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COMPACTIFICATIONS OF THE GENERALIZED
JACOBIAN VARIETY1
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TADAO ODA AND C. S. SESHADRI

Abstract. The generalized Jacobian variety of an algebraic curve with at
most ordinary double points is an extension of an abelian variety by an
algebraic torus. Using the geometric invariant theory, we systematically
compactify it in finitely many different ways and describe their structure in
terms of torus embeddings. Our compactifications include all known good
ones.
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2 TADAO ODA AND C. S. SESHADRI

paper we construct good compactifications of its generalized Jacobian variety
Pi4-

For a compactification Jac^) to be good, it ought to satisfy at least the
following conditions:

(1) Points of Jac(X) stand for geometric objects on X. In our case, they
stand for torsion-free 0^-modules of rank one on each component of X.

(2) Pic° acts on Jac(A'). In our case, the action corresponds to the tensor
product L <8>e  F of an invertible sheaf L and a torsion-free 0^-module F.

(3) Jac^) should be proper over k. Our compactifications Jac(j>(Ar) are
reduced projective algebraic schemes over k by its very construction by
means of the geometric invariant theory.

(4) When we have a nice family of curves, the compactifications for each
fiber should fit into a nice family. Especially

(4') Jac(X) should be a compactification of the union of a finite number of
copies of Pic^, not just one copy.

For instance, let Y / S be a proper and flat family of curves over the
spectrum S = {17, s) of a discrete valuation ring with Ys = X and the generic
fiber Yv smooth. The relative Picard functor Picr/S need not be separated nor
representable. But Raynaud [29] showed that its greatest separated quotient
Q = Qy/s is represented by a separated and smooth group scheme over S.
Moreover, Qr is the Néron model of the Jacobian variety Pic° of the generic
fiber, for example when Y is regular. In this case (Qr)s contains Pic* as a
subgroup of finite index. As a matter of fact, this index turns out to be the
complexity of the graph of X, i.e. the number of spanning trees in the graph,
by Kirchhoff-Trent's theorem, as we see in § 14. In particular, it depends only
on X and not on the family Y/S containing X. Our Jac^(A") for nondegener-
ate <j> is a compactification of (QT)S. On the other hand, if <f> is very
degenerate, then Jac^A) is a stable quasi-abelian variety of Namikawa [27]
and Nakamura [26], corresponding to the Voronoi decomposition.

Anyhow, we see that
(5) there are many different ways of compactifying the generalized

Jacobian variety.
In our case, the difference comes from the distribution of points over the

components of X when we use the geometric invariant theory. (5) is not a
drawback of the theory but is rather a merit (cf. Mumford [22]).

The compactification problem was first studied by Igusa [14] using Chow
varieties in connection with a Lefschetz pencil for a surface. The idea of
taking torsion-free rank one sheaves for points at infinity of the compactifica-
tion first occurs in Mumford and Mayer [18], [19]. D'Souza recently carried
out the idea when the curve X is irreducible. Nakamura [26] and Namikawa
[27] dealt with the problem in the complex analytic context. Here we use the
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COMPACTIFICATIONS OF GENERALIZED JACOBIANS 3

same technique as D'Souza's. Namely, our main tool is the basic existence of
the good quotient by PGL(£) of the set of semistable points of a product of
projective spaces P(E) in Mumford [20]. This technique was already applied
successfully also to the moduli of vector bundles on a smooth curve by
Seshadri [32], and on a surface by Maruyama [16]. See also Gieseker [8].
Although we deal with rank one sheaves only, the situation we encounter
turns out to be quite similar to the case of vector bundles over a smooth
curve, the number of components of X playing somewhat the role of the rank
of vector bundles.

It should be mentioned here that our method does not work for nonreduced
curves, or a family of curves with multiple fibers. To deal with this case, we
need to consider the quotient of the Hubert scheme of 0-cycles of a projective
space, instead of a product of projective spaces. But our case is enough for
many applications, notably the moduli of stable curves.

We now state our main results.
The combinatorial configuration of the irreducible components of X and

their intersections at double points very much affect our considerations. We
express this configuration, as usual, by the graph T(X) of X (§§4 and 9). The
genus of the normalization of each component of X does not much affect our
combinatorial considerations. Fixing an orientation for T(X), we can define
chain groups C0(T(X), Z), Ct(T(X), Z), the first homology and cohomology
groups HiÇTiX), Z), H\T(X), Z), the 0-boundary group dC^TiX), Z) and
the 1-coboundary group 8C0(T(X), Z). For simplicity, let us omit T(X) from
these notations, and let us denote by C0(R) etc. the corresponding scalar
extensions to the real number field R. We denote by p: C1 = C, -> H} the
canonical projection.

(I) (Proposition 6.1) To each <f> E 8C,(R), there corresponds a polyhedral
decomposition Del, of H '(R), called the Namikawa decomposition, consisting
of bounded polyhedra such that

(i) DeL, is invariant under the translation action of p(/f,(Z)) with the
quotient cell complex Del,,, = Del^/p(//,(z)) finite. This quotient is called the
Namikawa cell complex.

(ii) The set of 0-dimensional polyhedra, the 0-skeleton, satisfies

Sk°(Deg c H\Z).
These decompositions come in naturally from the geometric invariant

theory. But it was Namikawa who pointed out that they are obtained as slight
generalizations of the Delony decomposition developed in §1, applied to the
graph T(X) in §6.

The Namikawa decompositions for a different <f> can be compared as
follows:

(II) (Proposition 2.3 and Theorem 7.1) There exists a polyhedral decom-
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4 TADAO ODA AND C. S. SESHADRI

position Arr of 3C,(R), called an arrangement of hyperplanes, consisting of
bounded polyhedra such that

(i) Arr is invariant under the translation action of 3Q(Z) with the quotient
finite, and

(ii) Sk°(Arr) D 3C,(Z).
(iii) (Corollary 7.2) Given a polyhedron A G Arr, the Namikawa decom-

position DeL, remains constant as long as 4> — de(J)/2 stays in rel.int(.4) +
3SC0(Z) where e(J) G C{(Z) is canonically defined by the graph. Especially,
the number of different Namikawa decompositions is finite, namely the
cardinality of Arr/35C0(Z). Even among them, there are the following rela-
tions:

(iv) (Corollary 7.2) Let Ä be a face of A G Arr. For <£ - de(J)/2 G
rel.int(j4) and </> — de(J)/2 G rel.inuyl), we see that Del^, is a subdivision of
De%.

(v) (Corollary 7.2) If A' is the translation of A G Arr by an element of
3C,(Z), then DeLy for 4> - 3e(/)/2 G rel.int(^4') is the translation of DeL, for
4> - 3<?(/)/2 G rel.int(^) by an element of H \Z).

(vi) (Theorem 7.7) Sk°(DeLJ = H\Z) holds if 4, - 3e(/)/2 lies in the
relative interior of a top-dimensional polyhedron in Arr. We call such 4»
nondegenerate. The corresponding Namikawa decomposition is the finest.

(vii) (Proposition 7.8) If 4> — de(J)/2 is a O-dimensional polyhedron be-
longing to dC^Z), then DeL, is essentially the Voronoi decomposition of
//,(R) with respect to Hi(Z). It is the coarsest Namikawa decomposition. But
in general, there are other Namikawa decompositions which are the coarsest,
since we need not have the equality in (Ilii) (cf. §8, Example (5)).

Let X = U ieIX¡ be the decomposition of X into irreducible components
and { Q¡}jej the set of double points of X. Thus / and / are the vertex set and
the edge set of the graph T(X), respectively. For subset J' cJ, let X(J') be
the partial normalization of X obtained by the blowing up of X along
{Qj}jej-j- ï-n particular, X = X(0) is the normalization of X, and X{J) =
X.

There exist canonical surjections (cf. §10)
deg: Pic* -* C0(Z),    £ : Pic^y-, -> Pic*.

For m G C0(Z), let Pic*(y-) be the inverse image of m by the composition
deg » £.

(Ill) (i) (Corollary 12.4) Pic£ is a principal T-bundle over Pic^, where
T = Gm ® H !(Z) is the algebraic torus over k whose character group is
#,(Z). _     _

For N G Del^, we can define canonically an element m(N) G C0(Z) and a
subset Supp N c J. On the other hand, for each | G Sk^DeLJ, we can define
a complete torus embedding (cf. §13)
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COMPACTIFICATIONS OF GENERALIZED JACOBIANS 5

T c Temb(¿).
Consider the fiber bundle

Pic£© X T Temb(l)
associated with the principal T-bundle Pic*1^ over Pic**** and the T-action on
Temb(|).

(ii) (Theorem 11.4 and Proposition 12.17) Given 4> G 3C](R), there exists a
reduced projective algebraic scheme Jac^(A") with an action of Pic* and a
bijection

O: Deï,^{Pic*-orbitsm Jac^*)}
which is order reversing, i.e. N' is a face of N if and only if O(A^) is in the
closure of 0(Ñ').

(in) (Theorem 13.2) The normalization of Jac^(Ar) is the disjoint union of
Pic*1«) xT Temb(l) with f running over Sk°(DeL,). For N G DeL, and a
vertex |of N, let N and | be their respective image in Del^,. Then there exists
an imbedding

gs(N): Pic^Lppiv) ^Pi^> x^Tembd)
such that its composition with the projection onto Jac^X) induces an
isomorphism

Pic;(f )Supp^)^0(Jv") c Jac,(*).

Jac^(A') is obtained from the normalization by means of the identifications
induced by the morphisms g£(iV) with iV running over DeL, and ¿ over its
vertices.

Jac^XA') is first shown to exist as a good quotient of a Hubert scheme by
means of the geometric invariant theory (Theorem 11.4). Jac^X-Y) is the coarse
moduli of (^equivalence classes of <>-semistable line bundles on X, and its
open set Jac^^^X) is the fine moduli of «^stable line bundles (Theorem
12.4). Here we mean by a line bundle on A" a torsion-free coherent 0*-mod-
ule which is of rank one on each component. Unlike the case of vector
bundles, these notions of semistability and stability are not intrinsic properties
of line bundles. In particular, when 4> is nondegenerate, then 4>-semistabüity
and (^stability coincide, hence Jac^A") is the fine moduli.

Thus JslCq(X) satisfies our requirements (1), (2), (3) and (5). (4') is shown in
§14. The proof of (4) was carried out by Ishida [36].

We see in the last example of §13 that when X is a stable curve of genus 2,
for instance, then Jac^A^'s we obtain coincide with those in Mumford [22],
Namikawa [27] and Nakamura [26].

The key to connecting (I) and (III) above is Theorem 10.5, which shows
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6 TADAO ODA AND C. S. SESHADRI

that there exists a canonical bijection D from the set of Pic°(Ar)-orbits in
LB°(A") = {line bundles F on A" with x(F) = x(©*)} to the set K(T(X)) of
/j*,(Z)-equivalence classes of Delony polyhedra in Cj(R). D has many nice
properties and is a generalization to une bundles of the notion of degree for
invertible sheaves.

An outline of the main argument. We now give a brief outline of that part of
our argument which uses the geometric invariant theory. We actually follow
the argument in reverse here. We will then be able to see the motivation for
various concepts introduced in this paper. Especially the reason (5) why we
have many different compactifications and (4') why they contain several
copies of the generalized Jacobian variety will become apparent.

For simplicity, we assume here that the curve X = (J ieIX¡ has nonsingu-
lar irreducible components X¡. Let {Qt}iej be the set of double points of X.
Thus / and J are the vertex set and the edge set of the graph T(X),
respectively. An edge./' G J joins vertices i and i' if Q- is an intersection of X¡
and A,..The graph T(X) in this case has no loops. Let us denote x, = x(©x)-

Given an invertible sheaf F on X, let F¡ be the restriction of F to A,. Then
we obviously have an exact sequence

O^F^0F,.-» 0A:(ß,)^O,
iel j&J

where k(Q¡) is the sheaf on X concentrated at Qj with A: as the stalk. If n¡ is
the degree of F¡ as an invertible sheaf on A,, then we have

X(F) = „(/) + x(/) - |/|,
where |/| is the cardinality of /, and for a subset /' of /, we denote
«(/') = 2,e/- n, and x(/') = 2¡e/< x,.

Given big enough integers {«,},e„ consider a Â:-vector space E with
dim E = ñ(I) + x(I) - \J\- Let Q(E/P) = Quot(0* ®k E/P) be
Grothendieck's Hubert scheme parametrizing coherent quotient 0*-modules
Gq of 0* ®k E which is of rank one on each component A, and with
X(Gq) — «(/) + x(7) _ \J\- Consider its open subset R(E/P) consisting of
points q such that

Gq is 0*-torsion free,

H\Gq) = 0,
E -> H°{Gq) an isomorphism.

If F is an invertible sheaf on X whose degrees n, are sufficiently close to ñ¡
and n(I) = «(/), there exists a GL(.E)-orbit in R(E/P) such that F s Gq if
and only if q belongs to the orbit.

