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СЕРИЯ МАТЕМАТИЧЕСКАЯ Том 77, № 3, 2013

УДК 512.7

C. Diemer, L. Katzarkov, G. Kerr

Compactifications of spaces of Landau–Ginzburg models

This paper reviews the results and techniques from the authors’ work on
Landau–Ginzburg degenerations and applies them in basic examples. The
main example is the An-category, where we observe a relationship to stabil-
ity conditions and directed quiver representations. We conclude with a brief
survey of applications to the birational geometry of del Pezzo surfaces.

Bibliography: 31 titles.

Keywords: homological mirror symmetry, moduli spaces.

DOI: 10.4213/im8019

Dedicated to I.R. Shafarevich on the occasion of his 90th birthday

§ 1. Introduction

One case of homological mirror symmetry is an equivalence between the derived
category of coherent sheaves on a Fano variety X and the Fukaya–Seidel category

of its mirror Landau–Ginzburg, or LG, model w : Xmir → C. There are many con-
structions of the mirror [1], [2] but all depend on a choice of symplectic form on X.

Moving within the complexified Kähler cone of X gives an open parameter space

of mirror LG models. While the Fukaya–Seidel categories of any two mirror LG

models from this space are equivalent, we may assign distinct exceptional collec-

tions and semi-orthogonal decompositions to certain regions. We observe that these

decompositions should be related to the space of stability conditions of Db(X). For

more on LG models from this vantage point see [3]–[6].

In [7], [8], the authors examine these phenomena in the toric context and com-

pactify the space of LG models into a toric stack MA,A′ using methods from
[9], [10]. The boundary of this stack gives degenerations of the LG models where

both the fibres and the base of the model degenerate. Examining the fixed points

ofMA,A′ , we see that an LG model decomposes into a chain of regenerated circuit

LG models. In [7] we considered the symplectic topology of these degenerated pieces

and observed that, under homological mirror symmetry, they correspond to semi-

orthogonal components of Db(X) obtained by running the toric minimal model pro-

gramme on the mirror toric Fano X. We expect that this type of correspondence
between Mori-theoretic semi-orthogonal decompositions and degenerated LG mod-

els holds in much more generality, leading to a new approach to birational geometry.

In addition to reviewing the definitions and theorems in the approach outlined

above, we give a detailed account of a basic example, which is still rich in structure.

Here our LG models are simply single-variable polynomials f : C → C of degree

n+ 1 and the Newton polytope is simply the interval [0, n+ 1]. Because the fibres

c⃝ C. Diemer, L. Katzarkov, G. Kerr, 2013
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are finite sets, this allows us to set aside much of the technical symplectic topology

in [7]. The secondary polytope of the interval was investigated in [9], where it was

shown to be a cube whose lattice structure is strongly related to An representation
theory. We investigate the universal family over the toric stack of this cube which

was identified with a quotient of the Losev–Manin space in [11]. Finally, we analyze
the monotone path polytope in this setting, as well as the combinatorial structure

of the vanishing thimbles near the degenerated LG models. After this careful study,

we observe connections with the classical representations of An quivers and an inter-

pretation of reflection functors as wall crossing in the space of stability conditions

of the An-category.

In the final section of the paper, we explore the homological mirror of the

three-point blow-up X of P
2. We build on the work of [12], which studied relations

between Sarkisov links. In the usual set-up of Sarkisov links, earlier contractions

do not play a prominent role. We explain how the toric compactification of the LG

model mirror of X preserves these data and gives a more complete picture of the

minimal model program for X.

The authors would like to thank D. Auroux, M. Ballard, C. Doran, D. Favero,

M. Gross, F. Haiden, A. Iliev, S. Keel, M. Kontsevich, J. Lewis, T. Pantev,

V. Przyjalkowski, H. Rudatt, E. Scheidegger, Y. Soibelman, and G. Tian for valu-

able comments and suggestions.

§ 2. Toric Landau–Ginzburg models

In this section we review constructions from [7] which compactify the moduli of

hypersurfaces in a toric stack, and a moduli space of LG models. This is followed
by a detailed definition of radar screens, which are distinguished bases for the LG

models designed to preserve categories in the degenerated models. The choices
involved in defining these bases are condensed into a torsor over the monotone path
stack.

2.1. Toric stacks and LG models. We start by introducing the toric machin-

ery that we need for the rest of the paper. Letting M be a rank d lattice and A
a finite subset of M , we take Ā ⊂ N to be the collection of primitive normal vectors

to facets of Q = Conv(A). Here we use the usual notation for N = Hom(M,Z)

and write Conv(A) for the convex hull of a set of points. The normal fan FQ of Q

has Ā as the set of generators for rays and defines an abstract simplicial complex

structure on Ā. We take the toric variety XQ to be the variety associated with FQ.

To promote this to a toric stack, we follow the prescription given in [13] and [14].

For any set B, take {eα : α∈B} to be a basis for R
B . Define UQ⊂C

Ā to be the

open toric variety given by taking the fan in R
Ā consisting of cones Cone{eα : α∈σ},

where σ is any cone in the normal fan FQ of Q. The map βĀ : Z
Ā → N is defined

to take eα to α and we write its kernel and cokernel as LĀ and KĀ. Define the

group LQ = (LĀ ⊗ C
∗) ⊕ Tor(KĀ,C

∗) as a subgroup of (C∗)Ā using the inclusion

and connecting homomorphism to obtain the stack

XQ = [UQ/LQ].
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The variety XQ is the coarse space of XQ. As in the case of toric varieties defined

from polytopes, the stack XQ comes equipped with a line bundle OQ(1). Let-

ting QZ = Q ∩M , the space of sections H0(XQ,OQ(1)) has an equivariant basis
{sα : α ∈ QZ} and a linear system LA = Span{sα : α ∈ A}. We distinguish two

open subsets of LA, the full sections

LfA =
{
s =

∑
cαsα : cα ̸= 0 for all vertices α ∈ Q

}
,

and the very full sections

LvfA =
{
s =

∑
cαsα : cα ̸= 0 for every α ∈ A

}
.

As illustrated in Fig. 1, we take the sets A1 = {0, 1, 2, 3} ⊂ Z and A2 =

{(0, 0), (−1,−1), (−1, 0), (0, 1), (1, 1), (1, 0), (0,−1)} ⊂ Z
2. The first example gives

XQ1
= P

1, with line bundle OA1
(1) = O(3) and the linear system LA1

consisting

of all sections. The full sections LfA1
are those that do not vanish at the torus fixed

points 0 and ∞. The second example XQ2
is a 3-point blow-up of P

2. The bundle

OQ2(1) in this case is the anti-canonical bundle and the linear system again consists
of all sections.

Figure 1. The sets A1 and A2

Many of the LG models arising in homological mirror symmetry are obtained
from pencils on XQ contained in LA. It is common for the behaviour of these

pencils at infinity and zero to be prescribed. We now give a concise definition

of this constraint.

Definition 2.1. Let A′ be a proper subset of A. An A′-sharpened pencil on XQ
is a pencil W ⊂ LA which has a basis {s1, s∞} for which s1 =

∑
α∈A cαsα ∈ L

vf
A

and s∞ =
∑
α∈A′ cαsα.

Let UA,A′ be the open subset of A′-sharpened pencils in the Grassmannian

Gr2(H
0(XQ,OQ(1))). We now examine two other equivalent ways of defining

an A′-sharpened pencil. Given s1 ∈ W as in the definition above, take s0 =∑
α̸∈A′ cαsα. Letting (A′)◦ be the complement of A′, the pair (s0, s∞)∈C

(A′)◦×C
A′

gives another basis for W which is unique up to a multiple (λs0, λs∞) for some

λ ∈ C
∗. We define

w = [s0 : s∞] : XQ − {s∞ = 0} → C

to be the LG model of the A′-sharpened pencil W .
Alternatively, we may write W ∈ UA,A′ as the closure of an equivariant map, or

orbit, iW : C
∗ → LvfA . Taking the one-parameter subgroup GA′ ⊂ (C∗)A given by
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the cocharacter γA′ =
∑
α∈A′ e∨α ∈ (ZA)∨ and any very full section s ∈ W , observe

that W = {λ · s : λ ∈ GA′}. When referring to an A′-sharpened pencil, we may

utilize any of these three equivalent viewpoints. We will observe examples of these

pencils in the next section and see that the orbit perspective turns out to be quite

useful.

