. Here we assume char(k) = 0. Let Z be a smooth k-scheme
and let V be a normal crossing divisor on Z. Suppose there exists a flat morphism f : (Z −

V ) → Spec(k[q]), smooth above q = 0 and with semistable fibre X above the origin q = 0.
Let X be the closure of X in Z and suppose also that X ∪ V is a normal crossing divisor on
Z. Endow Z with the log structure defined by X ∪ V and endow all subschemes of Z with
the induced log structure (we will suppress mentioning of this log structure in our notation).
Then (X,X) is a semistable T -log scheme with boundary. Let D = X ∩ V = X − X and
let X =

⋃
1≤i≤a Xi be the decomposition into irreducible components in a fixed ordering and

suppose that each Xi is classically smooth. Let Ω•
X/T be the relative logarithmic de Rham

complex.

PROPOSITION 3.5. The restriction map

RΓ (X,Ω•

(X,X)/T
) → RΓ (X,Ω•

X/T )

is an isomorphism.

PROOF. We use a technique of Steenbrink [13] to reduce to a standard fact. Let Ω•
Z be

the de Rham complex over k on Z with logarithmic poles along X∪V . Note that dlog(f ∗(q)) ∈

Γ (Z−V,Ω1
Z) extends uniquely to a global section θ ∈ Γ (Z,Ω1

Z). Let Ω•
Z,V be the de Rham

complex on Z with logarithmic poles only along V ; thus Ω•
Z,V is a subcomplex of Ω•

Z. Define
the vertical weight filtration on Ω•

Z by

PjΩ
i
Z = Im(Ω

j
Z ⊗ Ω

i−j
Z,V → Ω i

Z) .
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For j ≥ 1 let X
j

be the disjoint sum of all ∩i∈I Xi where I runs through the subsets of

{1, . . . , a} with j elements. Let τj : X
j

→ X be the canonical map and let Ω•

X
j be the de

Rham complex on X
j

with logarithmic poles along X
j
∩τ−1

j (D). Then we have isomorphisms
of complexes

(∗) res : GrjΩ
•
Z

∼= τj,∗Ω
•

X
j [−j ] ,

characterized as follows: Let x1, . . . , xd be local coordinates on Z such that xi for 1 ≤ i ≤

a ≤ d is a local coordinate for Xi . If

ω = α ∧ dlog(xi1) ∧ · · · ∧ dlog(xij ) ∈ PjΩ
•
Z

with i1 < · · · < ij < a, then res sends the class of ω to the class of α. Now let

Apq = Ω
p+q+1
Z /PqΩ

p+q+1
Z , PjA

pq = P2q+j+1Ω
p+q+1
Z /PqΩ

p+q+1
Z .

Using the differentials d ′ : Apq → Ap+1,q, ω �→ dω and d ′′ : Apq → Ap,q+1, ω �→

θ ∧ ω we get a filtered double complex A••. We claim that

0 →
Ω

p

Z ⊗ OX

(Ω
p−1
Z ⊗ OX) ∧ θ

∧θ
→ Ap0 ∧θ

→ Ap1 ∧θ
→ · · ·

is exact. Indeed, it is enough to show that for all p, all j ≥ 2 the sequences

Grj−1Ω
p−1
Z

∧θ
→ GrjΩ

p
Z

∧θ
→ Grj+1Ω

p+1
Z

∧θ
→ · · ·

0 → P0Ω
p−1
Z /JX .Ω

p−1
Z

∧θ
→ Gr1Ω

p
Z

∧θ
→ Gr1Ω

p+1
Z

∧θ
→ · · ·

are exact, where JX = Ker(OZ → OX). This follows from (∗) and the exactness of

0 → P0Ω
p
Z/JX.Ω

p
Z → τ1,∗Ω

p

X
1 → τ2,∗Ω

p

X
2 → · · · .

The claim follows. It implies that the maps

Ω
p

(X,X)/T
=

Ω
p
Z ⊗ OX

(Ω
p−1
Z ⊗ OX) ∧ θ

→ Ap0 ⊂ Ap, ω �→ (−1)pθ ∧ ω

define a quasi-isomorphism Ω•

(X,X)/T
→ A•, hence a spectral sequence

E
−r,q+r

1 = H q(X, GrrA
•) �⇒ H q(X,Ω•

(X,X)/T
) .