Thus the quotient of R(E/P) by GL(£'), if it exists, would parametrize
isomorphism classes of certain torsion-free 0 -modules, and contains the set
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COMPACTIFICATIONS OF GENERALIZED JACOBIANS 7

of isomorphism classes of invertible sheaves F whose degrees n¡ are
sufficiently close to ñ¡ with n{I) = ñ{I). Unfortunately, such a quotient does
not exist as a scheme. We now try to find a suitable open set of R(E/P) for
which the quotient exists.

Consider nonsingular points xv . . ., xN of X. They give rise to a GL(F)-
equivariant morphism

t: R(E/P)-+P(E) X P(F) X • • • XP(F) - Z
which sends q to t(<?) = (t,(ç), .. ., rN(q)), where Ta(<?): £ -» Gq(xa) = (the
fiber of Gq at xa) is the corresponding 1-dimensional quotient. If N and
(«,},e/ are large enough and properly chosen, then r is injective.

Let z = (z,, . . ., Zjv) be a point of Z. Each za: E-* Ea is thus a 1-dimen-
sional quotient. The point z is called semistable (resp. stable) if for any
nonzero proper subspace E' of E, we have

2    dim za(E')/N > dim ¿"/dim E   (resp. >).

It is one of the basic results in the geometric invariant theory that the set Zss
(resp. Zs) of semistable (resp. stable) points have a good projective (resp.
quasi-projective geometric) quotient ZSS/GL(E) (resp. ZS/GL(E)).

Let us call q G R(E/P) and Gq semistable (resp. stable) if r(q) is semista-
ble (resp. stable). Then the set R(E/Pys of semistable points have a projec-
tive good quotient R(E/P)SS/GL(E). For the quotient to be a compactifica-
tion we are looking for, all the points q with Gq invertible and with fixed
degrees n¡ should be semistable.

For q to be semistable (resp. stable), Gq should staisfy

2    dim ra(q)(E')/N > dim £'/dim E   (resp. >) (*)
Ka<N

for any nonzero proper subspace E' of E. It turns out that if JV and {w,},e/
are large enough and properly chosen, then these inequalities (*) suffice to
hold only for subspaces E' = Er for any nonempty proper subsets /' of /,
where Ev is the subspace of E consisting of sections which vanish completely
on the subcurve U fe/< A,.

Let Gq be invertible with «, the degree of its restriction to A,. Thus
dim E = x(Gq) = "(/) + x(-0 ~ 1^1 implies that «(/) = «(/). It is not hard
to see that dim Ev = n(I - I') + x(/ - /') - \{j € /; at least one end of j
is in / - /'}|. On the other hand, dim ra(q)(Er) = 0 or 1, according as xa is
on U ,6/- A, or not. Let N¡ be the number of points xa which are on A,. Then
the inequality (*) for E' = E,_r becomes

N(I')/N > [«(/') + x(/') - \{j e Jl at least one end of

jismI'}\]/{ñ(I) + x(I)-\J\}.(**)
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8 TADAO ODA AND C. S. SESHADRI

Let X¡ = Nj/N. Then X(I) = 1. Note that the inequality (**) depends not
on N but only on the distribution ratio {X,},e/ of points over the components
of X. To make the inequalities (**) look simpler, we normalize it as follows:
Let d¡ be the number of edges y G / one of whose end is i. In graph theory, d¡
is called the degree of the vertex i. There is a basic equality d(I) = 2\J\. Let
us introduce rational numbers 4>¡ defined by

\ = {», + x, - 4/2 + <*>,}/ W) + x(/) - m}-
We see that X(I) = 1 is equivalent to $(/) = 0. Since n(I) = «(/), (**) can be
rewritten as

n(I') - ñ(I') < 4,(1') + (l/2)\{j G J;jjoins /' and / - /')|.   (***)
We thus conclude the following: Let {<?>,},e/ be fixed with 0(7) = 0, i.e. we

fix the distribution ratio of points over the components of X. Let q be a point
of R(E/ P) such that Gq is an invertible sheaf whose restriction to X¡ has
degree n¡. In particular, we have n(I) = ñ(I). Then q is semistable (resp.
stable) if and only if (***) is satisfied for any nonempty proper subset I' of I
(resp. strict inequalities). In general, there are only a finite number of integral
solutions {«,},£/. Thus they are always sufficiently close to {ñ,},e/.

For simplicity, let us consider the case |/| = 2 and |7| = 3, i.e. X looks like
the "dollar sign" (see Figure 1).

nx)

Figure 1

For {<£>,, 4>2} with <i>, + 4>2 = 0 fixed, our requirements are n(I) = ñ(I) and
(***) for any /', i.e.

(«, - «,) + (n2 - ñ2) = 0,

("i - »i) < <í»i + (3/2),   (n2 - «2) < 4>2 + (3/2),
which reduce to

(n2 - ñ2) = - («, - «!),   4>x - (3/2) < (/i, - «,) < 4>¡ + (3/2).
(a) If 4>t = 0, then the integral solutions are (n„ n^ = (ñx + 1, ñ2 - 1),

(«„ ñ2) and (ñ, — 1, h\ + 1). Moreover, strict inequalities are satisfied for all
these solutions. Thus they correspond to stable invertible sheaves. In this
case, we conclude that three copies of the generalized Jacobian variety Pic*
are contained in the compactification R(E/P)"/GL(£).
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COMPACTIFICATIONS OF GENERALIZED JACOBIANS 9

(b) If <i>, = (1/2), then the integral solutions are («„ «2) = («1 + 1» "2 ~ 0>
(ñ,, ñ-f), (ñj + 2, «2 — 2) and (ñx — 1, ñ2 + 1). Moreover, the strict inequal-
ities are satisfied for the first two solutions. Thus they correspond to stable
invertible sheaves. As we see in the examples of §13, R(E/Pys/GL(E) in this
case contains only two copies of Pic* corresponding to the first two solutions.

Chapter I. Graphs and polyhedral decompositions
1. Namikawa's generalization of Voronoi and Delony decompositions. We

first recall Voronoi and Delony decompositions. See Rogers [30] and Voronoi
[34].

Let £ be a finite-dimensional real vector space with a positive definite
symmetric bilinear form (x,y) on E. We denote by ||jc|| = (x, x)1/2 the
associated norm on E. Let A be a Z-lattice in E.

It is a well-known fact that for £ in A the set

V(i) = {x G E; \\x - HI < H* - t/11 for all 7? in A}
is a bounded polyhedron, and is a fundamental domain of E with respect to
the translation action of A. Moreover we have V(£ + £') = F(£) -+- £' for all £'
in A.

The following is an immediate consequence of this observation:

Proposition 1.1. The set Vor(E, A) of Voronoi polyhedra in E consisting of
K(£) for £ in A and their faces constitute a polyhedral decomposition, called the
Voronoi decomposition, of E by bounded polyhedra. Moreover, Vor(2T, A) is
invariant under the translation action of A with Vot(E, A)/A finite. A Voronoi
polyhedron V is of the following form: there exist £q, ...,£. iff A such that the
relative interior of V is of the form

{x G E\ ||* - |0|| = ••• = ||X - i|| < ||* - i)||,

A 3Vi} *&,...,£}
and

V = {x G E\ ||* - {oil ■-= ||* - ¿y < ||* - 7711 for all r, in A}.

For x in E consider the convex hull

£>(*) «<&...,t> - {2 <»&; a, > o, 2 <% = i}
where {£„,...,£.} is the set of | in A for which ||* - £|| attains the smallest
value.

Definition. We denote by Del(£, A) the set of polyhedra D in E of the
form D = D(x) for some * in E. We call such D a Delony polyhedron.

We have easily the following:

Lemma 1.2. Given a Delony polyhedron D, there exists a unique Voronoi
polyhedron V such that D = D(x) if and only if x is in the relative interior of V.
We denote V = D*, D = V* and call V and D dual to each other.
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10 TADAO ODA AND C. S. SESHADRI

Proposition 1.3. Del(F, A) is a polyhedral decomposition, called the Delony
decomposition, of E by bounded polyhedra with the set Sk°(Del(F, A)) of
^-dimensional polyhedra coinciding with A. Del(F, A) is invariant under the
translation action of A with Del(F, A)/A finite. Moreover, Vor(£, A) and
Del(F, A) are decompositions of E dual to each other in the sense that

(i) V2 is a face of Vx if and only if Vf is a face of. V% for V¡ and V2 in
Vor(F, A), and

(ii) dim V + dim V* = dim E for V in Vor(£, A).

This proposition is a special case E' — E of the following generalization,
the relevance of which was pointed out to us by Y. Namikawa. It helped to
clarify considerably our original version of the polyhedral decompositions
associated to our compactification of the generalized Jacobian variety.

Let E and A be as before. Consider a subspace E' of E such that A n E' is
a Z-lattice in £". We denote by E" the orthogonal complement of E ' in E.
Let it': E ^> E' and it": E^>E" be the orthogonal projections. Suppose
further that it'(A) is a lattice in E', or equivalently that An E" is a lattice in
E". Then obviously tr'(A) is a lattice in £" containing AnF and tr"(A) is a
lattice in E" containing An E".

For \p in E" consider the coset El = E' + ^. Then we obviously have the
following:

Proposition 1.4. The set of polyhedra Vor(£^; E, A) consisting of V = V
n El with V running over all the Voronoi polyhedra of E such that rel.int( V)
n E¿ = 0, is a polyhedral decomposition, called the induced Voronoi decom-

position, of E¿. It is invariant under the translation by A C\ E' with Vor(£^;
E,A)/A n E'finite.

Definition. We denote by Del^F": E, A) the set of polyhedra D' in £" of
the form D' = rr'(D(x)) for x in E¿.

Then as before we have the following:

Lemma 1.5. For D' in DeL^F'; E, A) there exists a unique V in Vor(£^;
E, A) such that for x in E¿ we have D ' «■ ir'(D(x)) if and only if x is in the
relative interior of V. We denote D' = (V)*, V = (!>')* and call them dual
to each other.

Proposition 1.6. Del^XF/; E, A) is a polyhedral decomposition, called the
Namikawa decomposition, of E' by bounded polyhedra invariant under the
translation action of the lattice A f\ E' with DeLf,(F'; E, A)/A n E' finite.
Moreover,

(i) dim D' + dim(£>')* = dim E'for D' in DeL/F'; E, A),
(ii) the set of 0-dimensional polyhedra Sk^Del^F'; E, A)) is a subset of the

lattice Tr'(A), and
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(iii) D{ is a face of D'2 if and only if (DC)* is a face of (D[)* for D[ and D2 in
Del^(F'; E, A).

Proof. We prove this, for completeness, exactly as in Rogers [30]. The
invariance of Del^/F'; E, A) under A n E' and the finiteness of the quotient
follows easily from the corresponding result for Vor(F^; E, A) and the
previous lemma.

(ii) is obvious.
(1) We next show (i). Let D' = (V)* with

rel.int(K') - {x G E¿\ \\x - |0|| = • • • = \\x - y < ||* - i,||

for all 17 in A ^ |0, ...,£.}.
These defining relations can be rewritten as

2(1, - îo,x) < llijll2 - |||0||2
for all 17 in A with the equality holding if and only if 17 = £„, . .., |r. Since the
relative interior of V is nonempty by assumption, we see that its dimension is
equal to that of the linear space

[y G E'; 2& -^y + tf- [|£||2 - |||o||2, / = 1, . . ., r)
which is obviously equal to the codimension in E' of the subspace in E'
generated by tt'(Í¡ - £q) for i = 1, . . . , r. This is exactly the codimension of
the convex hull D' = <fl-'(£o)> • • • > *'(&))•

(2) We next show that V'x > V¡ implies (V'x)* < (VÇ)* for V[ and V2 in
Vor(F^; E, A). Let the relative interior of V[ be of the form

[x g f; 11|* -10|| « • • • = y* - i\\< II* - i)ll
for all i, in A ¥* £o> • • • » &■}

hence (V[)* = <7r'(|0), • • • , *r'(¿)>- Since V2 is a face of V{, the relative
interior of V2 is of the form

{y G f;| \\y - £0|| =-U* - til < \\y ~ rjll
for all ij in A ^ l^ . . . ,£}

with s > r. Thus for * and y in the respective relative interior of V{ and V2
we see that

(í,y - x)> (£o,y - x)

for 0 < i < s with the equality holding if and only if 0 < i < r. Thus the
hyperplane

H' h- {z G F'; (z,y - x) = (&* - *)}

has the property that ( V2)* = <V(£o)> • • •, "■'(&)) *s contained in its nonnega-
tive side and that

(V{)* = W(Q,..., *'&)> = #' n (Fi)*.
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12 TADAO ODA AND C. S. SESHADRI

(3) We now show that for V2 in Vor(F^; E, A) and a face D'x of (Vtf, there
exists V{ > V2 such that D'x = (V[)*. Indeed, let* be in the relative interior
of V2, i.e. (V2)* = <V(£o)> • • • » ,r'(ls))> where there exist real numbers R' > R
such that ||* - £0|| = • • • = ||* - ¿|j = R and ||* - tj|| > R' for all 17 in A
different from £o> • • ■ > &• We may assume the face D{ to be of the form
<>'(&>)> • . ., ""'(£,-)> for r < j. Thus there exist z in. E' and a real number c
such that (i¡, z) > c for 0 < i < j with the equality holding if and only if
0 < /' < r. Let e be a small enough positive real number and let x = y — ez.
Then for 0 < i < s we have

||*-|,.||2>i?2 + 2£{c-(z,*)} + 62||z||2

with the equality holding if and only if 0 < i < r. Moreover for all 17 in A
different from |0,.. ., £> we have

II* - tjII = II* - t? - «|| > II* - nil - «11*11 >R- «11*11-
If e is small enough we obviously have

(R' - e||z||)2 > R2 + 2e{c - (z,*)} + £2||z||2,
hence D{ = tr'(D(x)) and * is in

rel.int(Fi) = {* G E¡\ ||* - ¿|| - • • • - ||* - |r|| < ||* - i,||

for all 17 in A =^= lo, . . ., |r}.