In general, the fibres of w over 0 and ∞ have bad behaviour which is corrected
by judicious blow-ups. We explain this bad behaviour from a global perspective.

Let DQ =
∑
Di, where the sum is over the facets of Q, be the toric boundary of XQ

and for any subset J of facets, let ZJ =
⋂
j∈J Dj . If s ∈ LA, write Ys for the

hypersurface defined by s and Ys,J = Ys ∩ ZJ . For any subset U ⊂ LA, we have

the incidence stacks I(U) ⊂ U × XQ and IJ ⊂ U × XQ, whose points are given

by pairs {(s, y) : s ∈ U, y ∈ Ys} and {(s, y) : s ∈ U, y ∈ Ys,J} respectively.

Proposition 2.2. The set U = LfA is the maximal open subset of LA for which

the projection πLA
: IJ(U)→ U is flat for all subsets J .

Proof. This follows from the observation that the sections which are not full
are equivalent to sections that contain fixed points of the toric action. Thus they

contain zero-dimensional intersections ZJ .

For our purposes, a reasonable moduli space of sections should not exhibit this

behaviour. In the next subsection, we modify these sections along with their fibres

in order to obtain a proper flat family.

2.2. The secondary stack. To remedy the fact that the incidence varieties

give a poorly behaved parameter space for the hypersurface, we review the construc-

tions of the secondary and Lafforgue stacks given in [7], where more details can be

found. We assume that the reader is familiar with material found in [13], [14] and [9].

Given A as above, the secondary polytope Σ(A) ⊂ R
A is an (|A|−d−1)-dimensional

polytope whose faces correspond to regular subdivisions S = {(Qi, Ai) : i ∈ I} of A.

Here I is some indexing set of marked polytopes (Qi, Ai) which subdivide (Q,A).

The normal fan FΣ(A) of Σ(A) can be refined to a fan FΘ(A) as in [15] and [10]

by considering pairs (S,Q′) of a subdivision S along with a set Q′ which is a face

of a subdivided polytope (Qi, Ai) ∈ S. Then a cone σ(S,Q′) in FΘ(A) is defined as

all functions η on A whose lower convex hull gives the marked subdivision S and

whose minimum is achieved on Q′ ∩A.

Proposition 2.3 [7]. If ∆A ⊂ R
A is the unit simplex, then FΘ(A) is the normal

fan of the Minkowski sum Θ(A) := Σ(A) + ∆A ⊂ R
A .

As the secondary polytope Σ(A) lies in a translation of the kernel LA ⊗ R :=

ker(RA → MR ⊕ R), it enjoys (d + 1) constraints. Similarly, the polytope

Θ(A), which we call the Lafforgue polytope, lies in a translation of the hyperplane

H = {
∑
α cαeα :

∑
α cα = 0} and therefore has (|A| − 1) dimensions. This drasti-

cally limits the number of examples of Lafforgue polytopes that one can visualize,

but our case A1 rendered in Fig. 2 gives an indication of the relationship between
the original marked polytope (Q,A), the secondary polytope Σ(A) and Lafforgue

polytope Θ(A). Observe that corresponding to each vertex of the secondary poly-

tope, there is a regular triangulation of (Q,A) which can be seen as a unique subset
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Figure 2. The secondary polytope and Lafforgue polytope for A1

of the facets of the Lafforgue polytope. The second example, A2 has a 4-dimensional

secondary polytope with 32 vertices and a 7-dimensional Lafforgue polytope. Nev-

ertheless, we will be able to use a polytope derived from these data to analyze the

minimal model runs of the homological mirror of XQ2
in the last section.

Since Θ(A) is a Minkowski sum, we have maps π̃A : XΘ(A) → XΣ(A) and

π̃Q : XΘ(A) → P
|A|−1. If i : p →֒ XΣ(A) sends a point to the orbit orbS associ-

ated with a subdivision S = {(Qi, Ai) : i ∈ I}, then we may define XS as the

pullback in the fibre square

XS
j

//

ρS

��

XΘ(A)
π̃Q

//

π̃A

��

P
|A|−1

p i
// XΣ(A)

(2.1)

One only needs to trace through the definitions to see that π̃Q ◦ j maps XS into

the union of the images of the toric varieties XQi
via their LAi

maps. At the level

of varieties, this gives us a simultaneous degeneration of XQ and OQ(1). Taking

a global section of π̃∗
Q(O(1)) yields a degeneration of hypersurfaces. In this way,

we have a universal space for performing the degenerations along the lines of the

Mumford construction.

We would like to promote this set-up to a morphism of stacks π : XΘ(A) →

XΣ(A) in such a way that I(LfA) has an étale map to XΘ(A) and the quotient

[I(LfA)/(C∗)d+1] is naturally an open substack of XΣ(A). This was carefully done

in [7] and we review the procedure here.

Both the secondary and Lafforgue polytopes have vertices in a hyperplane par-

allel to HZ = {
∑
α cαeα :

∑
α cα = 0} ⊂ Z

A. We consider both polytopes to live
in H ⊂ R

A and write iH : HZ → Z
A for the inclusion. As in the case of Ā, there is

an exact sequence

0 // LA
δA

//
Z
A

βA
// M // KA

// 0 (2.2)

The hyperplanes supporting Θ(A) can be partitioned into horizontal and verti-

cal hyperplane sections Θ(A) = Θ(A)
h
∪ Θ(A)

v
, and the vertical hyperplanes are

all scalar multiples of (βA ◦ iH)∨(Ā). To define a stacky fan, one must choose
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generators for the one-cones. As opposed to taking primitives for the one-cones

in Θ(A)
v
, we take the generators in the image (βA ◦ iH)∨(Ā), while for the horizon-

tal hyperplanes in Θ(A)
h
, we choose the primitives of the hyperplanes in Θ(A)

h
.

This defines the stacky fan which gives Lafforgue stack XΘ(A) associated with A.

To give the definition of the secondary stack, we rely on a universal colimit

construction for toric stacks. It is not hard to show that, if X̃Σ(A) is the stack given

by Σ(A), then δ∨A induces a map

g : XΘ(A) → X̃Σ(A). (2.3)

The colimit stack XΣ(A) of g comes equipped with a map π : XΘ(A) → XΣ(A). Both
XΣ(A) and π can be described by the universal property that if g can be factored into

two flat, equivariant morphisms h1 ◦ h2, where h1 : XΘ(A) → X and X is a (good)

toric stack, then there is a map k : XΣ(A) → X with h1 = k ◦ π. This property

makes XΣ(A) the best toric candidate for the moduli stack of hypersurfaces in XQ.

Theorem 2.4 [7]. There is a hypersurface YA ⊂ XΘ(A) for which the map π :

YA ∩ (∂XΘ(A))J → XΣ(A) is flat for all horizontal boundary strata J ⊂ Θ(A)
h
.

The stack XΣ(A) contains a dense open substack V ≈ [I(LfA)/(C∗)d+1] for which

π : YA(V )→ V is equivalent to the quotient map of [I(LfA)/C∗].

This theorem shows that π : YA → XΣ(A) is a reasonable compactification of
the universal hypersurface over the moduli stack of toric hypersurfaces. It is this

compactification that allows us to degenerate LG models and understand their
components.