Now we can of course repeat all this on Z − V instead of Z, and restriction from Z to
Z − V gives a canonical morphism between the respective spectral sequences. That this is
an isomorphism can be checked on the initial terms, and using the isomorphism (∗) this boils
down to proving that the restriction maps

Hp(X
j
,Ω•

X
j ) → Hp(Xj ,Ω•

X
j )

are isomorphisms where we set Xj = X
j

∩ τ−1
j (X). But this is well known. The proof is

finished.
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3.6. Now assume X is proper. Similar to the classical Hodge theory, the Hodge filtra-
tion on

Hp(X,Ω•

(X,X)/T
) = Hp(X,Ω•

X/T )

obtained by stupidly filtering Ω•

(X,X)/T
should be meaningful. Another application of Propo-

sition 3.5 might be a Poincaré duality theorem. Suppose the underlying scheme of X is of
pure dimension d . Let ID = Ker(OX → OD) and define the de Rham cohomology with
compact support of (X,X)/T as

RΓ (X,ID ⊗ Ω•

(X,X)/T
) .

It is a natural question to ask if this is dual to RΓ (X,Ω•

(X,X)/T
) = RΓ (X,Ω•

X/T ). The key

would be as usual the construction of a trace map H d(X,ID ⊗ Ωd

(X,X)/T
) → k.

3.7. Another application of semistable T -log schemes with boundary is the possibil-
ity to define the notion of regular singularities of a given integrable log connection on a
semistable T -log scheme X, provided we have an embedding X → X such that (X,X) is a
proper semistable T -log scheme with boundary.

3.8. Here is an application of the construction in 1.9 to the de Rham cohomology of
certain semistable k-log schemes (a simplified variant of the application given in [4]; in fact,
the present paper formalizes and generalizes a key construction from [4]). In 1.9 assume that
char(k) = 0 and that M is the intersection of all irreducible components of Y . Recall that
we constructed a morphism of log schemes VM → S = (Spec(k[q]), 1 �→ q). For k-valued
points α → S (with pull back log structure) let V α

M = VM ×S α. Using the S-log scheme
with boundary (PM , VM ) one can show that the derived category objects RΓ (V α

M ,Ω•
V α

M/α
)

(with Ω•
V α

M/α
the relative logarithmic de Rham complex; if α = 0 this is the classical one) are

canonically isomorphic for varying α. Namely, the canonical restriction maps

RΓ (PM ,Ω•
(PM ,VM)/S) → RΓ (V α

M ,Ω•
V α

M/α)

are isomorphisms for all α.
3.3 Crystalline cohomology. Let S̃ be a scheme such that O

S̃
is killed by a non-zero

integer, I ⊂ OS̃ a quasi-coherent ideal with DP-structure γ on it, and let L̃ be a fine log

structure on S̃. Let (S,L) be an exact closed log subscheme of (S̃, L̃) defined by a sub-DP-
ideal of I and let f : (X,N ) → (S,L) be a log smooth and integral morphism of log schemes.
An important reason why log crystalline cohomology of (X,N ) over (S̃, L̃) works well is that
locally on X there exist smooth and integral, hence flat morphisms f̃ : (X̃, Ñ ) → (S̃, L̃) with
f = f̃ ×

(S̃,L̃)
(S,L). This implies that the crystalline complex of X/S̃ (with respect to any

embedding system) is flat over OS̃ , see [5] 2.22, and on this property many fundamental
theorems rely.

Now let W be a discrete valuation ring of mixed characteristic (0, p) with maximal ideal
generated by p. For n ∈ N let Wn = W/(pn), k = W1 and K0 = Quot(W), and let Tn be
the exact closed log subscheme of S = W [Q] defined by the ideal (pn, q) (abusing previous
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notation we now take Spec(W) as the base scheme W of 1.1). Thus T = T1. We will often
view T -log schemes with boundary as Tn-log schemes with boundary for n ∈ N.

LEMMA 3.9. Let (Y , Y )/T be a semistable T -log scheme with boundary. Then there
exist étale locally on Y smooth Tn-log schemes with boundary (Y n, Yn) such that (Y , Y ) =

(Y n, Yn)×TnT , the closed immersion (Y , Y ) → (Y n, Yn) is boundary exact, and such that
Ω1

(Yn,Yn)/Tn
is flat over OTn and commutes with base changes Tm → Tn for m ≤ n.