Thus we have (iii) as well as the fact that DeL^F'; E, A) contains the faces of
each of its members.

(4) We show next that if D[ and D2 are in Del^F'; E, A), then D{ n F>2 is
a face of D[ as well as that of D2. Let * and * be in the respective relative
interior of (D'x)* and (D2)*, hence there exist lo> • ■ • > £• and 17,,, . . ., 17, in A
and positive real numbers Rx and R2 such that ||* — $\\ > Rx for all S in A
with the equality holding if and only if |" — £q, ..., £, and that ||* - f || >
R2 for all f in A with the equality holding if and only if f = tj0, . . . , r¡s.
Consider the "radial hyperplane" of the two spheres, one of radius Rx with
center at * and the other of radius R2 with center at *

H = {z G E; 2(* - x, z) = Rx2 - R2 + ||*||2 - ||*||2}.

For each j we have Rx2 < ||* - it,.||2 = R¡ + 2(* - *, ij,.) + ||*||2 - ||*||2
with the equality holding if and only if i}y = |, for some /, i.e. D2 =
<w'(iJo). • • •, v'(Vs)y is on me nonnegative side of H. Similarly for each i we
have

R¡ < II* - if = Rf - 2(* - *, i) + ||*||2 - ||*||2
with the equahty holding if and only if |, = 17- for some j, i.e. D{ =
<w'(lo)> ■ ■ • > "■'(£■)) is on the nonpositive side of H.

(5) It remains to show that the union of all D' in DeL^F'; E, A) coincides
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with E'. Obviously it is enough to show that E' coincides with the union S of
(t/)* with v' running over Sk°(Vor(F^; F, A)). But S is a closed subset of F',
since (t/)* is closed and {(i/)*; v' G Sk°(Vor(F,¿; F, A))} is a locally finite
family in view of the fact that tt'(A) is a lattice in E'. Suppose there exists * in
F' and not in 5. There exists then a small ball 2 with center at x contained in
the open set F' - S. Let us fix u'x in Sk°(Vor(F^; F, A)) and a point a in the
interior of (u'x)*. Then there exists * in the interior of 2 such that the line
segment <a,*> meets none of D' in Del^,(F'; E, A) of codimension 2, since
the dimension of the join <a, 2> is equal to that of F'. There exist then a
point b on <a,*> and u2 in Sk°(Vor(F^; F, A)) such that b is one of the end
points of the interval (u'2)* n <a,*> and that the relative interior of <£,*>
does not meet S. Thus b is in the boundary of S, hence is in the relative
interior of a codimension one face (w2)* H ("3)* of (t^)* by our choice of*.
But the relative interior of (u'2)* n («3)* is obviously in the interior of the
union (u'2)* u («3)*, hence is in S, a contradiction.

Remark. In the case of the ordinary Delony decomposition E' = E, we
have

Sk°(Del(F, A)) = A,
since V(£)* = £. In the general case, we need not have

Sk°(Del^(F'; F, A)) = tt'(A).
Consider, for instance, the case where E = R2 with the usual bilinear form
(e¡, ej) = ôjj and ex = (1, 0), e2 = (0, 1). Let F' be the line generated by
— e, + 2e2, and if/ = 0. We show below, however, that when E, A and F'
come from a graph, the equality holds if $ is chosen to be nondegenerate (cf.
Proposition 7.6).

2. Stable and semistable Delony polyhedra. Let F, E', E" and A be as in the
previous section.

The following notions of ip-semistability and ^-stability of Delony poly-
hedra were motivated by algebro-geometric considerations we make in the
next chapter. They correspond to semistability and stability in the geometric
invariant theory introduced by Mumford.

Definition. For $ in E" we call a Delony polyhedron D in Del(F, A)
xP-semistable, if D* n E^,¥= 0, i.e. it"(D') 3 4>. We denote by K^, = K^,(E';
E, A) the set of ^/-semistable Delony polyhedra in Del(F, A). We denote by
A^ = K$(E'; E, A) the subset of K^ consisting of those D for which
rel.int(£>*) n£^0, i.e. 7r"(rel.int(D*)) 3 «//.

By the definition of the Namikawa decomposition Del^F'; E, A), the map
D h» tt'(D) is a bijection

77': K°(E'; E, A^Del^F'; F, A).
Obviously Ky consists of polyhedra in K^ and their faces.
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14 TADAO ODA AND C. S. SESHADRI

We now claim there exists a map

which is quasi-inverse to the inclusion K$ c K^. Indeed, if D is in K^, we
have D* n E^ i* 0. There exists the smallest element ¡x(D) of K$ such that
D < n(D), since K^ consists of faces of elements of K? and since for Dx and
D2 in K$ with Dx n D2 ^ 0 we have Dx n D2Œ K¿ in view of the corre-
sponding property of the Namikawa decomposition Del^F'; E, A). ¡i(D)* is
the unique face V of D* such that rel.int(F) n E¡¥- 0 and that V n F^ =
£* n f;.

Definition. Dx and D2 in ^v are sai^ t0 De ̂ -equivalent if /x(Z>j) = /xi-Dj),
i.e. Df n f; = f>2* n f¿.

Each ^-equivalence class has a unique element belonging to Ä^, namely
H(D ) for D in the class. We have

K^(E'; E, A)/^-equiv. ̂ K«(E'; F, A)XDeL,(F'; F, A).

Definition. A Delony polyhedron £> in K^(E'; E, A) is called $-stable if Z)
is the unique element ^-equivalent to it. We denote by

•^-stable = -^-stablei-^'; &> &)

the set of ^-stable Delony polyhedra. Obviously Ä^_stable c K$.

Proposition 2.1. For a Delony polyhedron D in K^(E'; E, A) the following
are equivalent:

(\)D is ^-stable.
(2) D is in K^ and it' induces a bijection

tt':D^tt'(D).
(3) D is in K° and dim D = dim ir'(D).
(4) D is in K° and dim tt"(D*) = dim E".

Proof. (1) => (2). Suppose D is ^-stable, hence in particular D is in K§. If
it': D —» tt'(D) is not injective, there certainly exists an element of the
boundary of D whose image by it' is in the relative interior of ir'(D). Let Dx
be the proper face of D containing that point in its relative interior. Thus we
have ir'(Dx) n rel.inu>'(.D)) 9* 0. In particular, £>, is in A^, but not in K$.
Moreover since Dx < n(Dx) < D, we have tt'(Dx) c it'(h(Dx)) < ir'(D). Thus
we have n(Dx) = D, contradicting (1).

(2) is obviously equivalent to (3).
(3) is equivalent to (4). Indeed, we have dim E — dim D* = dim D and

dim F' - dim Z>* n E¿ — dim ir'(D) by Proposition 1.6. Thus (3) is equiv-
alent to dim E" = dim D* - dim D* n E¿, which is equivalent to (4), since
dim ir"(D*) = dim D* - dim(rel.int(Z>*) n ET) and D is in K°.
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Finally (4) implies (1). Indeed, suppose D is in K$ and is not ^-stable. Then
there exists a proper face Dx of D such that Df n F¿ = D* n E^. Since
rel.int(Z>*) n E^ ¥^ 0 by assumption, we have

dim tt"(Z>*) = dim D* - dim Z)* n E¡ = dim £>* - dim Z>f n F'

< dim D* - (dim Df + dim F¿ - dim F)
= dim F" - (dim Df - dim D*) < dim F",

a contradiction.

Corollary 2.2. If D is ¡¡/-stable and D' is a face of D, then D' is ^-stable.

Proof. Obvious from (2).
We now compare Namikawa decompositions for different ^'s. For ^ in E",

consider the intersection P(\p) = f! tt"(D*) where D runs over all the Delony
polyhedra in K^ — K^(E'\ E, A), i.e. ir"(D*) 3 ^. Since K^ is invariant under
the translation action of A n F' and is finite modulo that action, we see that
P(\p) is obtained as the intersection of only a finite number of tr"(D*). Hence
P(4>) is a bounded convex polyhedron of E". Moreover, it is obvious that

p(*) = n *"(d*)
and

rel.int(F(i//)) - Pi *r"(rd.int(Z>*))
where D runs over all the Delony polyhedra in K§ = K$(E'; E, A), i.e.
7r"(rel.int(D*)) 3 $.

Definition. We denote by Par(F") the set of polyhedra P in F" of the
form P = P(ip) for ^ in E".

Proposition 2.3. Par(F") is a polyhedral decomposition of E" by bounded
convex polyhedra invariant under the translation action of ir"(A) with
PsLT(E")/ir"(A)finite. Moreover, we have the following:

(i) For P in Par(F"), the sets K¿E'; E, A), K°(E'; E, A) and K^.stable(E';
F, A) of Delony polyhedra stays the same as long as ¡p is in reLint(F).

(ii) For P in Par(F"), we get the same Namikawa decomposition Del^XF';
F, A) as long as $ is in rel.int(F) + (A n E").

(iii) Let P be in Par(F") and let | be in A. Then for \p in rel.int(F) and \p in
rel.int(F) + tt"(Q, the translation by | induces an isomorphism

K$(E';E,A)^K$(E';E,A),
hence the translation by.tr'(Q induces an isomorphism

Del^(F'; E, A)^Del¿(F'; F, A).
(iv) Let Pbe a face of P in Par(F"). For \¡> in rel.int(F) and ■¡f in rel.int(F),

Dell(,(F'; F, A) is a subdivision of DeL¿{F'; F, A).
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16 TADAO ODA AND C. S. SESHADRI

Proof. The fact that Par(F') is a polyhedral decomposition is obvious as
well as the invariance under ir"(A). (i), (ii) and (in) are also obvious, (iv)
follows from the following observation: for D in K§, we have tt"(D*) D P D
P hence there exists a face D* of D* such that 7r"(rel.int(Z>*)) B \fi. Then we
have tt'(D) c tt'(D) with ¿Tin K§.

Corollary 2.4. For E, E', E" and A fixed, there are only a finite number of
different Namikawa decompositions of E'.

3. Arrangement of hyperplanes. In this section, we introduce another kind
of polyhedral decomposition, obtained by the arrangement of hyperplanes.
The main reason for introducing it is that the polyhedral decomposition
Par(F") introduced at the end of the previous section is obtained by the
arrangement of hyperplanes when E comes from a graph (cf. §7). We can also
show that the Delony decomposition can sometimes be obtained by the
arrangement of hyperplanes.

Let F be a finite-dimensional real vector space and let/,, . . . ,fa be linear
forms on F, i.e. elements of the dual space F = HomR(F, R). Suppose,
moreover, that they generate F over R. For 1 < a < a and* in F, we denote
by M(fa,y) and m(fa,y), respectively, the smallest integer not less than/a(*)
and the largest integer not more than fa(y). Thus m(fa,y) = M(fa,y) or
/M(/a>*) = M(Ja,y) — 1 according as/a(*) is an integer or not. For* in F, we
denote by A (*) the polyhedron in F defined by

A(y)~ {z G F; m(fa,y) < fa(z) « M(fa,y) for alia}.
Note that if the set [fx, ■ ■ ■ >fa} is invariant under the multiplication by

— 1, then we have

A(y) = {z G F;fa(z) < M(fa,y) for all a}.
Proposition 3.1. The set Arr(F, {/,,... ,fa}) of polyhedra A in F of the

form A = A(y) for some y in F is a polyhedral decomposition of F by bounded
convex polyhedra, called the arrangement of hyperplanes. Moreover, it is in-
variant under the translation by elements of { g G F; fa(g) integers for all a},
which is contained in the set Sk°(Arr(F, {/,, ... ,/„})) of ^-dimensional polyhe-
dra.