It will be useful to identify the hypersurface of sections in V ⊂ XΣ(A) that

do not transversely intersect the toric boundary of XQ. Recall that the principal

A-determinant from [9] does precisely this and has the secondary polytope as its

Newton polytope. Thus it can naturally be written as a section of OXΣ(A)
(1), and

we write EA for its zero loci.

2.3. The stack of LG models. In this subsection we will review a toric com-

pactification of the space of LG models arising from A′-sharpened pencils. Near

the fixed points of this compactification, we give a procedure for obtaining a semi-
orthogonal decomposition of the directed Fukaya category of the model.

The geometry of a fibre polytope has already been proven useful in the case
of a secondary polytope. As it turns out, this more general notion works well in
describing several moduli problems in the toric setting [16]. In particular, given

two toric varieties, or stacks, XQ1 and XQ2 arising from marked polytopes, one may

define a space of equivariant morphisms ψ : XQ1
→ XQ2

for which ψ∗(OQ2
(1)) =

OQ1
(1) up to toric equivalence. This space has a reasonable compactification to

a toric stack whose moment polytope is the fibre polytope Σ(Q2, Q1).

In the previous section, we examined the case where Q2 was the simplex and
Q = Q1. This gave the secondary polytope Σ(A) = Σ(Q2, Q1) as the moment poly-

tope of the stack XΣ(A), which was regarded as a compactification of the moduli

stack of toric hypersurfaces of OQ(1) in XQ. Prior to this construction, we consid-

ered LG models on Q to be A′-sharpened pencils W which were given as equivariant

maps iW : C
∗ → LfA. Two A′-sharpened pencils W , W̃ are equivalent if W = λW̃
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for some λ ∈ (C∗)d+1. Thus, from the perspective of equivariant maps, an LG model

is an equivariant map ιW : C
∗ → [LfA/(C

∗)d+1] up to toric equivalence. By equiv-

ariant, we mean with respect to the torus embedding C
∗ → L∨

A ⊗ C
∗ given by the

cocharacter γ := δ∨A(γA′), where δA is defined in equation (2.2) and γA′ ∈ (ZA)∨

in § 2.1. Note that the codomain of ιW is an open chart for the stack XΣ(A), imply-

ing that the collection of such maps is an open chart of equivariant maps from P
1

to the toric stack XΣ(A) with respect to the character map γ : LA → Z.

This map γ : LA → Z induces a map Σ(A) → [0, N ] on polytopes for some N
determined by A′. The fibre polytope Σ(Σ(A), [0, N ]) is known as the monotone

path polytope (an example of an iterated polytope; see [17]) and is denoted by
Σγ(Σ(A)). The associated fibre stack MA,A′ defined in [7] then serves as a com-

pactification of the open set of GγA′
-orbits (where GγA′

:= Z⟨γ⟩ ⊗ C
∗) contained

in the dense subset of XΣ(A). Its coarse space is simply the toric variety associated

with Σγ(Σ(A)). We codify these notions in the following proposition.

Proposition 2.5 [7]. The quotient stack UA,A′ = [UA,A′/(C∗)d+1] of A′-

sharpened pencils forms an open dense subset of the proper toric stack MA,A′ . The

fixed points of MA,A′ are in one-to-one correspondence with parametric simplex

paths of γ : Σ(A)→ [0, N ] and will be called maximal degenerations of w.

Recall from [18] that a parametric simplex path of a linear function on a polytope

is an edge path which increases relative to the linear function. One consequence

of the above construction is that, over any point ψ in MA,A′ , there is a chain
⟨ψ1, . . . , ψt⟩ of projective lines which has a flat family of degenerated toric varieties

(or stacks) lying over it. In the dense orbit, there is one such line, and the toric vari-

ety is irreducible, so we obtain an LG model. As we approach the toric boundary, we

bubble ψ into a stable map {ψi} on several components
⋃t

1 P
1, and simultaneously

degenerate the fibres of the LG model. In a maximally degenerated LG model, we
have a chain ⟨C1, . . . , Ck⟩ of maps to one-dimensional orbits of XΣ(A). Such strata

correspond to the edges of the secondary polytope Σ(A), which in turn correspond
to circuit modifications or bistellar flips of the triangulations at the vertices. In [7],

components of the fibres over each stable component were examined and found to

reproduce well-known relations in the mapping class group. They were also con-

jectured to represent homological mirrors to birational maps of the minimal model

on Xmir
Q .

2.4. Semi-orthogonal decompositions. Our next goal is to stratify our

space of LG models so that for every stratum, we obtain a semi-orthogonal decom-

position of the Fukaya–Seidel category of the associated model. The decomposition

we obtain will bear a direct relationship to the monotone paths corresponding to the

maximal degenerations. To do this, we start by recalling the notion of a radar screen,

which will yield the class of a distinguished basis of paths for the LG model [19].

The definition given here differs from that in [7], but generalizes it and has the

advantage of being valid for a generic LG model. Before we start the definition, it

is worth keeping in mind that radar screens are auxiliary concepts depending only

on configurations of points in C
∗ and do not depend on any of the toric stack def-

initions given earlier. In fact, one can consider their definition to be a logarithmic



62 C. DIEMER, L. KATZARKOV, G. KERR

variant of the more conventional procedure which chooses a distinguished basis of

paths to be those with constant imaginary value in the positive real direction [2].

Let Gr be the symmetric group on r letters, Er = (C∗)r/Gr the parameter space
of r unmarked points in C

∗ and P = {z1, . . . , zr} ∈ Er. We order the points in

such a way that |zi| > |zi+1| for 1 6 i 6 r and choose a lift P̃ = {w1, . . . , wr} such
that ewi = zi. Inductively define paths pi : [0,∞) → C starting at wi as follows.

For i = 1, we take the path p1(t) = w1 + t. Assuming that pi has been defined, we

take pi+1 to be the concatenation pi ∗ ℓi ∗ ℓ
′
i, where ℓ′i(t) = wi + t Im(wi+1 − wi)

for t ∈ [0, 1] and ℓi(t) = Re(wi) + Im(wi+1) − tRe(wi − wi+1). While the pi form

a set of overlapping paths, it is clear that for any ε, we can perturb pi to p̃i in such

a way that ∥pi − p̃i∥L2 < ε and {p̃i : 1 6 i 6 r} forms a distinguished basis for P̃ .

Furthermore, if the values of |zi| are distinct, the distinguished basis defined in this

way is unique up to an isotopy for ε≪ 1.

Definition 2.6. With the notation above, we say that BP̃ = {ep̃i : 1 6 i 6 r}

is a radar screen distinguished basis and take RP to be the collection of all such

bases. If P̃ ⊂ {w ∈ C : 0 6 Im(w) < 2π}, we write BP and call any such basis

a fundamental radar screen.

Our main application of this definition is when P is the collection of critical

values of an LG model w ∈ UA,A′ . Let ∆A,A′ be the variety of all A′-sharpened

pencils that do not transversely intersect the principal A-determinant EA regarded

as a subvariety of UA,A′ , UA,A′ orMA,A′ . We denote its complements in UA,A′ and

UA,A′ by VA,A′ and VA,A′ respectively. Take Ẽr = Er/C
∗ to be the quotient, where

C
∗ acts by multiplication.

Proposition 2.7. Suppose that r = |i−1
W (EA)| for some W ∈ VA,A′ . The map

c : VA,A′ → Er given by c(W ) = i−1
W (EA) can be completed to a commutative diagram

VA,A′

c
//

��

Er

��

VA,A′

c̃
// Ẽr

Proof. This follows from the quasi-homogeneous property of the principal
A-determinant with respect to the (C∗)d+1 action on C

A (see [9]). Indeed,

if iW , iW̃ ∈ UA,A′ are equivalent, then there exists (λ, η) ∈ (C∗)d+1 = C
∗×(C∗⊗N)

such that λ(1 ⊗ βA)∨(η)iW (z) = i
W̃

(z) for all z ∈ C
∗. But then EA(i

W̃
(z)) = 0

if and only if λvβA(p)(η)EA(iW (z)) = 0, where v = (d + 1) Vol(Q), p ∈ Σ(A) and

M is identified with Hom(C∗ ⊗N,C∗).