PROOF. We may suppose that there is a strict and log smooth morphism

h : (Y , Y ) → (X,X) =

(
Spec

(
k[t1, . . . , ti2 ]

(t1, . . . , ti1)

)
, Spec

(
k[t1, . . . , ti1 , t

±
i1+1, . . . , t

±
i2

]

(t1, . . . , ti1)

))

for some integers 1 ≤ i1 ≤ i2 such that P = N i2 is a chart for (X,X) sending 1i �→ ti for
1 ≤ i ≤ i2 and such that the structure map is given by

Q = N → P gp = Z i2 , q �→ (11, . . . , 1i1, ri1+1, . . . , ri2 )

with some rj ∈ Z for i1 + 1 ≤ j ≤ i2. We lift (X,X) to

(Xn,Xn) =

(
Spec

(
Wn[t1, . . . , ti2 ]

(t1, . . . , ti1)

)
, Spec

(
Wn[t1, . . . , ti1 , t

±
i1+1, . . . , t

±
i2

]

(t1, . . . , ti1)

))

using the same formulas for the log structure maps. Local liftings of h to (Xn,Xn) result
from the classical theory, since ‘strict and log smooth’ is equivalent to ‘smooth on underlying
schemes’.

LEMMA 3.10. Let n ∈ N and let (Y , Y ) → (Xi,Xi) be boundary exact closed immer-
sions into smooth Tn-log schemes with boundary (i = 1, 2). Then there exist étale locally on
(X1×TnX2) factorizations of the diagonal embedding

(Y , Y )
ι

→ (Z,Z) → (X1×TnX2,X1 ×Tn X2)

with ι a boundary exact closed immersion, the map Z → X1×TnX2 log étale, the projections
pi : Z → Xi strict and log smooth, and with the following property: Let D12 (resp. Di )
denote the DP envelopes of (the underlying scheme morphism of ) Y → Z (resp. of Y → Xi),

and let qi : D12 → Di be the canonical projections. Then there exist ui1, . . . , uimi ∈ OD12

for i = 1 and i = 2 such that dui1, . . . , duimi form a basis of Ω1
Z/Xi

and such that the

assignments U
[k]
ij �→ u

[k]
ij (k ∈ N) induce isomorphisms

q−1
i ODi

〈Ui1, . . . , Uimi 〉
∼= OD12

where on the left hand side we mean the DP envelope of the free polynomial ring.

3.11. Lemma 3.10 follows from Proposition 2.6, and the same proofs give variants of
Proposition 2.6 and Lemma 3.10 for more than two embeddings (Y , Y ) → (Xi ,Xi) (and
hence with products with more than two factors). As in [7] one shows that the DP envelopes
of (Y , Y ) in chosen exactifications of these products (e.g., the DP envelope D12 in Lemma
3.10) are independent of the chosen exactifications. For a given semistable T -log scheme
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with boundary (Y , Y ) we now define its crystalline cohomology relative to Tn by the standard
method (cf. [5] 2.18): Choose an open covering Y =

⋃
U∈U

U and for each (U,U = Y ∩ U)

a lift (Un, Un) as in Lemma 3.9. Taking products we get a simplicial Tn-log scheme with
boundary (U

•

n, U
•
n ) which is an embedding system for (Y , Y ) over Tn. Let D

•

n be the DP
envelope of (Y , Y ) in (U

•

n, U
•
n ), i.e., the simplicial scheme formed by the DP envelopes of

local exactifications of (Y , Y ) → (U
•

n, U
•
n ) as in Lemma 3.10. Then we set

RΓcrys((Y , Y )/Tn) = RΓ (D
•

n,Ω
•

(Un,Un)/Tn
⊗ O

D
•
n
) .

That this definition is independent of the chosen embedding follows from Lemma 3.10 and
the DP Poincaré lemma.

LEMMA 3.12. (a) For m ≤ n we have

RΓcrys((Y , Y )/Tm) ∼= RΓcrys((Y , Y )/Tn) ⊗L
Wn

Wm .

(b) If Y is proper over k, the cohomology of

R lim
←
n

RΓcrys((Y , Y )/Tn)

(resp. of RΓcrys((Y , Y )/Tn)) is finitely generated over W (resp. over Wn).

PROOF. Just as in [5] 2.22 one deduces from Lemmata 3.9 and 3.10 that Ω•

(Un,Un)/Tn
⊗

O
D

•
n

is a Wn-flat sheaf complex on D
•

n and this implies (a). If Y is proper over k it follows

that RΓcrys((Y , Y )/T1) = RΓ (Y ,Ω•

(Y ,Y )/T1
) has finite dimensional cohomology over k since

each Ω
j

(Y ,Y )/T1
is coherent. Together with (a) we conclude as in the classical case.