Proof. The map/ sending* to/(*) = (/(*), . . . ,/,(*)) is an embedding
of F into R". Let {ex, .. ., ea) be the standard basis of R" given by ea =
(£al,..., £aû) with Eaß = 8aß. Let {£,, ...,!„} be the dual basis of the dual
space of Ra. Then we see by definition that

Arr(Ra, {£„...%£a})

coincides with the Delony decomposition Del(R°; Z") of R" with respect to
the lattice Z" and the standard metric
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ni2= 2«-(*)2
a=l

on Ra. Obviously Arr(F, {/,,...,/,}) is the decomposition of F induced by/
from Del(R°; Za), i.e. it consists of A =/"'(£)) for D in Del(R°; Z") with
/_I(rel.int(Z))) nonempty. The rest of the proposition is immediate.

Corollary 3.2. Let F and G be a real vector space and a lattice in it,
respectively. Let [fx,.. .,/,} be a subset of G = Homz(G, Z) c F which
generates G. Then Arr(F, {/,,. ..,/,}) is a polyhedral decomposition of F
invariant under the translation by elements of G. Moreover, the set
Sk°(Arr(F, {/„ . . . ,/a})) of O-dimensional polyhedra contains G and it coin-
cides with G if and only if {/„ .. . ,fa) is totally unimodular in the sense that a
subset of {/], ...,/,} is a Z-basis of G if and only if it is an R-basis of F.
Under the total unimodularity assumption, Arr(F, {/„ . . .,/,}) coincides with
the Delony decomposition Del(F; G) of F with respect to the metric on F defined
by

ll*ll2 - 2 Uy)2-
a=l

Proof. Consider, as before, the embedding /: F -> Ra defined by /(*) =
(/i(*)> • • • >/,(*))• The metric on F is obviously the one induced from the
standard metric on Rfl. Since {/„ ...,/,} generates G, we have G — f~\Za).
Let D be in Del(Ra; Z") with/~'(rel.int(Z))) nonempty, and let A = f~\D).
Under the total unimodularity assumption, we see immediately that A is
O-dimensional if and only if ^4 = {g} for g in G, hence D = {/(g)}. Let D'
be in Del(F; G). Then by definition there exists * in F such that D' is the
convex hull of those g in G with ||* — g|| minimal. Consider D = D(f(y)) in
Del(Ra; Z°). It is the convex hull of those £ in Za with ||/(*) - ||| minimal.
Thus D' is obviously contained in f~x(D), and the convex polyhedron
f~l(D) is the convex hull of its O-dimensional faces, which are necessarily in
G, as we saw above. Thus we have D' = f~x(D).

Remark. The Delony decompositions in dimensions less than four are
necessarily of this form. See Voronoi [34].

Problem. What are the normal forms of maximal totally unimodular sets
in higher dimension? See Dickson [6], Hoffman-Kruskal [12] and Heller-
Tompkins [13].

4. Graphs. In this paper we deal with finite graphs in the most general
sense, i.e. we allow loops and multiple edges. For details we refer the reader
to standard textbooks in graph theory, for example Berge [2].

Definition. A (finite) graph I — {I, J) consists of a finite set I of vertices
and a finite set J of edges together with the incidence relation which assigns
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two vertices, called end points, to each edge. When two end points of an edge
coincide, we call the edge a loop. T is called connected if starting from a vertex
we can reach any other vertex by following a path.

Given a graph T, we assign and fix an arbitrary orientation, i.e. we fix maps
J =£ / assigning to each edge/ its initial and terminal vertices. Our results are
independent of the particular orientation we choose.

The motivation for our discussion of graphs is the following example,
which we exclusively deal with in subsequent chapters.

Example. Let I be a reduced complete algebraic curve with at most
ordinary double points over an algebraically closed field. Then X decomposes
into irreducible components X = U is/ X¡. Let {Qj}Jej be the set of double
points of X. Then Qj is either (1) an ordinary double point of an irreducible
component A, or (2) a transversal intersection of irreducible components A,
and Xf. In this case we associate to A" a connected graph I\A") = {/, J}
where (1)/ in J is a loop at i if Q¡ is a double point of X¡, while (2)/ in J is an
edge joining i and i' if Qj is a transversal intersection of X, and Xf. Note that
any graph in our sense appears as the graph of an algebraic curve A" as in this
example. r(A") is connected if and only if X is connected (see Figure 2).

X —
Figure 2

Once we fix an orientation, we can define a chain complex C (I\ Z), where
C0(r, Z) = © ,ml Ze„ CX(T, Z) = ® jeJ Zej with {o,.},.6/ and {e,},ey
canonically defined Z-bases, and the boundary map

3: c,(r, Z) -» c0(r, Z)
defined by

Í 0 if/ is a loop,
J      [ Vj - Vf    if/ is from / to /'.

Since we have canonical bases, we have canonical pairings [ , ] on C0(r, Z)
and (, ) on C,(r, Z) defined by

[v„vr] = Ô,,,,    (epej) = bff.
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Thus we can always identify the cochain complex C(I\ Z) with the chain
complex C (r, Z) via these pairings. The coboundary map then becomes

8: C0(T, Z) -» C,(r, Z)
defined by

*>,-= 2 [of. 3^]«y

Thus 3 and 8 are adjoint to each other, i.e. we have (8x,y) = [*, 3y] for * in
C0(r, Z) and* in C,(r, Z).

Definition. For a subset /' of I, we denote by v(I') the element of
C0(r, Z) defined by

v(I') = 2 *

For a subset J'oîJ, we denote by e(7') the element of CX(T, Z) defined by

e(/') -  2 e>
/£■/'

Let /„...,/. be the sets of vertices in the connected components of I\
Then

#°(r,z) =   © zt>(/j.
Ka<c

//0(r, Z) is the dual free Z-module, hence has rank equal to c, the number of
connected components.

By the adjointness of 3 and 8, we get the following decompositions
orthogonal with respect to the pairings:

c0(r, R) = h°(t, R) © 3c,(r, r), c,(r, r) = hx(t, r) © ôc0(r, r).
Moreover 3 and 8 induce isomorphisms

3: 8C0(T, R) ̂  3C,(r, R),   5: 3C,(I\ R) ̂  5C0(r, R),
where R is the field of real numbers.

For a subset J' of 7, we consider the spanning subgraph [I,J'} of T =
{I,J}, with I as the set of vertices, J' as the set of edges and the orientation
induced from T. We can consider the chain complex C({/, J'}, Z) =
C({I, J'}, Z), the boundary and coboundary maps %j.,Sr for this graph.
Obviously we have

dj.ej = 3e,    fory in J', and

&j-vi =   2   [°/> 9e/~k'   for/in 7.
fmr

The motivation for the introduction of such subgraphs is the following:
Example. Let X be an algebraic curve as in the previous example. For a

subset J' of J, let o(J'): X(J') -» X be the partial normalization of X obtained
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by the blowing up along {Qj}JeJ-j: Then obviously the graph for X(J') is
the subgraph {/, J'}.

Definition. The cyclomatic number A(T) of a graph T is defined as

h(T) = rank HX(T, Z) = rank Hl(T, Z).
Proposition 4.1. For a graph T = {I,J} with c connected components, we

have

h(T) = \J\ -\I\ + c
where \J\ and \I\ denote the cardinalities.

This is a standard result in graph theory and is a straightforward con-
sequence of the Euler-Poincaré lemma.

We use the following Lemmas 4.3 and 4.4 and Corollary 4.5 later in
Chapter II, §10 and §11.

Definition. For a subset J' of J, we denote by d(J') the element of
C0(r, Z), the degree of the subgraph {/, /'}, defined by

d(j') = 2 rf(/Vi
where d(J')¡ is the number of edges, regardless of the orientation, in J' at
least one of whose end points is at i, with loops at i counted twice.

Lemma 4.2. For a subset J' of J, we have

[v(I),d(J')]=2\J'\.
This is again standard in graph theory, and can be easily proved, since on

both sides of the equality, each edge is counted twice by definition.

Lemma 4.3. For a subset I' of I and a subset J' of J, the cardinality of the set
of edges j', regardless of the orientation, in J' one of whose end points is in I'
and the other is in I — I' is equal to

(8rv(I'),8rv(I')).
Especially (Sv(I'), S«(/')) is the cardinality of the set of edges in J joining V
and I — I', regardless of the orientation.

Proof. Since 8jv(I) = 0, we have
(8rv(I'), 8rv(I')) = - (8rv(I - /'), 8rv(r))

= -(srv(I-n   2 (SMl'leJej)

= - 2 2        [>9*/][«¥»9*/]»feJ' ie.r,ïe.i-r
which is equal to the cardinality of the set of/' in J' one of whose end points
is in T and the other end point is in / — /', since [v¡, def][vr, 3e,.] = 0 or — 1.
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Corollary 4.4. For a subset I' of I and a subset J' of J, the cardinality of
the set J'(I') of edges in J' both of whose end points are in I' is equal to

[v(I'), d(J')/2] - (8j,v(I'), 8rv(I'))/2.
Proof. Immediate from the two previous lemmas.
Definition. A tree is a connected graph without any cycle, i.e. the

cyclomatic number zero. A spanning tree of a connected graph T = {I, J] is a
spanning subgraph {/, J'} which is a tree, i.e. a minimal connected spanning
subgraph. A spanning forest of a not necessarily connected graph is a
spanning subgraph which induces a tree for each connected component.

For details we refer the reader again to standard textbooks in graph theory,
for example Berge [2]. One more fact which is relevant to us is the following
which is again standard.

Proposition 4.5. Let T = {I,J} be connected. Then for a spanning tree
{I, J'} we have \J'\ = \I\- 1, in particular \J - J'\ = A(T).

Let p: CX(T, Z) —> H '(T, Z) be the canonical surjective map, whose kernel
is 5C0(r, Z) by definition.

Kirchhoff-Trent's Theorem. For a graph T, the number of spanning forests
in T, called the complexity of T, is equal to the index

[3C,(r, Z): 35C0(r, Z)] = [H\T, Z): pHx(T, Z)},
which is also equal to the absolute value of the discriminant of the pairing

(,):HX(T,Z) XHX(T, Z)-*Z
induced by ( ,) on CX(T, Z), where we define the discriminant to be 1 when
HX(T, Z) = 0.

For the proof of the fact that the complexity of T is equal to the index
[3C,(r, Z): 3ÔC0(T, Z)], we refer the reader to Bryant [3, p. 115]. Although T
is assumed to be connected there, the modification required in the general
case is immediate. The rest of the theorem follows easily from the canonical
isomorphisms

3c,(r, z)/3sc0(r, z) ̂  c,(r, z)/ {hx(t, z) + sc0(r, z)}
^Hl(T,Z)/pHx(T,Z).

Definition. An element y in HX(T, Z) is called a (graph-theoretical) cycle if
(y, e) = 0 or ±1 for any / in J. An element to in 8C0(T, Z) is called a
(graph-theoretical) cocycle, if there exists a subset I' of I such that u = Sv(I'),
hence necessarily (u, e) — 0 or ± 1 for anyy in J.

Let {I,T} be a spanning forest of a graph T = {/,/}. Then as is well
known in graph theory (cf. Berge [2, p. 26]), there exist Z-bases [yT/,
j <EJ - T} and {o>T/, t G T) of HX(T, Z) and 5C0(r, Z), respectively, de-
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fined as follows: for/ in J — T, the spanning subgraph {/, T u {/}} has the
cyclomatic number one. Thus there is a unique cycle yTJ in this subgraph with
(yTJ, ej) = 1. Similarly for t in T, only one of the connected components of
{/, T) breaks up into two for the spanning subgraph {/, T — {/}}. Let I, be
the set of vertices in the one of these two components in which t has its initial
vertex. Then we let <or, = 8v(I,).

The following two lemmas are obvious from what we have seen so far.
They will be useful in determining codimension one faces of Voronoi poly-
hedra in Proposition 5.2.

Lemma 4.6. Let y be a cycle for a graph T = {/, J} and let J' = {/ G J;
(y, ej) 9* 0} and V = {/,/'}. Then the following are equivalent and in this case
y is called an elementary cycle.

(i) y # 0 and is minimal in the sense that it cannot be written nontrivially as
a sum Y = 7i + Y2 of cycles with {/ G J; (yx, ej) ¥= 0} and (/ G J; (y2, ej) ¥=
0} disjoint.

(ii) HX(V, R) is one dimensional. In this case y generates this space.
(iii) Hl(T", R) is one dimensional.
(iv) [p(ej);j G J — J'} spans a codimension one subspace of H\T, R), where

p: CX(T, R) -» Hl(T, R) is the canonical projection.
(v) There exist a spanning forest {I, T) of T and j G / — T such that

T - ± Ytv-

Lemma 4.7. Let u be a cocycle for a graph T = {/, J) and let J0 = {/ G /;
(w, e) = 0} and T0= {I, J0). Then the following are equivalent and in this case
u is called an elementary cocycle.

(i) « ^ 0 and is minimal in the sense that it cannot be written nontrivially as
a sum w = w, + w2 of cocycles with {/ G J; (co,, e) + 0} and {/ G /; (co2, ej)
=7*= 0} disjoint.

(ii) For the projection P0: CX(T, R) -> C,(ro, R) defined by P0(ej) = e, or 0
according as j G J0 or not, the intersection ker(F0) n 8C0(T, R) is one dimen-
sional. In this case to generates this space.