This proposition shows that a choice of radar screen for the critical values of an
A′-sharpened pencil can be consistently made on the quotient space VA,A′ . Now, the

discriminant ∆: Er → C given by ∆(z1, . . . , zr) =
∏
i<j(zi − zj)

2 is homogeneous

and thus its zero locus is pulled back from Ẽr. The associated braid group B̃r =

π1(Ẽr − {∆ = 0}) is in fact a quotient of the subgroup of the braid group Br+1

which is pure on the strand at the origin. It is clear that the map c̃ induces
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a representation of the fundamental group of VA,A′ into B̃r. More generally, we

have a representation of fundamental groupoids,

r : Π(VA,A′)→ Π(Ẽr −∆).

Define ∆R(z1, . . . , zr) =
∏
i<j(|zi| − |zj |)

2 to obtain a real stratification S̃ =

{Rρ : ρ ∈ P} of Ẽr. Here P denotes the set of partitions of {1, . . . , r} and Rρ =

{{z1, . . . , zr} : |zi| = |zj | for i ∼ρ j, and |zi| 6 |zi+1|}.

Definition 2.8. The pullback stratification

S = {R a component of c̃
−1(Rρ) : Rρ ∈ S̃}

on UA,A′ will be called the norm stratification.

From the description of the toric boundary strata ofMA,A′ , we may extend the
norm stratification on VA,A′ to the boundary. We will suppress the details of this

extension, which are evident from the fact that the orbits degenerate to sequences
of orbits, and refer to the resulting stratification on MA,A′ as the extended norm

stratification.

To use the definitions given above, we need a result that gives us a well-defined

category on which to work. If the sharpening set A′ is chosen carefully, the asso-

ciated LG model w has a sensible definition of a Fukaya–Seidel category F⇀(w).

For example, we have the following proposition.

Proposition 2.9 [7]. Assume that A′ ⊂ A is contained in the interior of Q.

If W transversely intersects the principal A-determinant, then its LG model w is

a Lefschetz pencil.

In particular, the singularities are isolated and Morse, and parallel transport is

well defined along the base so that the usual notion of Fukaya–Seidel categories

applies [19]. Moreover, the collection of distinguished bases is acted on by the
full braid group Br, and this extends to an action on exceptional collections via

mutations [20].

From this proposition and the results in the above references, it is not difficult

to obtain our main theorem for this section.

Theorem 2.10. The space VA,A′ has a stratification S such that, for any com-

ponent R ∈ S , there exists a Z
r torsor CR of semi-orthogonal decompositions

of F⇀(w) with the following properties.

(i) If R1 < R2 ∈ S , then there is a bijective map τ : C2 → C1 such that the semi-

orthogonal decomposition S ∈ C2 refines that given by τ(S).

(ii) If γ : [0, 1]→ VA,A′ is any morphism in Π(VA,A′) with γ(0), γ(1) ∈ R0 giving

exceptional collections, then r(γ) acts by mutation to map CR0
to itself.

(iii) Assume that R ∈ S and w ∈ R is in the boundary of MA,A′ and corre-

sponds to a sequence ⟨w1, . . . ,wt⟩ of partial Lefschetz fibrations. Then every semi-

orthogonal decomposition in CR refines the decomposition ⟨F⇀(w1), . . . ,F
⇀(wt)⟩.
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Proof. The first two parts follow directly from the definition. The third follows

from the fact that we may choose a path fs of LG models in CR converging to w with-

out effecting the semi-orthogonal decomposition. At s = 0, the partition ρ becomes
coarser and the semi-orthogonal categories of w are generated by unions of those in

the decomposition of fs. From the description of the boundary of π : XΘ(A) → secA,
we observe that the k-category Tk in the decomposition of w is generated by the

union of the vanishing thimbles of fs, whose critical value converges to the critical

set of wk. From the definition of radar screens, the set of distinguished paths with

this property follow a single path in the base of fs outside any annulus for which

fs converges to wk. Thus, the category Tk is equivalent to F⇀(wk).

Note that this gives a direct relationship between the combinatorics of maximal

degenerations, or parametric simplex paths, and decompositions of Fukaya–Seidel
categories of LG models near such degenerations.

§ 3. An-categories

In this section we consider the most basic possible case, the directed An-category.

We give a detailed construction of the secondary, Lafforgue and monotone path
stacks in this case. In particular, we describe the combinatorics of the monodromy

maps around the discriminant and toric boundary. Symplectic geometry in these
cases is completely absent, as the Fukaya categories are more of a combinatorial
nature. Nevertheless, the structure and geometry of the decompositions and repre-
sentations of this category is surprisingly rich and illustrates some of the techniques

that are applied in higher dimensions.

3.1. The Lafforgue stack of an interval. The derived An category can be
given by the Fukaya–Seidel category of a single polynomial,

w(x) = cn+1x
n+1 + · · ·+ c1x+ c0 ∈ C[x]

with cn+1 ̸= 0, whose marked Newton polytope (Q,A) is clearly Q = [0, n + 1],
A = {0, 1, . . . , n+ 1}.

A first step towards understanding this example is to characterize the stacks

XΣ(A) and XΘ(A). We will derive XΘ(A) by obtaining its stacky fan. The secondary

polytope of A was examined in [9] and was seen to be affinely equivalent to the

representation-theoretic polytope P (2ρ) which is the convex hull of the dominant

weights {ω} of An such that ω 6 2ρ, where 2ρ is the sum of the positive roots. We
begin by reviewing the observations there and establishing notation.

Take {e0, . . . , en+1} as a basis for Z
A and {α1, . . . , αn} as a basis for Λr ≈ Z

n

and examine the fundamental exact sequence for A

0 // Λr
δA

//
Z
A

βA
//
Z

2 // 0,

where βA(ei) = (1, i) and δA(αi) = −ei−1 +2ei− ei+1. Write Cn for the An Cartan

matrix and recall that this serves as a transformation matrix from the simple roots
to the fundamental weights. We will view Λr as the An root lattice with simple
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roots {αi}, fundamental weights {λ1, . . . , λn} ⊂ Λ := Λ∨
r and ρ =

∑n
i=1 λi =

1
2

∑n
i=1 i(n+ 1− i)αi the Weyl element. Using the Cartan form, we embed Λr in Λ

and view the αi as elements of Λ as well. We also write [n] for the set {1, . . . , n}.

Proposition 3.1 [9]. The normal fan F of Σ(A) in Λ⊗R has 1-cone genera-

tors {α1, . . . , αn,−λ1, . . . ,−λn} in the weight lattice Λ and cones

σI,J = Span
R>0
{−λi, αj : i ∈ I, j ∈ J}

for any pair of disjoint sets I, J ⊂ [n].

The vertices of Σ(A) are easily seen to be in one-to-one correspondence with
subsets K = {k0 < · · · < km} ⊂ [n] representing the triangulations TK =

{([ki, ki+1], {ki, ki+1})} and corresponding to the vertex ϕK =
∑m
i=0(ki+1−ki−1)eki

of Σ(A).