3.13. Ogus [11] and Shiho [12] have defined logarithmic convergent cohomology in
great generality and “in crystalline spirit”. Here we content ourselves with the following
definition. Let E be a fine T -log scheme. Let T∞ be the formal log scheme (Spf(W), 1 �→

0). Choose an exact closed immersion E → G into a log smooth formal T∞-log scheme
G topologically of finite type over W . Associated to G is a K0-rigid space GK0 together
with a specialization map sp to the special fibre of G. The preimage sp−1(E) =]E[G of the
embedded E, the tube of E, is an admissible open subspace of GK0 . The logarithmic de Rham
complex Ω•

G/T∞
on G gives rise, tensored with Q, to a sheaf complex Ω•

GK0/T∞,K0
on GK0

and we set

RΓconv(E/T∞) = RΓ (]E[G,Ω•
GK0/T∞,K0

) ,

an object in the derived category of K0-vector spaces. If there are embeddings E → G as
above only locally on E, one works with embedding systems.

Now let Y be a semistable k-log scheme with smooth irreducible components and let
M be the intersection of some of its irreducible components. Endow M with the structure of
T -log scheme induced from Y . Note that M is not log smooth over T (unless Y has only a
single irreducible component) and its usual log crystalline cohomology is pathological; it does
not provide a canonical integral lattice in the log convergent cohomology of M , as we will
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now construct one by another method. In 1.9 we constructed a S1-log scheme with boundary
(PM , VM) where S1 is the exact closed log subscheme of S defined by the ideal (p). Perform
the base change with the exact closed subscheme T of S1 defined by the ideal (q) to get
(P 0

M , V 0
M) = (PM ×S1 T , VM ×S1 T ). This is a semistable T -log scheme with boundary as

defined above.

THEOREM 3.14. There exists a canonical isomorphism

R lim
←
n

RΓcrys((P
0
M , V 0

M)/Tn) ⊗W K0 ∼= RΓconv(M/T∞) .

In particular, if M is proper, each RjΓconv(M/T∞) is finite dimensional.

PROOF. Step 1: The map is

R lim
←
n

RΓcrys((P
0
M , V 0

M )/Tn) ⊗W K0 → R lim
←
n

RΓcrys((V
0
M , V 0

M)/Tn) ⊗W K0

= R lim
←
n

RΓcrys(V
0
M/Tn) ⊗W K0

(i)
∼= RΓconv(V

0
M/T∞) → RΓconv(M/T∞)

where the left hand side in (i) is the usual log crystalline cohomology of V 0
M/Tn and the

isomorphism (i) holds by log smoothness of V 0
M/T . That this map is an ismorphism can be

checked locally.
Step 2: We may therefore assume that there exists a smooth (in the classical sense)

affine connected Spec(W)-scheme M̃ = Spec(B̃) lifting M and that the invertible sheaves
Fj |M on M are trivial (notation from 1.9); let vj be a generator of Fj |M . Furthermore we
may assume that the divisor D on M (the intersection of M with all irreducible components
of Y not containing M) lifts to a (relative Spec(W)) normal crosssings divisor D̃ on M̃. Let

ṼM = Spec(B̃[xj ]j∈I ) ,

P̃M = ×
M̃

(Proj(B̃[yj , xj ]j∈I ) .

Identifying the free variable xj with a lift of vj we view ṼM as a lift of VM ; identifying
moreover the free variable yj with a lift of 1OM

we view P̃M as a lift of PM ; identify-
ing a homogenous element s ∈ B̃[xj ]j∈I of degree n with the degree zero element s/yn

j of

B̃[y±
j , xj ] we view ṼM as an open subscheme of P̃M. As in 1.9 we factor the distinguished

element a ∈ SymOM
(⊕(Fj )j∈I )(M) as a = a0.(

⊕
j∈I vj ) with defining equation a0 ∈ OM

of the divisor D in M . Lift a0 to a defining equation ã0 ∈ B̃ of D̃ in M̃. This ã0 also de-
fines a normal crossing divisor D̃