(iii) All but one of the connected components ofT remain connected for T0 and
the remaining component of T breaks up into exactly two components of ro. In
this case to = Sv(I'), where I' is the set of vertices in one of these two
components of T0.

(iv) {3e,;/ G J0} spans a codimension one subspace ofdCx(T, R).
(v) There exist a spanning forest {I, T) of T and t G T such that a =

± «TU-

5. Voronoi and Delony decompositions for a graph. Let T = {I,J} be a
graph which need not be connected. We apply our results in §2 to the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPACTIFICATIONS OF GENERALIZED JACOBIANS 23

following:

F = CX(T, R) = © Rej

with the canonical pairing (&, ej) = 0 or 1, according as/ ^/' or/ =/' and
the lattice

A = C,(r, Z) = © Ze¡.
jBJ

We have seen in the previous section that if

E' = HX(T, R)   and   F" = 5C0(r, R)

then we have an orthogonal decomposition F = E' © E". Let ?r': E^> E'
and 77": F -* E" be the orthogonal projections as before. Then as we have
seen, we have 3 » it" = 3 and 3: F—» C0(T, R) induces an isomorphism
F'-»3F. Similarly for the canonical surjection p: F-^i/^r, R), we have
p » it' = p and p induces an isomorphism F'-»//1^, R). Obviously A n F'
= #,(r, Z) and A n E" = 8C0(T, Z) are lattices in E' and F", respectively.
Moreover, ir'(A) and tî-"(A) are lattices in E' and F", respectively, since tt'(A)
can be identified with H\T, Z) by p, and u-"(A) with 3C,(T, Z) by 3. Hence
our requirements in §2 are all satisfied.

Definition. For a graph T, we denote K(T) = Del(F, A) and Vor(T) =
Vor(F, A). We call polyhedra in them Delony and Voronoi polyhedra for T,
respectively.

We have Sk°(K(Ty) = A = C,(I\ Z) and Sk°(Vor(T)) = A + e(J)/2.
Definition. For a subset J'ofJ, we denote

*y<(0)« f  2 \e/, V real with \Xf\ < I/2].
1/6/' J

Ky(0) is easily seen to be the top-dimensional Voronoi polyhedron contain-
ing 0, i.e.

Vj(0) = {x(=E; ||*|| < ||* - HI for all I in A},
since F = R17' is the standard Euclidean space and A = Z17'. Similarly Fy.(0)
is the top-dimensional Voronoi polyhedron containing 0 for the graph {/,/'}.

Thus we easily see the following:

Proposition 5.1. A Delony polyhedron D in K(T) is of the form
D = b + Vj..(0)

where J" is a subset ofj and b is an element of E such that b — e(J")/2 is in
A. We call b = b(D) the barycenter of D andJ" = Supp(D) the support of D.
The dual Voronoi polyhedron is

D* = b(D) + Vj_r(Q).
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Thus if b(D) = I + e(J")/2 for | in A, then

D = 11 +   2   trer; t,. real with 0 < tf < il.

We now come to the main result of this section comparing the Voronoi
decomposition of E with those of E' and F" for a graph. This is crucial to
our subsequent analysis of Namikawa decompositions for a graph. See
Proposition 5.5 due to Mumford for a dual result concerning the Delony
decompositions.

Proposition 5.2. For a graph T = {I, J], we have the following:
(1) it'(Vj(0)) is the top-dimensional Voronoi polyhedron containing 0 in E'

with respect to the restriction of(,) and the lattice A n E' = HX(T, Z), hence

Vor(F', A n F') = {#i(I\ Z)-translates offaces ofir'(Vj(0))}.
Moreover, we have

ii'(Vj(0j) = {* G F'; (*, y) < (y, y)/2 for any elementary cycle y}.

These inequalities are irredundant in the sense that for each elementary cycle y,
the intersection of this with the hyperplane H = {* G F'; (*, y) = (y> y)/2} is
its codimension one face.

(2) tt"(Vj(0)) is the top-dimensional Voronoi polyhedron containing 0 in E"
with respect to the restriction of (,) and the lattice A n F" = 5C0(r, Z), hence

Vor(F", A n E") = {5C0(r, Z)-translates offacesofir"(Vj(0))}.
Moreover, we have

tt"(Vj(0J) = {* G E"; (x, <o) < (to, <S)/2for any elementary cocycle to}.

These inequalities are irredundant in the sense that for each elementary cocycle
to, the intersection of this with the hyperplane H = {* G F"'; (*, to) =
(to, to)/2} is its codimension one face.

Proof. ir'(Vj(0)) is contained in the top-dimensional Voronoi polyhedron
of E' containing 0, which is of the form

{* G F'; ||*|| < II*-HI for all I in An F'}.
Indeed for |^.| < 1/2 for/ in J and | in A n E', we have

M 2 V/> *) - (2 ¥,- 0-2 Mej, ?)
< 2 \M(ej, 02 < 2 (* £)2/2 - (£ ÖA

since (t^, I) is an integer for all/ in 7 by assumption.
Since ir'(Vj(0)) is a convex polyhedron in F', it is enough, for the proof of

(1), to show that the codimension one faces of tt'(Vj(0)) are determined
exactly by hyperplanes H in F' of the form
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H={xEE';(x,y) = (y,y)/2)
for an elementary cycle y- By definition Vj(0) is the convex hull of its vertices
which are of the form e(J')/2 — e(J — J')/2 for a subset /' of J. Thus
tt'( Vj(0)) is the convex hull of elements of the form

tr'(e(J') - e(J - J'))/2.
Let a i= 0 be an element of F' such that for a real number c the hyperplane

H = {* G E';(a,x) = c}
determines a codimension one face of tt'( Vj(0)), i.e. (a, n'(y)) = (a, y) < c
holds for all * in Vj(0) and H n tr'( Vj(0)) is of codimension one in E'. Since
this intersection is determined by the vertices lying on it, there exist subsets
/,', ...,J^oiJ such that (a,(e(/«) ~ e(J - Z«))/2) - c for a = 1,. . . , m
and that this condition determines a va. E' and c uniquely up to constant
multiple. Moreover for any subset J'oiJ, we have

(a, (e(J') - e(J - J'))/2) < c.
Since (e(j;) - e(J - JJ) - (e(J') - e(J - J')) = e(J¿) - e(J'), we see that
(a, e(J')) < (a, e(J^jj) for any subset J' oí J, with the equality holding if
J' = Jß for some 1 < ß < m. Let c' = (a, e(J'xJ) = • • • = (a, e(J¡J). Thus
we have (a, e(J')) < c' for any subset J' oí J with the equality holding if
J' = J^ for some a. We may assume without loss of generality that $■ =
{/,',..., J¡„) is the set of all subsets J' oí J for which the equality holds.

Lemma 5.3. Let (a, e(J')) < c' for any subset J' of J with the equality holding
if and only if J' belongs to a family % of subsets. Then there exists a
decomposition

j = y+uyoHy_
such that (a, ej) > 0 iff is inJ+, (a, ej) = 0 if j is in J0 and (a, ej) < 0 iff is in
y_ such that $■ is exactly the family of subsets J' of J satisfying J+11J0 D J' D
J+.

Proof of Lemma 5.3. First of all, $ is closed under union and intersection.
Indeed, for J[ and J2 in $-, we have

2c' = (a, e(J[)) + (a, e(Jj)) = (a, e(J[ u ^2)) + (*, e(J[ n J'j))
and each term is not greater than c' by assumption. Thus there exist the
largest member 73' and the smallest member J'A in c¡r. An element / in J is not
in 7j if and only if (a, ej) < 0. Indeed, if/ is not in J'v then (a, ej) = (a, ej) +
(a, e(JÇ)) - c' = (a, e({j) u /3')) - c' < 0, and if / is in J¡, then (a, ej) =
(a, e(j;)) - (a, e(J¡ - {/})) > 0. Similarly/ is in /; if and only if (a, ej) > 0.
Indeed, if/ is in J'A, then (a, ej) = (a, e(J?j) - (a, e(J\ - {/})) > 0, and if/ is
not in J¡, then (a, ej) = (a, e(J^ u {/})) - (a, e(J^i) < 0. Thus we are done
by putting J+ = J'A,J_ = J - J^ and/0 = J ~ J+RJ-■
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Proof of Proposition 5.2 continued. By Lemma 4.3 we see that a + 0 in
F' should be determined up to constant multiple by the conditions (a, ej) > 0
for/ in /+, (a, ej) = 0 for/ in J0 and (a, ej) < 0 for/ in /_. Consider the
spanning subgraph T" = {/,/"} with J" = J+UJ_. By the unicity of a up
to scalar multiplication, we conclude easily that HX(T", R) is one dimensional,
hence we may assume that a is an elementary cycle y by Lemma 4.6. Since
for a subset J' of J we have

(y,(e(J') - e(J - J'))/2) = (|7+| + |/.|)/2 -\J+n(J - J')\ - |/_ n/%
its maximal value (y, y)/2 = (\J+\ + \J-\)/2 is attained for J+ C J' C
J+HJ0. Hence c = (y, y)/2 and the codimension one face is determined by
the hyperplane

7/={*GF';(*,y) = (y,y)/2}.
The converse is obvious. To prove (2), we proceed as above and reduce
ourselves to the situation where a =£ 0 in F" is determined up to scalar
multiplication by the conditions (a, ej) > 0 for/ in J+, (a, ej) = 0 for/ in J0
and (a, ej) < 0 for/ in J_. Consider the spanning subgraph T0 = {/, J0) and
the projection P0: CX(T, R) -» CX(T0, R) defined by F0(e^) = 0 if/ is not in J&
while P0(ej) = e¡ ii j is in J0. By the unicity of a up to scalar multiplication,
we conclude easily that ker(F0) n 8C0(T, R) is one dimensional, hence we
may assume that a is an elementary cocycle u by Lemma 4.7. Again for a
subset J ' of J we have

(to, (e(J') - e(J - J'))/2) = (to, to)/2 - \J+ n (J - J')\ - \J_ H A
hence its maximal value is attained for /+ c /' C J + U J0- Thus the codi-
mension one face is determined by the hyperplane

H = {* G F"; (*, a) = (to, to)/2}.
The converse is again obvious.

Corollary 5.4. For an element of E" of the form

* = ir"(i + e(J)/2)
for | in A, the Namikawa decomposition Del^F'; F, A) coincides with the
translation by ir'(£ + e(J)/2) of the Voronoi decomposition Vor(F', A n F'),
i.e.

Del^,(i+e(y)/2)(F'; F, A) = tt'(I + e(J)/2) + Vor(F', A n E').
Proof. By our explicit description of Vor(F) = Vor(F, A), we see that

u — | + e(J)/2 is a O-dimensional Voronoi polyhedron. Thus u' = u + Vj(0)
and ir'(u*) = tr'(u) + it'(Vj(0)) is in DeL/F'; F, A). Since this latter is
invariant under the translation by elements of A n F', we are done by
Proposition 5.2 (1).

Remark. Compare this result with the following "dual" version due to
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Mumford which was used by Namikawa [27, §18] for his compactification of
the generalized Jacobian variety of a stable curve.

Proposition 5.5 (Mumford). Let E, A, E' and E" be as before defined for a
graph T. Then

(1) the polyhedral decomposition of E'
{D n F'; D G Del(F, A) with rel.int(F>) n E' ¥=0}

induced by the Delony decomposition of E coincides with the Delony decomposi-
tion Del(F', A n F') and

(2) the polyhedral decomposition of E"
{D n F"; D G Del(F, A) with rel.int(Z)) n E" # 0}

induced by the Delony decomposition of E coincides with the Delony decomposi-
tion Del(F", A n E").

Proof. For/ in J consider the linear form/(*) = (ep *) on E. Then {/;
/ G J) is the basis of A" dual to the basis {ey,j G J) of A. The metric on E
can be written as

H2 - 2 fM)2-
JGJ

Consider the restriction of those to subspaces F' and E", and their lattices
A n E' and A n E". It is a standard fact in graph theory that {fjE';j G /}
and {fj\E"; / G /} are totally unimodular subsets of (A n F')" and (A n
E")~, respectively. Indeed, for a subset J' of J, the set {f.\E';j G J'} is an
R-basis of (E)~ if and only if there exists a spanning forest {/, T) of T such
that J' = J — T, hence it is a Z-basis of (A n E')~. Similarly, the set [fjE";
/ G J'} is an R-basis of (E")~ if and only if there exists a spanning forest
{I,T} such that J' = T, hence it is a Z-basis of (A n E")~. The rest of the
proposition follows immediately from Corollary 3.2 applied to F = F' and
F= E".

Remark. Although we do not need it later, we can show that there is a
surjective map from the set of "flags"

/, C I2 C • • • C /„ C /

(i.e. |/J = a and \I\ = n + 1) to the set of vertices of it"(Vj(0)). This fits in
nicely with the following known result valid for Voronoi decompositions in
general: The number of vertices of a top-dimensional Voronoi polyhedron in
an n-dimensional space is not greater than (n + 1)! (cf. Voronoi [34]).