In order to obtain the secondary stack, we need to write out the stacky fan

for the Lafforgue stack and find the colimit stack. The facets of the Lafforgue
polytope were shown in [7] to correspond to pointed coarse subdivisions of A. Since

Θ(A) is an (|A| − 1)-dimensional polytope, we define the supporting hyperplane

functions Θ(A) as elements in (ZA)∨ but restrict them to linear functions on Γ =

{
∑
i ciei :

∑
i ci = 0}. Letting fi = δA(αi) and f0 = e0−e1, we take {f0, f1, . . . , fn}

as a basis for Γ so that δA : Λ→ Z
A lifts to δ̃A : Λ→ Γ. As we will show in a moment,

there are 3n + 2 facets of Θ(A), so the stacky fan is obtained by a fan in R
3n+2

along with a map ξA : Z
3n+2 → Γ∨ which gives the group GΘ(A) ≃ ker(ξA) ⊗ C

∗.

We write {gi : 1 6 i 6 3n+ 2} for the standard basis of Z
3n+2.

The pointed coarse subdivisions (S,B) of A can be classified into three types.

For each i, 1 6 i 6 n, there is a pointed subdivision ((Q,A − {i}), A − {i})

whose supporting hyperplane function gi is given by e∨i ∈ (ZA)∨, so that ξA(gi) =

−fi−1 + 2fi − fi+1. Also, for every i, 1 6 i 6 n, there are two pointed sub-

divisions corresponding to Q = [0, i] ∪ [i, n + 1] with pointing sets {0, . . . , i}

and {i, . . . , n+ 1} respectively. The supporting primitives are easily seen to be
g2i =

∑m+1
j=i+1(j − i)e∨j and g3i =

∑i
j=0(i − j)e∨j , implying that ξA(g2i) = −fi

and ξA(g3i) = −fi − f0. Finally, there are two vertical pointed subdivisions

((Q,A), {0}) and ((Q,A), {n+ 1}) corresponding to the one-cones for XQ. The

linear functions corresponding to these two subdivisions are g3n+1, g3n+2, which

map to ξA(g3n+i) = (−1)i+1f∨0 . We can write the map ξA as the matrix

ξA =

[
−1 0 . . . 0 0 . . . 0 1 . . . 1 1 −1

Cn − I − I 0 0

]

where I is the n× n identity matrix.
The maximal cones of the Lafforgue fan FΘ(A) are indexed by pointed triangu-

lations {(K, k) : K ⊂ [n], k ∈ K ∪{0, n+1}}. For example, if k ̸= 0, n+1, the cone

in FΘ(A) associated with (K, k) is

σ(K,k) = Cone
(
{gj : j ̸∈ K} ∪ {g2j : j ∈ K, j 6 k} ∪ {g3j : j ∈ K, j > k}

)
.

If k ∈ {0, n+1}, we add g3n+1, g3n+2 respectively to the generating set above. This
in particular implies that FΘ(A) is a simplicial fan.

3 Серия математическая, т. 77, № 3
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There is a map gF : FΘ(A) → FΣ(A) of fans which can be promoted to a map gF
of their canonical stacky fans, inducing the map g : XΘ(A) → X̃Σ(A) of toric stacks

from equation (2.3).

Proposition 3.2. The Lafforgue stack XΘ(A) for A = {0, . . . , n+ 1} is smooth

with covering {U(K,k)}. The secondary stack XΣ(A) is smooth and is given by the

stacky fan described in Proposition 3.1.

Proof. The first sentence follows from the observation above that FΘ(A) is sim-
plicial and therefore its canonical stack is smooth. For the second, recall from

[21] and [7] that the map gF of stacky fans consists of a pair of lattice maps

((gF )1, (gF )2) : (ZΘ(A),Γ) → (ZΣ(A), L∨
A). An elementary computation shows that

(gF )1 : Z
Θ(A) → Z

Σ(A) is onto if n > 1, implying that the colimit stack XΣ(A) of g

equals X̃Σ(A). The case n = 1 was covered in [7] and gives P(1, 2). Also, the fan

described in Proposition 3.1 is simplicial, implying that XΣ(A) is a smooth stack.

This implies that for n > 1, the secondary stack is given by taking the canonical
stack of the normal fan FΣ(A) while for n = 1, we have XΣ(A) = P(1, 2). This repro-

duces the stacks studied in [11] which are quotients of the Losev–Manin stack. In all

cases, there is a covering of XΣ(A) by {UK}K⊂[n], where UK is the chart associated

with the cone σK,[n]−K . Let us describe an open chart UK in the covering given

above. For K = {k1, . . . , km} ⊂ [n], assume that k1 < · · · < km and write k0 = 0,

km+1 = n+ 1 and ri = ki− ki−1 for i = 1, . . . ,m+ 1. Write µr for the group of rth

roots of unity and let µr act on C
r via ζ(z1, . . . , zr) = (ζz1, ζ

2z2, . . . , ζ
r−1zr−1, zr).

We also take this as an action on the first (r−1) coordinates. Then, using the basis

of the open cones in the weight lattice given in Proposition 3.1, the open stack UK
is easily seen to be the quotient stack

UK ≈ [Cr1 × · · · × C
rm+1−1/µr1 × · · · × µrk+1

].

This local description extends over the Lafforgue stack and the universal hypersur-

face. Indeed, writing GK for the group µr1 × µrm+1 , it is not hard to show that

there is a polydisc neighbourhood VK = [D1× · · · ×Dm/GK ] near the origin of UK
with

π−1
H (VK) ≈

[(m+1⋃

j=1

µrj

)
×D1 × · · · ×Dm/GK

]
.

Here GK acts in the obvious way on the set
⋃
µrj

.

3.2. Vanishing trees of maximal degenerations. Having described the sec-

ondary stack and Lafforgue stack for An, we would like to consider our space of LG

models which define the directed An-category. For this purpose, we choose A′ = {0}

and consider all A′-sharpened pencils on XQ = P
1. Since A′ is not in the interior

of A, we cannot apply Proposition 2.9. However, in this case we can state the

following proposition, whose proof is evident from the definitions in § 2.

Proposition 3.3. Let A = {0, . . . , n + 1} and A′ = {0}. The LG model of an

A′-sharpened pencil is a polynomial w(z) = cn+1z
n+1 + · · · + c0 of degree (n + 1)

such that ci ̸= 0 for 0 6 i 6 n+ 1.
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Note that the Fukaya–Seidel category is extremely sensitive to the choice of the

sharpening point (or set). For example, if A = {0, 1, 2} and we chose A′ = {1}

instead of {0}, we would obtain the homological mirror of P
1 instead of the category

of vector spaces (or the A1-category).

Recall that the moment polytope of the stack of MA,A′ is the monotone path
polytope of Σ(A) relative to the function γA′ = e∨0 and that maximal degenerated

LG models correspond to monotone edge paths of Σ(A). We describe this polytope

in the following proposition.

Proposition 3.4. If A = {0, . . . , n+1} and A′ = {0}, then the monotone path

polytope ΣγA′
(Σ(A)) is combinatorially equivalent to an (n − 1)-dimensional cube.

Proof. By the results of [18], the vertices of ΣγA′
(Σ(A)) correspond to paramet-

ric simplex paths on Σ(A). We recall that the vertices of Σ(A) are labeled by subsets

K = {k0, . . . , km} ⊂ {1, . . . , n} with associated triangulation TK = {[ki, ki+1]}. The

image of γA′ is easily seen to be [1, n+1], where the set of vertices of Σ(A) sent to 1

are all subdivisions {1, k1, . . . , km}. Omitting the element 1, we identify these with
subsets J = {k1, . . . , km} ⊂ {2, . . . , n}. Now observe that to any such vertex, there

is a unique parametric simplex path on Σ(A) relative to γA′ which has J as its mini-

mum. Indeed, if P = (J = K0,K1, . . . ,Kr) is a sequence of vertices in a parametric

simplex path, then {Ki,Ki+1} is an edge of Σ(A) and γA′(Ki) < γA′(Ki+1). It is
not hard to see that Ki = {ki+1, . . . , km} gives such a path, establishing the exis-

tence claim. To see that it is unique, suppose that P ′ = (K0, . . . ,Ki,K
′
i+1, . . . ,Kr)

is any other parametric simplex path. Since {Ki,K
′
i+1} is an edge of Σ(A), K ′

i is
obtained from Ki by inserting or deleting an element. As γA′(K ′

i+1) > γA′(Ki),

we cannot insert a point, and deleting any element besides ki+1 does not affect the

value of γA′ . Therefore K ′
i+1 = Ki+1 and the path is unique.