Ṽ
on ṼM. Set ã = ã0

∏
j∈I xj ∈ B̃[xj ]j∈I and consider

the following normal crossing divisor on P̃M: the union of P̃M − ṼM with the closure (in
P̃M) of the zero set of ã (in ṼM). It defines a log structure on P̃M. Define a morphism
ṼM → S by sending q �→ ã. We have constructed a lift of the S1-log scheme with bound-
ary (PM , VM) to a S-log scheme with boundary (P̃M, ṼM). Moreover, if we denote by T̃∞

the exact closed log subscheme of S defined by the ideal (q), then the T̃∞-log scheme with
boundary (P̃0

M
, Ṽ0

M
) = (P̃M×S T̃∞, ṼM×S T̃∞) is a lift of the T -log scheme with boundary

(P 0
M , V 0

M).
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Step 3: Denote by P0
M

(resp. V0
M

, resp. M, resp. DV ) the p-adic completions

of P̃0
M

(resp. of Ṽ0
M

, resp. of M̃, resp. of D̃
Ṽ

). Denote by P0
M,n

(resp. V0
M,n

, resp.
Mn, resp. DV ,n) the reduction modulo pn. Let Ω•

P0
M

/T∞
be the p-adic completion of

the de Rham complex of the T̃∞-log scheme with boundary (P̃0
M

, Ṽ0
M

). Its reduction
Ω•

P0
M

/T∞
⊗ (Z/pn) modulo pn is the de Rham complex Ω•

P0
M,n/Tn

of the Tn-log scheme with

boundary (P0
M,n

, Ṽ0
M,n

). Observe that the differentials on Ω•

P0
M

/T∞
pass to differentials on

Ω•

P0
M

/T∞
⊗O

P
0
M

OM where we use the zero section M → P0
M

. Let Ω•

P0
M

/T∞
⊗ Q be the

complex on the rigid space P0
M,K0

obtained by tensoring with K0 the sections of Ω•

P0
M

/T∞

over open affine pieces of P0
M

. Similarly define Ω•

P0
M

/T∞
⊗O

P0
M

OM ⊗ Q. By definition

we have
RΓconv(M/T∞) = RΓ (]M[PM

,Ω•

P0
M

/T∞
⊗ Q) ,

R lim
←
n

RΓcrys((P
0
M , V 0

M)/Tn) ⊗W K0 = R lim
←
n

RΓ (P0
M,n,Ω

•

P0
M,n

/Tn
) ⊗W K0 .

In view of

RΓ (]M[PM
,Ω•

P0
M

/T∞
⊗O

P
0
M

OM ⊗ Q)

= R lim
←
n

RΓ (P0
M,n,Ω

•

P0
M,n

/Tn
⊗O

P
0
M,n

OMn
) ⊗W K0

it is therefore enough to show that the maps

fn : RΓ (P0
M,n,Ω

•

P0
M,n

/Tn
) → RΓ (P0

M,n,Ω
•

P0
M,n

/Tn
⊗O

P
0
M,n

OMn
) ,

g : RΓ (]M[PM
,Ω•

P0
M

/T∞
⊗ Q) → RΓ (]M[PM

,Ω•

P0
M

/T∞
⊗O

P
0
M

OM ⊗ Q)

are isomorphisms.
Step 4: Let DV ,n =

⋃
l∈L Dn,l be the decomposition of DV ,n into irreducible compo-

nents. Let E ′
n be the closed subscheme of V0

M,n
defined by

∏
j∈I xj ∈ Γ (V0

M,n
,OV0

M,n
) and

let En be the closure of E ′
n in P0

M,n
. Let En =

⋃
j∈I En,j be its decomposition into irreducible

components. For a pair P = (PI , PL) of subsets PI ⊂ I and PL ⊂ L let

GP =

( ⋂

j∈PI

En,j

)
∩

( ⋂

l∈PL

Dn,l

)
,

so we drop reference to n in our notation, for convenience. Also for convenience we denote
the sheaf complex Ω•

P0
M,n

/Tn
on P0

M,n
simply by Ω•. For two pairs P,P ′ as above with

PI ∪ PL = ∅, with PI ⊂ P ′
I and PL = P ′

L consider the canonical map

wP,P ′ : Ω• ⊗ OGP
→ Ω• ⊗ OGP ′

of sheaf complexes on P0
M,n

. We claim that the map RΓ (P0
M,n

, wP,P ′) induced by wP,P ′

in cohomology is an isomorphism. For this we may of course even assume P ′
I = PI ∪ {j0}

for some j0 ∈ I , j0 /∈ PI . In the OGP ′ -module Ω1 ⊗ OGP ′ we fix a complement N of the
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submodule generated by (the class of) dlog(xj0) ∈ Γ (P0
M,n

,Ω1 ⊗OGP ′ ) as follows. We use
the identification

(Ω1
M̃

(log(D̃)) ⊗ OGP ′ ) ⊕
(⊕

j∈I OGP ′ .dlog(xj )
)

OGP ′ .dlog(ã)
= Ω1 ⊗ OGP ′

(with Ω1
M̃

(log(D̃)) the differential module of (M̃, (log str. def. by D̃)) → (Spec(W), triv.)).