6. Namikawa decompositions for a graph. We consider now Namikawa
decompositions for a graph T = {/, J}. For later purpose, it is more con-
venient to express Namikawa decompositions on //'(T, R) which is isomor-
phic via p to E'. It is also more convenient to take the parameters in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 TADAO ODA AND C. S. SESHADRI

dCx(T, R) which is isomorphic via 3 to F", i.e. for an element 4> in dCx(T, R)
there exists a unique element ^ in F" such that 4> = 3^. Recall that we have
3 ° it" = 3.

Definition. Let 4> be in 3C,(i\ R).
(i) A Delony polyhedron D in K(T) is called 4>-semistable if 3Z)* 3 4>. We

denote by K^(T) the set of <i>-semistable Delony polyhedra.
(ii) We denote by K°(T) the set of Delony polyhedra D in K(T) such that

3(rel.int D*) 3 4>.
(iii) A Delony polyhedron D in K(T) is called ^-stable if 3(rel.int Z>*) 3 <|>

and dim 3D* = dim 3C,(r, R). We denote by K^st3bXJT) the set of ^stable
Delony polyhedra.

(iv) We denote by DeL/.rï'Cr, R)) the set of polyhedra in H](T, R) of the
form o(D) for D in K%(T).

Note that A^(T) and K^.stííbXt.(T) contain faces of each of their members (cf.
Corollary 2.2), while K%(T) does not. K+QT) consists of faces of members of
K°(T). We have /^stable(T) c K°(T) c K+ÇT). As we saw in §2, we have a
surjective map

V.K¿T)^K°(T)

quasi-inverse to the inclusion. Dx and F>2 m ^CO are said to be ^-equivalent
if fi(Dx) = tiDj). D G K+(T) is in ^stable(T) if and only if D is in K°(T) and
is the unique element ^-equivalent to it (cf. Proposition 2.1). We have

tf„(r)/<i>-equiv. A K°(T) A Dtl^H '(T, R)).

We are going to analyze ^equivalence further at the end of § 12 (Lem-
ma 12.16).

We can interpret Proposition 1.6 as follows:

Proposition 6.1. For 4> in 3C,(T, R), the set Del^//'(T, R)) of polyhedra
p(D) for D in K%(T) is a polyhedral decomposition, called the Namikawa
decomposition, of H\T, R) by bounded polyhedra invariant under the translation
by elements of p(Hx(T, Z)) with Del^H '(T, R))/p(Hx(T, Z)) finite. Moreover
the set Sk^Del^í/Z'ír, R))) of 0-dimensionalpolyhedra is a subset ofHl(T, Z).

Corollary 6.2. Let u be an element of CX(T, R) with u - e(J)/2 in
CX(T, Z). Then Deldu(H \T, R)) is the translation by p(u) of the image under p
of the Voronoi decomposition Yot(Hx(T, R), Hx(T, Z)), i.e. for | G CX(T, Z) we
have

De\èa+eU)/2)(Hl(T, R)) = p(i + e(J)/2) + p(Vor(Hx(T, R), #,(1; Z))).
This is nothing but a re-interpretation of Corollary 5.4.
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Corollary 6.3. The translates by elements of dCx(T, Z) of the faces of
dVj(0) is a polyhedral decomposition of 3Cj(r, R), the image under 3 of the
Voronoi decomposition Vor(5C0(I\ R), SC0(r, Z)). Moreover, we have

3Fy(0) = {* G 3C,(r, R)| [*, v(I')] < (Sv(I'), 8v(I'))/2
for all subsets T of I).

It is sufficient to take only those I' for which Sv(I') are elementary.

This is a re-interpretation of Proposition 5.2 (2).
Remark. We need to know below the relative interior of 3( Vj(0)). Since we

have ker(5) = H°(T, Z) = © l<a<c Zv(Ia) by §4, we conclude that
rel.int(3( Vj(0))) consists of * in 3C,(T, R) which satisfy

[x,v(I')] <(8v(I'),8v(I'))/2
for any subset I' oí I which is not the set of vertices in a union of connected
components. It is again sufficient to take only those /' for which Sv(I') are
elementary.

In the case of a graph we can determine </>-semistability and «/^stability of
Delony polyhedra more easily in the following way:

Proposition 6.4. Let D be a Delony polyhedron in K(T), and let </> be in
3C,(r, R). Then the following are equivalent:

(1) D is 4>-semistable, i.e. D is in K^T).
(2) db(D) -4><= 3(^,(0)), where J' = J - Supp(£>).
(3)3£> c<i» + 3(F,(0)).
Proof. Let J" = Supp(D) and J' = J - J". Then for b = b(D), we have

D = b + Vj~(0) and D* = b + Vr(0) by Proposition 5.1. By definition, D is
<í>-semistable if and only if 3F>* 3 4>. Hence (1) is obviously equivalent to (2).
(2) implies (3), since

W = 3(è + MO)) c 4> + 3(^,(0)) + a(Mo)) - * + 3(^/(0)).
Finally    (3)   implies   (2).    Indeed,   we   have   Sv(I') = 8jv(I') +
SrsyM-i"). %er\er, hence

(8v(n sod')) = (SMI'), SMI')) + 2 Kn a*,»]2-

Thus for* — b + 2y»e/- \er in D with \\r\ < 1/2, we have

[36 - 4>, v(I')] - (8j,v(I'), 8j.v(I'))/2

= [dy-4>, v(I')] - (Sv(I'), 8v(I'))/2

+   2   ([»(/'), 3er]2/2-V[»(n3e,.]).
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The first half of the right-hand side is nonpositive by (3) and Corollary 6.3,
and the second half attains its minimal value 0 for Xj~ «■ [v(I'), 3e,»]/2, since
[v(I'), der] = 0 or ± 1. Hence [db - 4>, v(I')] < (8rv(I'), 8rv(I'))/2, and we
get (2) by applying Corollary 6.3 to the graph {/, /'}. Q.E.D.

Proposition 6.5. Let D and 4> be as above. Then the following are equiv-
alent:

(\)D is in K°(T).
(10 db(D) - 4> G rel.int(3Fy.(0)) with J' = J - Supp(D).
(2) For any y in D, we have

[dy-4>,v(I')] <(8v(I'),8v(I'))/2

for any subset I' of I, with the equality holding for some y in D only if I' is the
set of vertices in a union of connected components in the graph {I,J'} with
J' = J - Supp(Z)).

Proof. (1) and (10 are equivalent by definition. By the remark after
Corollary 6.3 applied to the graph (/, J'}, we see that (10 is equivalent to (1")
[db(D) - 4>, v(I')] < (Sj.v(I'), 8j.v(I'))/2 for any subset /' of / with the
equality holding (if and) only if F is the set of vertices in a union of
connected components of {/, /'}. For* = b + Sy-gy» \"ef m & ^^ IVI ^
1/2, we have as before^ = B(y) + C(y), where

A=[db-4>, v(I')] - (8rv(I'),8j.v(r))/2
B(y) = [3* - * v(I')] - (8v(I% 8v(I'))/2   and

C(*)=   2   {[v(I'),der]2/2-\r[v(I'),der]).
r<=j"

We have C(y) > 0 with the equality attained for * = *0 with Xj. =
[v(I'), der]/2

(1") imphes (2), since 0 > A > B(y) for all * and since B(y) = 0 only if
A = 0 and C(y) = 0. On the other hand (2) imphes (1"), since A = B(y0) <
0, and since /I = 0 only if B(y0) = 0.

Proposition 6.6. Let D and 4> be as above. Then the following are equiv-
alent:

(1) D is ^-stable, i.e. D is in K^lable(T).
(L) 36(Z>) - 4> G rel.int(3Fr(0)) with J' = J - Supp(Z)) containing the set

of edges of a spanning forest ofT.
(2) 3Z> c 4> + rel.int(3F,(0)).
(3) D is in Kq(T) and p induces a bijection D —>p(D).
(30 D is in K°(T) and dim D = dim p(F>).
(4) D is the unique element equivalent to it in the equivalence relation defined
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by
h-.k^-^kKt)

as in §2.

Proof. The equivalence of (1), (3), (30 and (4) follows from Proposition
2.1. (1) and (V) are equivalent, since D* = b(D) + F,,(0) and since
dim dVj.(0) = dim 3C,(T, R) if and only if J' contains the set of edges of a
spanning forest of T. On the other hand, J' contains the set of edges of a
spanning forest of T if and only if the connected components of T remain
connected in {/,/'}. Thus in view of the previous proposition (10 is equiv-
alent to: (20 For any* in D we have

[9*-*,o(/')] <(8v(I'),8v(I'))/2
for any subset I' oí I with the equality holding for some* in D if and only if
/' is the set of vertices in a union of connected components of T. By the
remark after Corollary 6.3, (20 is obviously equivalent to (2). Q.E.D.

Remark. Proposition 6.4 (3) and Proposition 6.6 (2) are very powerful and
convenient criteria for the semistability and stability of a Delony polyhedron.
We cannot expect to have similar criteria in general when F need not come
from a graph. See, for instance, the last example in §1. These criteria were our
original definition of semistability and stability to which we were led by
algebro-geometric considerations we make in the next chapter.

7. Relations among Namikawa decompositions for a graph. In this section,
we study more closely the polyhedral decomposition Par(F") introduced at
the end of §2, when F comes from a graph. Thus as in §2, we can compare
Namikawa decompositions DeL^FT '(T, R)) for different values of the param-
eter 4>. We interpret Par(F") in terms of an arrangement of hyperplanes
which we introduced in §3 and which is much easier to compute.

Let T ={/,/} be a graph and let F, F', E" and A be as in §4. Further-
more, we let

F = 3C,(r, R)   and   G = 3C,(r, Z).
Note that 3 induces an isomorphism 3: E" ^> F which sends it"(A) isomor-
phically onto G. We try to express Par(F") in a more computable form on F,
as an arrangement of hyperplanes.

Definition. We call a subset /' of / elementary when Sv(I') is an elemen-
tary cocycle (cf. Lemma 4.7). For an elementary subset /' of /, we denote by
fr the element of G = Homz(G, Z) defined by fr(g) = [v(I'), g] for g in G,
where [, ] is the pairing on CqÇT, Z).

Definition. We denote by Arr(r) the arrangement of hyperplanes in
F = 3C,(r, R) defined by

Arr(r) = Arr(F, {fr; I' elementary subsets of /}).
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Theorem 7.1. For a graph T, we have

3(Par(F")) - de(J)/2 + Arr(r)
which is invariant under the translation action of 3C,(r, Z) with the quotient
finite. Moreover, Sk°(Arr(r)) D 3C,(r, Z).

Corollary 7.2. (i) For A in Arr(T), the sets K^T), K°(T) and K^5table(T)
stay the same as long as 4* is in 3e(/)/2 + rel.int(^4).

(ii) For A in Arr(T), the Namikawa decomposition Dél^H '(T, R)) stays the
same as long as 4> is in de(J)/2 + rel.int(^4) -I- 3SC0(T, Z).

(iii) For | in CX(T, Z), and 4> in dCx(T, R), we have ^+3i(T) - KJT) + |,
^♦°+8t(r) = K$(T) + I, K++H.slable(T) = K._,uble(X) + | and
Del*+8í(#¿(r, R)) = Del+(H '(T, R)) + p(0.

(iv) Let A be a face of A in Arr(T). For </> in de(J)/2 + rél.int(A) and 4> in
de(J)/2 + rel.int(yi), the Namikawa decomposition Del^(//'(T, R)) is a subdi-
vision of De\¿(Hl(T, R)).

Corollary 7.3. For a graph T, there are only a finite number of different
Namikawa decompositions of H \T, R), the number being bounded by the
cardinality of

Arr(r)/35C0(r, Z).
Among them there are those which differ only by the translation by elements of
H\T,Z).

These are just a re-interpretation of Proposition 2.3 and Corollary 2.4.
Proof of Theorem 7.1. Since 3 induces an isomorphism 3: F" -> F, it is

enough to show that

Par(F") = it"(e(J)/2) + Arr(F", [Ux, ...,«.})

where {ux,..., ua) is the set of all the elementary cocycles for T and we
identify ua with the linear form 11-» (aa, |) belonging to (A n E"J.

Let ip be an element of E". Then by the definition given in §2, we have
P($) = H """(Y) where V runs over all the Voronoi polyhedra in Vor(T)
with V* in K^(T).

Lemma 7.4. Let V be in Vor(r) and let V* = <|q, . . ., |r>. Then we have

ir"(v) = ir"(v(Q) n • • • nir"(v(ir)).
In particular for \p in E",we have

m = n «"(r®)
with K(|) running over all the top-dimensional Voronoi polyhedra in Vor(T) with
ir"(V(0) 3 i, i.e. | in An K^T).
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Proof of Lemma 7.4. Obviously we have V = F(|0) n • • • n V(t-r). Thus
ir"(V) is contained in the right-hand side. Let if/ be an element of the
right-hand side. Thus £, = V(£a)* *s contained in K^fT) for 0 < a < r.
Hence by Corollary 6.4 (3), we see that 3|„ is contained in 3^ + d(Vj(0)) for
0 < a < r. But since this set is convex, we conclude that dV* =
< 3|o, . . ., 3|r> is contained in this set. Thus again by Corollary 6.4, we see
that V* is in K^ÇT), i.e. it"(V) 3 ^.