By the Minkowski integral description of fibre polytopes, one easily observes that

any face of γ−1
A′ (1) gives a face of ΣγA′

(Σ(A)). Since the vertices are in bijection,

this implies that the face lattices are equal and yields the proposition.

From the proof of Proposition 3.4 we obtain a combinatorial description of the

sequence of circuits associated with maximal degenerations. Our next goal is to give
a complete description of the semi-orthogonal decompositions connected with such

sequences. We first recall the degeneration and regeneration procedure from [7].
Consider a monotone path specified by J = {0, 1 = k0, k1, . . . , km = n + 1} and

a function η : A → Z which defines the triangulation given by J (see [22] or [9]).

Briefly recall that, for a < b ∈ A, if we write η′a,b = η(b) − η(a)/(b − a), then this

means that η′ki,ki+1
is increasing relative to i and that η(a) lies above the under-

graph of η for a ̸∈ J . To simplify the treatment, we also assume that η′ki,ki+1
∈ Z.

Fix any c= (cn+1, . . . , c0)∈C
n+2 such that ci = 1 for i∈J , and define the family of

polynomials

ψ(c, s, t)(z) =

(n+1∑

i=1

cis
η(i)zi

)
+ sη(0)t

which for s ̸= 0 give very full sections ψ(c, s, t) ∈ LvfA . Notice that this gives an

s-parameterized family of A′-sharpened pencils ψ(c, s,_). After quotienting by the

appropriate group, we can think of ψ as a function from C
∗ toMA,A′ , or as a func-

tion from (C∗)2 to XΣ(A). We will shift between these perspectives in what follows.

3*
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As was seen in the proof of Proposition 3.4, the circuit modifications ⟨C1, . . . , Cm⟩

associated with J are supported on Ci = {0, ki−1, ki} and correspond to edges

of Σ(A) with vertices TKi−1
and TKi

where Ti = {0, ki, ki+1, . . . , km}. For any i,

1 6 i 6 m, we may reparameterize ψ so as to obtain a regeneration of Ci. First
recall that such a regeneration of Ci is a map ψ̃i completing the diagram

C
∗ �

�

//

ρi

��

C× C
∗

ψ̃i

��

XΣ(Ci)
�

�

// XΣ(A)

(3.1)

where ρi is étale onto the complement of {0,∞} ⊂ XΣ(Ci), the top arrow is the

inclusion into {0} × C
∗, and ψ̃i is a finite map. Explicitly, this is given by repa-

rameterizing ψ̃i(s, t) = ψ(c, s, s
η(ki+1)−η(0)−ki+1η

′

ki+1,ki t) and completing to s = 0.

Indeed, letting z = s
η′ki,ki+1u, we have that lims→0 ψ̃i(s, t) converges to the circuit

pencil which can be written in the coordinate u as

wi(u) = uki+1 + uki + t. (3.2)

The functions wi are precisely those yielding the subcategories in the semi-

orthogonal decomposition from Theorem 2.10. One can think of the reparame-

terization as giving an asymptotic prescription for the ith bubble in the stable

map limit of ψ as s tends to 0. Moreover, it is important to remember that the

fibres of π : XΘ(A) → XΣ(A) over ψ̃ themselves degenerate into reducible chains of

projective lines
⋃m
j=i+1 P

1 as in Fig. 3.

Figure 3. The pullback of XΣ(A) and XΘ(A) for the monotone path J =

{0, 1, 2, 4, 8}
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Letting s and t tend to 0 in ψ̃i+1(s, t), one approaches the fixed point of XΣ(A)

associated with the triangulation TKi
in the monotone path. The u roots ZA(q) :=

π−1
H (q) of q = ψ̃i+1(s, t) ∈ XΣ(A) converge to the degenerated hyperplane section.

As described at the end of the previous subsection, this hypersurface degeneration

results in a partition of the fibre ZA(q) into (m− i) subsets Fi,i+1(q), . . . , Fi,m(q).
For every j > i, the set Fi,j(q) converges to (kj − kj−1) roots of unity of the jth

component of the degeneration of the fibre, while the component Fi,i+1(q) converges

to the ki roots of unity. Thus all the Fi,j(q) are cyclically ordered sets. For the

example illustrated in Fig. 3, the sets F0,1(q), F0,2(q), F0,3(q), F0,4(q) are clearly

seen in the leftmost fibre of π : XΘ(A) → XΣ(A) as the points in the lowest to highest
components.

For j > i+ 2, the subsets Fi,j(q) experience no monodromy as q varies near the
component Ci, regardless of the path. Thus for j > i + 2, there is a collection of

unique monodromy isomorphisms τi,j : Fi,j(q)→ Fi+1,j(q
′) where q and q′ approach

0 and ∞ respectively of Ci. To identify the remaining sets, we must choose a radar

screen B for ψ̃i+1(s, t) to obtain the isomorphism

τi,i+2 : Fi,i+1(q) ∪ Fi,i+2(q)→ Fi+1,i+2(q
′).

To define τi,i+2, we first take a path pj ∈ B which does not end at a point in Ci,

degenerate, and reparameterize the component γi of pj in such a way that it is

a path from 0 to ∞ in Ci (if i = 1, take the last path and concatenate to extend it
to 0). Then τi,i+2 is defined as the monodromy along γi : [0, 1]→ Ci.

Note that in the 1-dimensional case, vanishing thimbles of a polynomial w are

simply paths in C with endpoints on a fibre w
−1(q). Labelling them according

to which path in the radar screen they are defined by, we obtain an edge-labelled

tree which we refer to as the vanishing tree of w with respect to B. If we omit

the grading, this tree encodes all the data necessary to compute the algebra of the
morphisms between exceptional objects in F⇀(w). We would like to give a concrete

combinatorial formulation of this vanishing tree.
Towards this end, suppose that S1, S2 and S3 are finite sets such that S1 and S3

have a cyclic order and |S3| = |S1| + |S2|. We call a bijection σ : S1 ∪ S2 → S3

a cyclic |S2|-insertion if σ|S1
preserves the cyclic order. Now, assume that S2 comes

equipped with a total order< and label S2 = {s1, . . . , s|S2|}. Extend this to a partial
order on S1∪S2 by taking s < s′ if s ∈ S1 and s′ ∈ S2. If σ is a cyclic |S2|-insertion

and sk ∈ S2, define mσ(sk) = s′ ∈ S1 ∪ S2 to be the unique element less than sk
such that every element s ∈ S3 in the cyclic interval between σ(mσ(sk)) and σ(sk)

satisfies sk < σ−1(s). We define the incidence graph of this function:

Iσ,< = {(σ(s), σ(mσ(s))) : s ∈ S2} ⊂ S3 × S3.

Now, let P̃ (s) be a choice of logarithms of the critical values of ψ(c, s,_).

Theorem 3.5. For s≪ 1 and a radar screen distinguished basis {p1, . . . , pn} =
BP̃ (s) , the map τi,i+2 is a cyclic (ki+1 − ki)-insertion. There is a unique total

order < on Fi,i+2 such that the vanishing graph associated with {pki
, . . . , pki+1}

is Iτi,i+2,< . Furthermore, every cyclic (ki+1 − ki)-insertion σ and total order <
arises as a monodromy map for some radar screen and regeneration of wi .
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The dictionary to use for the input structures of this theorem is as follows. The

sets Fi,i+1(q), Fi,i+2(q), Fi+1,i+2(q
′) give S1, S2, S3 respectively, the perturbation

coefficient c gives a total order on S2, and the radar screen gives σ = τi,i+2.