If PL = ∅ we may assume that we can factor our ã0 ∈ B̃ from above as ã0 = ã′
0h with

h ∈ B̃ whose zero set in M̃ = Spec(B̃) reduces modulo pn to an irreducible component of⋃
l∈PL

Dl,n. We may assume that the O
M̃

-submodule of Ω1
M̃

(log(D̃)) generated by dlog(h)

admits a complement N ′. Then we get the isomorphism

(N ′ ⊗ OGP ′ ) ⊕

( ⊕

j∈I

OGP ′ .dlog(xj )

)
∼= Ω1 ⊗ OGP ′

(use dlog(ã) = dlog(h) + dlog(ã/h)). If there exists j ′ ∈ PI we get the isomorphism

(Ω1
M̃

(log(D̃)) ⊗ OGP ′ ) ⊕

( ⊕

j∈I−{j ′}

OGP ′ .dlog(xj )

)
∼= Ω1 ⊗ OGP ′

(use dlog(ã) = dlog(xj ′) + dlog(ã/xj ′)). In both cases, dropping the j0-summand in the left
hand side we get N as desired. We see that the OGP ′ -subalgebra N• of Ω• ⊗OGP ′ generated
by N is stable for the differential d , and that we have

Ω• ⊗ OGP ′ = N• ⊗Wn C•

as complexes, where C• is the complex C0 = Wn, C1 = Wn.dlog(xj0) (here dlog(xj0) is noth-
ing but a symbol), Cm = 0 for m = 0, 1, and zero differential. Let R = Proj(Wn[yj0, xj0]).
We have a canonical map GP → R. Let D• be the OR-subalgebra of Ω• ⊗ OGP

generated
by dlog(xj0) ∈ Γ (P0

M,n
,Ω1 ⊗ OGP

). It is stable for the differential d , and we find

Ω• ⊗ OGP
= N• ⊗Wn D•

as complexes, where N• is mapped to Ω• ⊗ OGP
via the natural map (and section of wP,P ′)

Ω• ⊗ OGP ′ → Ω• ⊗ OGP

induced by the structure map En,j0 → Mn. This map also induces a map C• → D•, and it is
enough to show that the latter induces isomorphisms in cohomology. But

Hm(P0
M,n,D

•) ∼= Hm(P1
Wn

,Ω•

P1
Wn

(log{0,∞})) ,

which is Wn if 0 ≤ m ≤ 1 and zero otherwise, because of the degeneration of the Hodge
spectral sequence ([7] 4.12) and Ω1

P1(log{0,∞}) ∼= OP1 . So C• and D• have the same coho-
mology.

Step 5: We now show that fn is an isomorphism. Let FI =
⋃

j∈I En,j , let FL =⋃
l∈L Dn,l = DV ,n and FI,L = FI ∩ FL. All the following tensor products are taken over
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OP0
M,n

. We will show that in

Ω• = Ω• ⊗ OP0
M,n

α
−→ Ω• ⊗ OFI

β
−→ Ω• ⊗ OG(I,∅)

= Ω• ⊗ OMn

both α and β induce isomorphisms in cohomology. The exact sequences

0 −→ OP0
M,n

−→ OFJ
⊕ OFL

−→ OFI,L
−→ 0

0 −→ OFI
−→ OFI

⊕ OFI,L
−→ OFI,L

−→ 0

show that, to prove that α induces cohomology isomorphisms, it is enough to prove that
Ω• ⊗ OFL

→ Ω• ⊗ OFI,L
induces cohomology isomorphisms. To see this, it is enough to

show that both Ω• ⊗OFL

γ
→ Ω• ⊗OFL∩G(I,∅)

and Ω• ⊗OFI,L

δ
→ Ω• ⊗OFL∩G(I,∅)

induce
cohomology isomorphisms. Consider the exact sequence

0 −→ OFL
−→

⊕

l∈L

OG(∅,{l})
−→

⊕

L′⊂L

|L′|=2

OG(∅,L′)
−→ · · · −→ OG(∅,L)