Proof of Theorem 7.1 continued. From our concrete description of the
Voronoi decomposition Vor(r) and the Delony decomposition K(T) of F =
C,(r, R) in Proposition 5.1, we see easily that they differ only by the
translation by e(J)/2, i.e.

Vor(r) = e(J)/2 + K(T).
For simplicity, let us denote P(ip) = P(if) - ir"(e(J)/2), where $ = xp —
ir"(e(J)/2). Then by the above lemma we see that

py) = n *"<!>,) = n **(dj,
where Dx runs over all polyhedra in K(T) with ir"(Dx) 3 ^, and D2 runs over
all top-dimensional polyhedra in KÇT) with ^"(Dj) 3 \p. Consider the inter-
section H tt"(D) where D runs over all polyhedra in K(T) with tt"(D) 3 \p
and moreover, with Supp(Z)) contained in the set of edges in a spanning
forest of T. Then obviously this intersection contains f\it"(Dx) and is
contained in fl ^"(Dj). Thus we conclude that

%~) = n n *"(D)
T        D

where {I, T} runs over all spanning forests of T and with D running over all
polyhedra D in K(T) with tt"(D) 3 i£ and Supp(Z)) = T. Hence our theorem
follows from the following whose proof is left to the reader.

Lemma 7.5. Let {I, T} be a spanning forest ofT. Then

{it"(D); D G K(T), Supp(Z)) c T)
is a polyhedral decomposition of E", which coincides with the arrangement of
hyperplanes

Att(E", {Ut/, t G T})
where {uT/, t G T) is the Z-basis of A C\ E" consisting of elementary cocycles
dual to the Z-basis {ir"(e,); t G T) of it"(A) with respect to the pairing ( , )
which we introduced before Lemma 4.6.

Recall that for 4, in 3C,(T, R) we have
JW.(T) C K°(T) C K+(T)
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and an isomorphism

p:K%(T)~>Ddi,(Hl(T,R)).

By Corollary 6.3, we see that d~l(4> + dVj(0)) is a fundamental domain of
F = CX(T, R) with respect to A n E" = 8C0(I\ Z). By Proposition 6.4, D is
in Kf(T) if and only if it is contained in this fundamental domain. By
Proposition 6.6, D is in K^_stabie(T) if and only if it is in the interior of this
fundamental domain.

In the geometric invariant theory, we are particularly in good shape if
semistable geometric objects are automatically stable. Let us now examine
such cases in our context.

Definition. An element 4> in 3C,(r, R) is called nondegenerate if «^semista-
ble Delony polyhedra are automatically ^stable, i.e.

**(T) = K^bXe(T),

or equivalents K^T) = K°(T).

Proposition 7.6. 77z<? following (1), (2), and (3) are equivalent, and imply
(20-

(1) 4> is nondegenerate.
(2) Sk°(K+_stable(T)) = Sk°(^(r)).
(20 Sk°(Del¿H\T, R))) = ^'(r, Z).
(3) 4> — de(J)/2 is in the interior of a top-dimensional polyhedron in Arr(T).

Proof. (1) => (2) => (20 is immediate.
(2)=>(1). Let D be in K+(T% hence D is in the fundamental domain

3 ~'(<i> + dVj(0J). But all the vertices of D are in its interior by (2). Since the
interior is convex, we see that D is contained in the interior. Hence by
Proposition 6.6, D is in /¡s^stabie(r)-

(1) => (3). Let \p be the unique element in F" with 3^ = 4>. Then as in the
proof of Theorem 7.1, we see that

f(^) = n n *"(d*)
T       D

with {I, T] running over all the spanning forests of T and D running over all
polyhedra satisfying Supp(Z)) = / - T and D G K^T), i.e. ir"(D*) 3 4>.
Such D is uniquely determined by T up to the translation by elements of
A n E" hence ir"(D*) is uniquely determined by T. Moreover, the di-
mension of ir"(D*) is equal to that of E". Since \p is necessarily contained in
the interior of ,ir"(D*) for such D by (1), we see that P(\p) is a top dimensional
polyhedron in Par(F").

(3) => (2). Let \p be as above. Then by Lemma 7.4, we have

pm= ruwö)
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with | running over Sk°(A^(r)). Since P(\p) is a top-dimensional polyhedron
and since ^ is in its interior by (3), we see that \p is in the interior of all such
v"( F(|)). Thus | is in Sk°(^stable(T)).   Q.E.D.

Definition. Let 4> be in 3C,(I\ R). For 0 < r < h(T) = dim H \T, R), we
denote by Br = Br(T; 4>) the number of p(Hx(T, Z))-equivalence classes of
/•-dimensional polyhedra in the Namikawa decomposition Del^(H l(T, R)), i.e.
the number of /--cells in the /i(r)-dimensional quotient cell complex

Del<i>(i/,(r,R))/p(i/1(r,Z)).
Theorem 7.7. Let 4> in 3C,(T, R) be nondegenerate. Then
(1) there is a canonical bijection between the set of p(Hx(T, Z))-equivalence

classes of h(T)-dimensional polyhedra in DeL^/Z^r, R)) and the set of spanning
forests ofT. In particular we have Bh(ry(T; 4>) = complexityiT), and

(2) for 0 < r < h(T), we have Br(T; 4>) = f*P) ■ complexitytT).

Proof. Since 4> is nondegenerate, p induces an isomorphism

P: JWe(r) = K¿T) ^Del^(//'(r, R)).
Consider the map

**(T)-* {subsets of J}
sending D to J' = J — Supp(D). Then by Proposition 6.6 (V), the image
consists exactly of those subsets J' oí J containing the set of edges of a
spanning forest of T. Given such /', the set of HX(T, Z)-equivalence classes of
D in K^(T) with J' = J — Supp(D) is in one-to-one correspondence, via the
map D h> b(D), with the intersection of 3e(/ - J')/2 + dCx(T, Z) with <i> +
rel.int dVj.(0) by Proposition 5.1 and Proposition 6.6 (V). The latter set is the
interior of a fundamental domain of dCx(T, R) with respect to the lattice
d8j.C0(T, Z) by Corollary 6.3 applied to the graph {/,/'}. Thus the number
of HX(T, Z)-equivalence classes of D in KJT) with J' = J — Supp(F>) is
equal to the index [3C,(T, Z): d8rC0(T, Z)], which, by Kirchhoff-Trent's
theorem in §4, is equal to the number of spanning forests in {/, J'}. Applying
this result to the case where {/, J'} is a spanning forest of T, we get (1). As
for (2), we have seen so far that

Br = 2 complexity({/,/'}),
y

where /' runs over all subsets of J containing the set of edges of a spanning
forest of T. Given a spanning forest {/, T) of T, we know \J — T\ = h(T),
hence there are (*(r)) different subsets J' oí J with J' d T. Thus we conclude
that

B, = 2 ( Ä(rr) ) = ( Ä(rr) ) • complexity(r).
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Remark. Proposition 7.6 (20 is obviously equivalent to
B0(T; 4>) = complexity(r)

by Kirchhoff-Trent's theorem. This is a special case of Theorem 7.7 (2). It
was pointed out by S. Usui that Proposition 7.6 (20 need not imply (1), (2)
and (3).

Remark.  The 1-skeleton of the cell-complex dual to

DeL,(//-,(r,R))/p(//-1(r,Z))
for a nondegenerate 4>, is the "spanning tree graph" of T (cf. Harary [11]).

We have seen that 4> is nondegenerate if and only if 4> — de(J)/2 belongs to
the interior of a top-dimensional polyhedron in Arr(r).

Let us consider the other extreme. We know by Corollary 3.2 that

3C,(r, Z) c Sk°(Arr(r)).
They may not coincide, since {fr; /' elementary subsets of /} in the dual of
3C,(r, Z) need not be totally unimodular in general. We show this below in
the case where T is the simple complete graph with four vertices, i.e. the
1-skeleton of a tetrahedron (§8, Example (5)). This is obviously the simplest
example of a graph without total unimodularity. Thus the coarsest decom-
positions among Namikawa decompositions need not be the ones we describe
below in Proposition 7.8. Hence we have a negative answer to a question
raised by Namikawa concerning the characterization of stable quasi-abelian
varieties by minimality.

Proposition 7.8. For 4> in dCx(T, R), the following are equivalent:
(1) 4> - de(J)/2 belongs to 3C,(T, Z).
(2) There is a polyhedron D in K^ÇT) with Supp(F>) = /.

In this case the following hold.
(3) DeL/.tf'Or, R)) is the translation by an element of p(e(J)/2) + Hl(T, Z)

of the image under p of the Voronoi decomposition Yor(Hx(T, R), HX(T, Z)).
(4) Bh(r)(T; 4>) - 1.
This is a re-interpretation of Corollary 6.2.
Remark. (3) and (4) are properties about the Namikawa decomposition

and are insufficient to characterize (1) and (2). For instance, let T = {/, /} be
such that |/| = |/| = 2, with one edge joining the two vertices, while the other
edge is a loop at one of the vertices. For any <i> the Namikawa decomposition
is identical, while K^(T) depends on whether <#> - de(J)/2 belongs to the
interior of a one-dimensional polyhedron in ArnT) or in a O-dimensional
polyhedron (cf. §8. Example (2i)).

8. Examples. In this section, we apply our theory in previous sections to
various graphs T = {I,J} and compute Namikawa decompositions for them.

(1) When |/| = 1, i.e. the graph has only one vertex and all the edges are
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loops we have 3C,(I\ R) - 0 and HX(T, R) = Hl(T, R) = CX(T, R). Thus
automatically 4> « 0 and ^stable(T) = KJT) = K(T) « Dd¿Hl(T, R)) (see
Figure 3).

Figure 3

(2) When |/| = 2 and \J\ = m, the graph looks like Figure 4.

Then 3C,(I\ R) = R(u, - vj) c C0(T, R) = Re, + Rt>2, 3&i = - 3fo2 =
m(t>, - Ü2) and de(J)/2 = /w(U[ — Ü2)/2. Since the elementary subsets of /
are {/,} and [i2], the polyhedral decomposition Arr(T) of dCx(T, R) is
defined by {/„/2 =-/,}, where /,(?) - [o„ ?] and /2(?) = [v2, ?] are ele-
ments of 3C,(T, Z)v. Arr(r) looks like Figure 5.

» « « » »-
-2(Ul-u2) -(Wi-u2) 0 (u,-i>2) 2(ü,-u2)

Figure 5

(2i) When m = 1, the graph is a tree and looks like Figure 6.

f, •-> • i2
ii

Figure 6

Hence HX(T, R) = Hl(T, R) = 0. In this case the Namikawa decomposition
is obviously the same for any 4>, and consists of 0. Let 4» - de(J)/2 = x(vx —
vj) with * in R. Then we have
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d~1(4> + dVJ(0)) = [yex;x <*<*+!}.
By Propositions 6.4, 6.5 and 6.6, we have the following:

(2ia) When * is not an integer, i.e. * is nondegenerate, K^^^JT) = K^(T)
consists of the O-dimensional polyhedron D = ([*] + \)ex, where [*] is the
Gauss symbol.

(2ib) On the other hand, if * is an integer, then K^stabXe(T) is empty and
K°(T) consists of the 1-dimensional polyhedron

D = {*e,;* < * < * + 1}.
K^ÇT) consists of D and their faces xex and (* + \)ex.

(2ii) When m = 2, the graph looks like Figure 7

h
Figure 7

and HX(T, Z) = Z(e, — ej). There are two spanning trees,  {/, {jx}} and
{/, {/2}}- Let 4> — de(J)/2 = x(vx — vj) with * in R. Then we have

d-l(4> + dVj(0)) = {*,<?, +*2e2;* <*, +*2<* + 2}.

Thus again by Propositions 6.4, 6.5 and 6.6, we have the following:
(2iia) If * = 2k is an even integer, then Ä^(T) consists of the translation by

elements of HX(T, Z) = Z(t?, - ej) of
D = {*iei + y2e¿ k < yx < k + I, k < y2 < k + 1}

and their faces. K°(T) consists of HX(T, Z)-translates of D and its vertex
(k + \)ex + ke2, while ^stable(r) consists of HX(T, Z)-translates of (A: + l)e,
+ ke2.

(2iib) If 2k < x < 2k + 1 for an integer k, then 4> is nondegenerate and
/^-stabiedO = K+ÇT) consists of HX(T, Z)-translates of

£>i = {*i*i + (k + \)e2; *<*,<* + !},

F>2 = {(k + \)ex + y2e2; k < y2 < k + 1},

and their faces, HX(T, Z)-translates of (k + \)ex + ke2 and (k + l)ex + (k +
\)e2.