Proof of Theorem 3.5. We sketch a proof. Let a = ki+1−ki, b = ki and recall

that the LG model ψ̃i(s, t) corresponding to Ci converges to wi(u) = ua+b +ub + t.

As an A′-sharpened pencil on C
∗, this is [f(u) : 1] := [ua+b + ub : 1] = [−t : 1]. We

take a moment to understand the geometry of this elementary polynomial f . First

observe that wi has a critical values at scaled roots of unity dζ for R = |b/(a+b)|1/a

and ζ ∈ µa, as well as a (b− 1) ramified critical value at 0. Let S1
r be the circle of

radius r and examine the contour Sr := f−1(S1
r ) ⊂ C as we vary r. It is not hard

to see that for r > R, Sr is a circle which is an (a + b)-fold cover of S1
r , while for

r < R it is a union of a + 1 circles, a of which cover S1
r once and the remaining

circle covers it b times. For r = R, Sr is a circle with a pinched pairs of points.

This is illustrated in Fig. 4.

Figure 4. Contours for |f(u)| = r

Note that wi is degenerate in the sense that it lies in the closure of the discrimi-
nant ∆A,A′ . Nevertheless, the sets Fi,i+1(q) and Fi,i+2(q) converge, up to a phase,

to the b roots of the inner circle of Fig. 4 and points contained in one of each of

the a outer circles, respectively. Were we to regenerate a straight line path from q

to q′, it is not hard to see that the monodromy would then give a cyclic b-insertion
Fi,i+1(q) ∪ Fi,i+2(q)→ Fi+1,i+2(q

′).

To obtain the actual monodromy map τi,i+2, we need to define a radar screen B
for the regeneration of wi/µa along ψ̃i(s, t). Recall from § 2 that a radar screen is

a distinguished basis of paths B = {p1, . . . , pa, pa+1} ending at the (a + 1) criti-

cal values {q1, . . . , qa, 0} of ψ̃i(s,_), ordered in such a way that |qi| > |qi+1|. It
is uniquely determined by the regeneration ψ̃i and a choice of logarithmic lifts

{q̃1, . . . , q̃a} of the critical values. We note that, up to first order, only the projec-

tion (ca+b−1, . . . , cb+1) of the coefficient c = (cn+1, . . . , c0) matters in determining

the norm ordering of the critical values for ψ̃i(s,_). It is easy to see that one may

prescribe any ordering with a judicious choice of such coefficients.

The key point in the proof is that for s≪ 1, Fig. 4 is only mildly modified, so that

instead of pinching off a circles at once when r = R, we pinch them off one by one,
each time r = |qi|. Through the identification of Fi,i+2 with the outer contours
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given above, we see that the ordering of critical values gives a total ordering <

of Fi,i+2. Between the pinches, the choice of logarithmic branch q̃i = log(qi) for the

radar screen B has the effect of rotating the circle Sr as one performs monodromy
along pi+1. Note that this monodromy preserves the cyclic ordering of the b points

that survive the pinching, so that the total monodromy of Fi,i+1(q) along δ−1
a+1 also

preserves the cyclic order. These observations show that τi,i+2 is a cyclic a-insertion

and Fi,i+2(q) is totally ordered.

To establish the claim about the vanishing tree, simply observe that, for each

pinch, we add a vanishing cycle connecting two points of the fibre f−1(pj(z)) on the
central component of Sr. One of the points will always be the point pinched off, and

the other will be one of its cyclic neighbours. The fact that this is always the clock-
wise neighbour corresponds to our choice of anticlockwise orientation for the radar
screen distinguished basis. It is left as an exercise to see that the resulting collection

of pairs of points is Iτi,i+2,<.

Figure 5. A vanishing tree for J = {0, 1, 2, 4, 8}

Applying this to the example J = {0, 1, 2, 4, 8} illustrated in Fig. 3 with fun-

damental radar screen gives the vanishing tree in Fig. 5. One starts with the

unique cyclic (1, 1)-insertion yielding the solid vanishing thimble, proceeds to

a (2, 2)-insertion which gives two dashed vanishing thimbles, and completes the

tree with a (4, 4)-insertion producing the 4 dotted vanishing thimbles. In general,

the proof above shows that the insertions can be chosen arbitrarily. However, if we

choose the fundamental radar screen distinguished basis for an exponential sequence

J = {0} ∪ {2i : 0 6 i 6 m}, it can be shown that each insertion is a perfect shuf-

fle [23]. This reflects the general phenomenon that the fundamental radar screen

gives insertions τi,i+1 that maximally separate the points in Fi,i+1(q) and Fi,i+2(q).

3.3. Interpretations of An-degenerations. We conclude this section with

some observations and corollaries of Theorem 3.5. First note that, were we to find

the actual exceptional collection associated with the vanishing tree, we would need

to include gradings on each of the edges. For ease of exposition, we neglect these

gradings, commenting only that choosing different logarithmic branches in a radar

screen that yield equivalent vanishing trees will generally alter the graded version.
Now, recall that Gabriel’s theorem classifies quivers of finite type as directed

Dynkin diagrams [24]. The set of quivers Q whose underlying graph is An can be

identified with the power set of {2, . . . , n}. To obtain a precise correspondence,

order the vertices of the quiver by {v1, . . . , vn} and edges {e2, . . . , en}, where ei =

{vi−1, vi}. We say that o(ei) = ±1 if ei is directed towards i or (i− 1) respectively.
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Then map J = {k1, . . . , km−1} ⊂ {2, . . . , n} to the unique quiver ΓJ which satisfies

o(ei) = −1 if and only if i ∈ J .

Given such a quiver, we assert that there is a natural T -structure on the

derived category D of right modules over the path algebra P(ΓJ) (recall that,

up to equivalence, D is independent of J). First, write Pi for the projective

module of all paths with target vi. Let pJ : {1, . . . , n} → Z be the function

pJ(j) = j
2 −

1
2

∑j
i=1 o(ei+1). We view pJ as a perversity function and define

(D>0
J ,D60

J ) as subcategories for which a bounded chain complex C∗ of right P(ΓJ)-

modules is in D>0
J if Hk(Hom(Pi, C

∗)) = 0 for all k < pJ(i) and likewise for D60
J .

Let us now construct a complete exceptional collection EJ = ⟨E1, . . . , En⟩ in the

heart D>0
J ∩ D

60
J for a given J . Define Ei = Pi[pJ(i)] if o(ei+1) = 1 and

Ei =
(
0← Pi[pJ(i)]

ei+1
←− Pi+1[pJ(i+ 1)]← 0

)

otherwise.

Given an exceptional collection E = ⟨E1, . . . , En⟩, write RE = Ext∗(
⊕n

i=1Ei,⊕n
i=1Ei) for its Yoneda algebra.

Proposition 3.6. The collection EJ is a complete, strong, exceptional collection

for D . The heart of (D>0
J ,D60

J ) is equivalent to the category of finitely generated

right modules over REJ
.

Proof. The first sentence follows from an elementary computation of the Ext
groups between the objects {E1, . . . , En}. The second follows from the facts that

Ei ∈ D
>0
J ∩D

60
J for all 1 6 i 6 n and the algebra RE is intrinsically formal (as the

collection is strong).

To connect this collection with maximal degenerations of LG models, we approach

the fixed point ψJ ∈ MA,A′ associated with J via a degeneration path ψ(c, s,_).