−→ 0 .(∗)

Comparison of the exact sequences (∗) ⊗ Ω• and (∗) ⊗OFL∩G(I,∅)
⊗ Ω• shows that to prove

that γ induces cohomology isomorphisms, it is enough to show this for Ω•⊗OG(∅,L′)
→ Ω•⊗

OG(I,L′)
for all ∅ = L′ ⊂ L; but this has been done in Step 2. Comparison of (∗)⊗OFI,L

⊗Ω•

and (∗) ⊗ OFL∩G(I,∅)
⊗ Ω• shows that to prove that δ induces cohomology isomorphisms, it

is enough to show this for Ω• ⊗ OFI ∩G(∅,L′)

εG
→ Ω• ⊗ OG(I,L′)

for all ∅ = L′ ⊂ L. Consider
the exact sequence

0 −→ OFI
−→

⊕

j∈I

OG({j},∅)
−→

⊕

I ′⊂I

|I ′|=2

OG(I ′,∅)
−→ · · · −→ OG(I,∅)

−→ 0 .(∗∗)

The exact sequence (∗∗)⊗OFI ∩G(∅,L′)
⊗Ω• shows that to prove that εG induces cohomology

isomorphisms, it is enough to show this for Ω•⊗OG(I ′,L′)
→ Ω•⊗OG(I,L′)

for all ∅ = I ′ ⊂ I ;
but this has been done in Step 2. The exact sequence (∗∗) ⊗ Ω• shows that to prove that β

induces cohomology isomorphisms, it is enough to show this for Ω•⊗OG(I ′,∅)
→ Ω•⊗OG(I,∅)

for all ∅ = I ′ ⊂ I ; but this has been done in Step 2. The proof that fn is an isomorphism is
complete.

The proof that g is an isomorphism is essentially the same: While Step 4 above boiled
down to Hm(P1

Wn
,Ω•

P1
Wn

(log{0,∞})) = Wn if 0 ≤ m ≤ 1, and = 0 for other m, one now uses

Hm(D0
K0

,Ω•

D0
K0

(log{0})) = K0 if 0 ≤ m ≤ 1, and = 0 for other m (here D0
K0

is the open unit

disk over K0). The formal reasoning from Step 5 is then the same. The theorem is proven.
3.15. Also unions H of irreducible components of Y are not log smooth over T (unless

H = Y ) and their usual log crystalline cohomology is not useful. However, if H♥ denotes
the complement in H of the intersection of H with the closure of Y − H in Y , then (H,H♥)

is a semistable T -log scheme with boundary. There is natural map

h : RΓconv(H/T ) −→ R lim
←
n

RΓcrys((H,H♥)/Tn) ⊗W K0 ,
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constructed as follows. We say a T∞-log scheme is strictly semistable if all its irreducible
components are smooth W -schemes and if étale locally it is the central fibre of a morphism
Spec(W [t1, . . . , tn]) → Spec(W [t]), t �→ t1 · · · tm (some n ≥ m ≥ 1), with the log struc-
tures defined by the vanishing locus of t resp. of t1 · · · tm. We find an étale cover Y = {Yi}i∈I

of Y and for each i ∈ I a semistable T∞-log scheme Yi together with an isomorphism
Yi ⊗W k ∼= Yi . Taking suitable blowing ups in the products of these Yi (a standard pro-
cedure, compare for example [8]) we get an embedding system for Y over T∞ where a typical
local piece YJ =

∏
Y (Yi)i∈J of Y is exactly embedded as YJ → YJ with YJ a semistable

T∞-log scheme and such there is a closed subscheme HJ of YJ , the union of some of its
irreducible components, such that H ×Y YJ = HJ ×YJ

Y . Now YJ is log smooth over
T∞, hence its p-adic completion ŶJ may be used to compute RΓconv(H ×Y YJ /T ). On
the other hand, let H♥

J ⊂ HJ be the open subscheme which is the complemet in YJ of all

irreducible components of YJ which are not fully contained in HJ . Then (HJ ,H
♥
J ) is a

smooth T∞-log scheme with boundary, hence its p-adic completion may be used to compute
R lim←

n
RΓcrys((H ×Y YJ ,H♥ ×Y YJ )/Tn) ⊗W K0. By the proof of [2] Proposition 1.9 there

is a natural map from the structure sheaf of the tube ]H ×Y YJ [ŶJ
to the structure sheaf of

the p-adically completed DP envelope, tensored with Q, of H ×Y YJ in HJ . It induces a map
between our de Rham complexes in question, hence we get h. By the same local argument
which showed the isomorphy of the map g in the proof of Theorem 3.14 we see that h is an
isomorphism; the work on local lifts of P 0

M there is replaced by work on local lifts of Y here.
In particular, if H is proper, each RjΓconv(H/T∞) is finite dimensional.