Using Theorem 3.5, we can describe the vanishing tree of a radar screen B through

a sequence of totally ordered, cyclic (ki+1−ki)-insertions. Partitioning {1, . . . , n+1}

into the ordered sets Si = {ki−1 + 1, . . . , ki} for 1 6 i 6 m, we identify

Fi,i+1 = {1, k1, k1 − 1, . . . , k0 + 1, k2, . . . , k1 + 1, . . . , ki−1, . . . , ki−2 + 1},

where the cyclic order is as written. We define the cyclic insertions σi : Fi,i+1 ∪

Si+1 → Fi+1,i+2 as the inclusion. Let R(J) be the radar screen which yields these

data and write the resulting exceptional collection as ER(J).

Proposition 3.7. For every J ⊂ {2, . . . , n}, RER(J)
≈ REJ

.

This proposition suggests that the space MA,A′ is connected with the space of
stability conditions for D. In the An case, near maximal degeneration points, we

obtain T -structures for the triangulated category of the LG model which are directly

related to Abelian categories of directed An-quivers. In other words, we have cate-

gorified the bijection between fixed points of the monotone path stack and directed

An-quivers to an equivalence between an exceptional collection of a degeneration
near the fixed point and an exceptional collection naturally associated with the
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directed quiver. Moving from one fixed point to another along certain edges of the

monotone path polytope crosses a wall in the norm stratification which results in

Coxeter functors, or tiltings, of the ambient triangulated category.

We end the section on the An case by a brief comment on homological mirror

symmetry. It is known that the homological mirror category for An is the graded

derived category of singularities for zn : C → C [2]. One can view this category as

a weighted divisor blow-up with weight n of the origin in C. The monotone path

associated with J may then be viewed as mirror to a sequence of m blow-ups with
weights (ki+1− ki). This perspective accords well with birational mirror symmetry

landscape discussed in [7] and [25].

§ 4. Three-point blow-up of P
2

We conclude this paper with an example of a different flavour from those in
the previous sections. Throughout, let X3 denote a smooth del Pezzo surface of

degree 6, that is, a blow-up of P
2 at three distinct non-collinear points. This space

is the Batyrev mirror to XQ2 as given in § 2. The case of a del Pezzo surface of

degree 7 was considered in [7, § 5]. Recall that Pic(X3)⊗R is spanned by the pull-

back of the hyperplane class and the exceptional divisors E1, E2, E3 corresponding

to the blown-up points, and that the effective cone Eff(X3) is generated by E1, E2,

E3, along with the pullbacks of the lines through the pairs of points, E12, E13, E23.
The effective cone admits a decomposition into Zariski chambers, with each maxi-

mal chamber corresponding to a birational model obtained from X3 by birational
contractions; moreover, the external walls of codimension 1 of Eff(X3), equipped

with this decomposition, correspond to Mori fibrations obtained from X3, and the

external walls of codimension 2 correspond to Sarkisov links between the fibrations.

We refer to [26] for a general discussion of Mori fibrations and Sarkisov links from

the perspective of chambers.

The structure of the external walls of Eff(X3) was considered in particular by

Kaloghiros in [12, Example 4.7], as a special case of a substantially more general

result concerning external walls of codimension 3 and relations amongst Sarkisov

links. It is convenient to consider a dual graph Γ3, with vertices corresponding to
the external walls of codimension 1 (that is, the Mori fibrations) and edges corre-

sponding to the external walls of codimension 2 (that is, Sarkisov links). A picture

of this graph appears in [12, Fig. 6]. By inspection, this graph is observed to be the

edge graph of the 3-dimensional associahedron. This is consistent with toric mirror

symmetry and the results of [7, § 5] because the associahedron appears as a facet

of the secondary polytope of the point configuration A2 ⊂ Z
2 which is the Batyrev

mirror of X3.

As noted in [12], the graph Γ3 has 14 vertices, which correspond to Mori fibrations

as follows:

(i) 2 vertices correspond to the trivial fibration P
2 → {pt}, where P

2 is obtained
from X3 by blowing down E1, E2, E3 and E12, E13, E2,3 respectively;

(ii) 6 vertices correspond to the fibration F1 → P
1, where the map X3 → F1

factors through the blow-down of one of E1, E2, E3, E12, E13, E23;
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Figure 6. The monotone path polytope for (Q2,A2)

(iii) 6 vertices correspond to the fibration P
1 × P

1 → P
1, where the map X3 →

P
1 × P

1 factors through a blow-down of one of E1, E2, E3, and one of the two

projections P
1 × P

1 → P
1 is fixed.

On the other hand, the monotone path polytope of the secondary polytope of A2

with respect to the {0}-sharpening is of small enough complexity to be constructed

via software. A picture of the resulting truncated associahedron appears in Fig. 6.
We observe that it has 36 vertices. Qualitatively, they correspond to the possible

choices in the above description of Γ3.

(i) 12 vertices correspond to the trivial fibration P
2 → {pt}, where X3 → P

2 is

one of the six ordered blow-downs of E1, E2, E3, or one of the six ordered blow-

downs of E12, E13, E23.

(ii) 12 vertices correspond to the fibration F1 → P
1, where the map X3 → F1 is

given by an ordered blow-down of two of E1, E2, E3, or an ordered blow-down of
two of E12, E13, E23.

(iii) 12 vertices correspond to the fibration P
1 × P

1 → P
1, where the map X3 →

P
1 × P

1 factors through a blow-down of one of E1, E2, E3, and a blow-down of one

of E12, E13, E23 not disjoint from Ei, and one of the two projections P
1 × P

1 → P
1

is fixed.

We observe that a vertex of the dual graph representing a Mori fibration is

replaced by the collection of full runs of the minimal model program on X3 whose

last birational map is that Mori fibration. It was conjectured in [7] that the semi-

orthogonal decompositions of Db(X3) arising from such runs yield subcategories

equivalent to those arising from the maximal degenerations of the mirror LG model.

We conclude with a brief discussion of prospects for extending beyond the toric

case, and in particular to del Pezzo surfacesXk of degrees from 1 to 6. The birational

geometry of these surfaces is classical, though intricately structured [27]. Motivated

by the Hori–Vafa Ansatz, [28] posited the mirror in each case to be an LG model

fk : Yk → P
1 of a rational elliptic surface Yk with prescribed fibre at∞. That paper

verified homological mirror symmetry in the form DbXk
∼= F⇀(fk); however, the

identification of the Kähler moduli of Xk with the complex moduli of Yk was not
pursued. This identification was completed in an unpublished work of Pantev.1

In general, if f : Y → P
1 is a compactified LG model, results from [5] show that

the complex TY,Y∞
→ f∗(TP1,∞) defining perturbations of f that fix the fibre at

1T. Pantev, “Notes on homological mirror symmetry for del Pezzo surfaces”, private communi-

cation.
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infinity can be integrated to produce a smooth moduli stackM of LG models. It is

not hard to see that, when f arises as a sharpened pencil, the quotient ofM by the

action of C
∗ × C naturally embeds as a substack of MA,A′ . In the toric cases, Yk

can be obtained from the Batyrev mirror family by explicit blow-ups, and we have

seen that MA,A′ is a natural geometric compactification of the complex moduli
of the Batyrev mirror. While we suspect that a similar nested compactification

exists in the non-toric cases, they do not appear to have been studied from this

vantage point. However, see [29] for a thorough study of compact moduli of rational

elliptic surfaces. The recent investigations of Donaldson [30] regarding K-stability

and b-stability of Fano manifolds will be relevant, replacing the role that classical
geometric invariant theory plays in constructing the chamber decomposition on the

effective cone.

The above considerations provide a convenient way of studying surfaces whose

derived category is close to being generated by an exceptional collection. In partic-

ular our analysis suggests the following conjecture.

Conjecture 4.1. Given any Barlow surface S , the derived category Db(S) has

an exceptional collection with 11 objects, but has no full exceptional collection.

It is known that some Barlow surfaces have rank 11 rational K-theory. By taking

a left orthogonal of the collection for such a surface, a proof of this conjecture will

lead to examples of non-trivial categories with trivial K-theory.
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