3.16. Suppose k is perfect. Then there is a canonical Frobenius endomorphism on the
log scheme Tn (cf. [5] 3.1): The canonical lift of the p-power map on k to an endomorphism
of Wn, together with the endomorphism of the log structure which on the standard chart N is
multiplication with p. We can also define a Frobenius endomorphism on RΓcrys((Y , Y )/Tn)

for a semistable T -log scheme with boundary (Y , Y ), because we can define a Frobenius
endomorphism on the embedding system used in 3.11, compatible with that on Tn. Namely,
on a standard Tn-log scheme with boundary (Xn,Xn) as occurs in the proof of Lemma 3.9
we act on the underlying scheme by the Frobenius on Wn and by ti �→ t

p
i (all i), and on

the log structure we act by the unique compatible map which on our standard chart N i2 is
multiplication with p. Then we lift these endomorphisms further (using the lifting property
of classical smoothness) to Frobenius lifts of our Y -covering and hence to the embedding
system.

3.17. We finish with perspectives on possible further developments.
(1) Mokrane [9] defines the crystalline cohomology of a classically smooth k-scheme

U as the log crystalline cohomology with poles in D of a smooth compactification X of U

with D = X − U a normal crossing divisor. This is a cohomology theory with the usual good
properties (finitely generated, Poincaré duality, mixed if k is finite). He shows that under
assumptions on resolutions of singularities, this cohomology theory indeed only depends on
U . We suggest a similar approach to define the crystalline cohomology of a semistable k-log
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scheme U : Compactify it (if possible) into a proper semistable T -log scheme with boundary
(X,U) and take the crystalline cohomology of (X,U).

Similarly, classical rigid cohomology as defined by Berthelot [1] works with compacti-
fications. Also here, to define log versions it might be useful to work with log schemes with
boundary to avoid hypotheses on existence of compactifications by genuine log morphisms.

(2) We restricted our treatment of crystalline cohomology to that of semistable T -log
schemes with boundary (Y , Y ) relative to Tn. For deformations of T = T1 other then Tn

— for example, (Spec(Wn), 1 �→ p) — we have at present no suitable analogs of Lemma
3.9. However, such analogs also seem to lack in idealized log geometry: for an ideally log
smooth T -log scheme (like the union of some irreducible components of a semistable k-log
scheme in the usual sense), there seems to be in general no lift to a flat and ideally log smooth
(Spec(Wn), 1 �→ p)-log scheme. Some more foundational concepts need to be found.

Let us nevertheless propose some tentative definitions of crystalline cohomology for
more general fine log schemes T and more general T -log schemes with boundary (without
claiming any results). Suppose that p is nilpotent in OW and let (I, δ) be a quasicoherent DP
ideal in OW . All DP structures on ideals in OW -algebras are required to be compatible with
δ. Let T0 be a closed subscheme of T and let γ be a DP structure on the ideal of T0 in T .
Let (X,X) be a T -log scheme with boundary, and let X0 be the closure in X of its locally
closed subscheme X ×T T0. We say γ extends to (X,X) if there is a DP structure α on the
ideal of X0 in X, such that the structure map X → T is a DP morphism (if α exists, it is
unique, because OX → i∗OX is injective). Then we say (X,X) is a γ -T -log scheme with
boundary. For a γ -T -log scheme (X,X) we can define the crystalline site and the crystalline
cohomology of (X,X) over T as in the case of usual log schemes.

Example. Let T 0 ⊂ T be a closed immersion. Suppose T is the DP envelope of T 0 in
T and T0 ⊂ T is the closed subscheme defined by its DP ideal; we have T0 = T 0 if δ extends
to T . Now if (X,X) is a T -log scheme with boundary, we obtain a γ -T -log scheme with
boundary (X,X) by taking as X the DP envelope of the schematic closure of the subscheme
X ×T T 0 of X.
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