(2iic) If * ^ 2k + 1 is an odd integer, then K^ÇT) consists of HX(T, Z)-
translates of

D' = {y\e\ + *2e2Î k+\<yx<k+2,k<y2<k+\)
and their faces. K%(T) consists of HX(T, Z)-translates of D' and its vertex
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(k + 2)ex 4- ke2, while Ar^stable(T) consists of HX(T, Z)-translates of (k + 2)e,
+ ke2.

(2iid) Finally if 2k + 1 < * < 2k + 2 for an integer k, 4> is nondegenerate
and K^^JT) = ^(T) consists of HX(T, Z)-translates of

D'\ " {y\ei + (k + l)e2; k + 1 < *, < k + 2},
D'2 = {(k + l)e, + *2e2; k + 1 < *2 < k + 2}

and their faces, //,(T, Z)-translates of (k + l)e, + (k + l)e2 and (A: + l)ex +
(k + 2)e2.

Thus the Namikawa decompositions corresponding to these four cases look
like Figure 8. For simplicity we denote p(ex) = — p(ej) = ëx, which is a
Z-base of Hl(T,Z), while p(Hx(T, Z)) is generated by 2ex. Note that
SuppiD,) = Supp(£>0 = {y'i} and Supp(D2) - Supp(F>¿) = {/2}.

-3ë.                                      -ê7                                      Si                                       3ê\
(2 ii a)    -*-!-«i-M-*--

PiD)

-3ë, -2ê, -ë, 0 ê", 2ë, 3ë,
(2 ii b)   -K-•-K •-*-•-M-

P(DX) P(P2)

(2iic) %
ftP')

-3e, -2ê, -e, 0 e, 2e, 3e,
(2 ii d)   -*-•-#-•-X-•-H-

pÇD'2) p(D\)

Figure 8
(2iii) When m = 3, the graph looks like Figure 9 and HX(T, Z) = Z(ex — ej)

© Z(e2 — ej). There are three spanning trees, {/,{/]}}, {/, {/2}} and
{/, {j3}}. Let 4> - de(J)/2 = x(vx - vj> with * in R. Then

3-'(^ + 3^(0)) = [yxex + y2e2 + y3e3; x < *, + *2 + *3 < * + 3}.

Figure 9

(2iiia) For instance, let us consider the case 4> = 0, i.e. * = — 3/2. This is a
nondegenerate case. K^^vkCO = K+(D consists of HX(T, Z)-translates of
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■°12 = {*lel +*2e2; 0 < *1 < 1. "I < *2 < o}»

#23 =  {^2^2 + *3e3; 0 < *2 <  1, - 1 < *3 < 0},

Dn = {*,e, + *3<?3; 0 < *, < 1, -1 < y3 < 0}
and their faces.

If we denote ex = p(ex) and e2 = p(ej), then p(e3) = — ëx - e7, and the
corresponding Namikawa decomposition looks like Figure 10 which is exactly
the picture obtained by Deligne and Mumford in Mumf ord [22, p. 270].

Figure 10

(2iiib) If 4> = (vx — vj)/2 for instance, hence is degenerate, then we have

3 -'(<í> + dVj(0)) = {*,e, + *2e2 + *3*3; - 1 < *, + *2 + *3 < 2}.

Thus   the   corresponding   Namikawa   decomposition   Del^/J'CF, R))   of
H '(T, R) consists of p(Hx(T, Z))-translates of

P({*1*I + *2*2 + *3^3= 0 < *, < 1, 0 < *2 < 1, -1 < *3 < 0})
and their faces and looks like Figure 11. Obviously the decomposition in
(2iiia) is a subdivision of this.

Figure 11
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(3) Consider the graph which looks like Figure 12 where there are a, b and
c edges along the upper, middle and lower paths, respectively, with nonnega-
tive integers a, b and c. The cyclomatic number of this graph is 2. Let ë, ê*
and ë" be the image under p of one of the edges in the upper, middle and
lower paths, respectively. We have ë + ë' + ë" = 0 and H1(T, Z) = Zë®
Zë', and p(/Y,(T, Z)) has a Z-basis consisting of (a + c)e + ce' and ce + (b
+ c)ë'. The number of spanning trees is

ab + be + ca = det ,c        b + c
They are obtained by deleting one edge each from two of the three paths.

Figure 12
Consider tiles in Hl(T, R) of the following shapes and colors: ab colors of

the tile of the shape
[yë +y'ë'; 0 < * < 1, 0 < *' < 1},

ac colors of the tile of the shape

{yë+y"ë";0 <* < 1, 0 <*" < 1}
and be colors of the tile of the shape

[y'ë' + y"ë"; 0 < *' < 1, 0 < *" < 1}.
For a nondegenerate 4>, the corresponding Namikawa decomposition
T)c\(Hx(T, R)) is a colored tiling, with these tiles, of the plane H'ÇT, R),
invariant under the translation by p(Hx(T, Z)). The coloring corresponds to
the labeling of the 2-dimensional polyhedra by spanning trees (cf. Theorem
7.7).

For simplicity, let us ignore the colors of the tiles. Even then, there are, in
general, many different ways of tiling.

(i)  When  b = c = 1,  for  instance,  the  tiling  is  always  obtained  by
p(Hx(T, Z))-translating the block of tiles of the shape in Figure 13.

e + 2e" (a + l)e + 2?'

(a + 1)? + ë'

Figure 13
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(ii) When a = b = 2 and c = 1, there are exactly two completely different
ways of tiling, the ones obtained by p(Hx(T, Z))-translating the block of the
shapes in Figure 14. We in fact get both kinds for suitable choices of
nondegenerate 4>-

ë + 3ë'
3ë + 3ë' ë + 3ë'

3ë + ë

3e + 3e'

3ë +e'

2ë
Figure 14

(iii) When a = b = c = 2, we can show that there are exactly five different
ways of tiling ignoring the colors.

Figure 15
(4) When |/| = 3, the graph looks like Figure 15 where there are a, b and c

edges opposite to the vertices /,, i2 and i3, respectively. Hence 3C,(T, Z) =
Z(vx — vj) © Z(t>2 — v3). The elementary subsets of / are all the subsets of
cardinality one or two. Thus if /,(?) ■» [©,, ?] and/3(?) = [v3, ?], then/, and/3
form the base of' 3C,(r, Z)" dual to {vx — v2, — v2 + v3), and
{±/,, ±/3, ±(/, +/3)} defines the polyhedral decomposition Arr(T) of the
plane 3C,(T, R), which looks like Figure 16.

(5) Finally let us consider the graph in Figure 17 which is the 1-skeleton of
a tetrahedron. Its cyclomatic number is three, and HX(T, Z) is generated over
Z by -ex + e'3 +
spanning trees is

■ e-, + e\ + e-. and   — e3 + e'2 + ex The number of

16 = det
3

-1
-1

-1
3

-1

-1
-1

3
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Figure 16

Figure 17

"3 - »0

Figure 18
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There are 14 elementary subsets I' oí I — {0, 1, 2, 3}, and they are subsets of
I of one, two or three elements. If we denote/,(?) = [t>,, ?],/2(?) = [t>2> ?] and
W) ■ [t>3, ?1 then {/„/2,/3} is a Z-basis of 3C,(r, Z)v dual to the Z-basis
{t>, — v0, v2 — v0, v3 — v0} of 3C,(T, Z). The polyhedral decomposition
Arr(r) is defined by

{±/„ ±/2, ±/3, ± (/, + f2), ± (/2 + f3), ± (f3 + /,), ± (/, + h + /3)}.
Note that {/, + /2,/2 + /3,/3 + /¡} is an R-basis of 3C,(I\ R)' but is not a
Z-basis of 3C,(r, Z)". Thus in this case the total unimodularity is not
satisfied. Indeed, Arr(T) is obtained by 3C,(T, Z)-translating the subdivision
in Figure 18 of the standard cube. Note that {(vx — v0) + (v2 — t>0) + (v3 -
v0)}/2 is a vertex of Arr(r), but it does not belong to 3C,(I\ Z) (cf. the
paragraph before Proposition 7.8).

Chapter II. Curves over an algebraically closed field
9. The graph of a curve. In this chapter, we let Ibea reduced, connected

and complete algebraic curve with at most ordinary double points over an
algebraically closed field k.

Let X = U ie/ Xl; be the decomposition of X into irreducible components.
We denote by {Qj}jsj the set of double points of X. Then Q> is either (i) an
ordinary double point of an irreducible component X¡, or (ii) a transversal
intersection of two irreducible components X¡ and X¡,.

Definition. We associate to X, as usual, a connected graph T(X) = {/, /}
with / as the set of vertices and with J as the set of edges, (i) j in J
corresponds to a loop at the vertex /', if fi^ is an ordinary double point of an
irreducible component X¡. (ii)/ in J is an edge joining vertices i and /' if Q¡ is
a transversal intersection of irreducible components X¡ and Xr (see Figure
19).

Figure 19

Every graph even with loops and multiple edges appears as the graph of a
curve in this way.

As in Chapter I, we assign and fix an arbitrary orientation to T(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPACTIFICATIONS OF GENERALIZED JACOBIANS 45

IX»
Figure 20 Figure 21

r(X)

Figure 22

Corresponding to the orientation, we name two points on the normalization

f-IU/£/
of X lying above Qj as £?,+ and Qj~, where (i) ft* and Q~ are on the
normalization X¡ of .¥„ if/ is a loop at f, while (ii) Qj* is on Af, and Qj" is on
^Y,., if/ is an edge from i to /'.

Definition. For a subset J'ofJ, let
*(/'): Z(/0 -* *

be the partial normalization obtained by the blowing up along {Qj}jej-j-
When J' = 0, AX0) is the normalization of Y, which we also denote by
X = IlXj, where JÇ is the normalization of the irreducible component X¡.

Obviously the graph T(X(J')) is the spanning subgraph {/, J'}. Note that
X(J) = X.

We can apply the results of Chapter I to the connected graph T(X).
Example. (1) X is an irreducible curve with two nodes. In this case T(X) is

a special case of §8, (1) (Figure 20).
(2) X has two nonsingular components meeting at two points. In this case

T(X) is the one we dealt with in §8, (2ii) (Figure 21).
(3) X has two nonsingular components meeting at three points, i.e. X looks

like a "dollar sign". The graph T(X) is the one we dealt with in §8, (2iii)
(Figure 22).

10. Line bundles. In this section we study torsion-free, everywhere rank one
0^--modules on a curve X. We eventually compactify the generalized
Jacobian variety of X by adding points corresponding to those which are not
locally free.
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Definition. By a line bundle F on a curve X, we mean a torsion-free
(= depth one) everywhere rank one Bx -module. In particular the length of
the stalk Fx¡ over 6X,X is one f°r eacn generic point *, of X. We denote by
LB(A') the set of isomorphism classes of line bundles on X.

Locally free line bundles form the Picard group Pic^) of X. Obviously we
have Pic<T) c LB(Y) and, moreover, Pic(X) acts on LB(X) by Fk> L ®ejF
for F in LB(A-) and L in Pic(X).

It is well known that for F in LB(A"), the 0^-module Fx is isomorphic to
0^ at a smooth point * of X, and for/ in J, the 0^-module FQ is either
isomorphic to ®x,q or to the maximal ideal ?KLXq, which in turn is isomor-
phic to the direct image of the normalization ®xn.

Definition. For F in LB(X), we denote
J{P) = {/ S /; Fis locally free at Qj).

In particular, we have J(F) = J, if F is in Pic^T).
Convention. We always identify modules on partial normalizations X(J')

for J' c J with their direct images onto X by a(J'): X(J') -» X.
From what we remarked above, we obviously get the following:

Proposition 10.1. For a subset J' of J, the set {F G LB(X); J(F) = J'}
can be identified with the set Pic(X(J')) of (direct images onto X) of locally free
line bundles on X(J'). In particular we have

LB(X ) =   II   Pic(*(/0)-
J'cJ

The pull-back

o*F=ex®exF

of F in LB^) by a: X ^ X is a coherent sheaf on X of rank one on each
component, hence a*F modulo its ©¿-torsion is a line bundle on X. If F
belongs to Tic(X(J')) as in Proposition 10.1, then a* F/0¿ -torsion coincides
with the pull-back of F by X -> Z(70- Since

LB(J?) = Pic^) = II Pic(X,)>
¡ei

a line bundle L on X can be identified with a set (L,),e/ of line bundles, one
on each component X¡. Thus we have the following:

Definition. We denote by
£:LB(X)-»Pic(Â0

the map defined by

£(F) = (e,.(F)),.e/ = 0* ®e^F/0¿-torsion
forFinLB(^).
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We are now ready to compute LB(A').

Proposition 10.2. For a subset J' of J, we have an exact sequence of abelian
groups

0 -» H\{I, J'}, k*) -* V\c(X(J'))X?ic(X)^>0.
In particular, we have

0-^H\T(X), k*) -+ Pic(A')4pic(Â:) -+0.

Corollary 10.3. The arithmetic genus of a connected curve X is given by

2 gemosa) + h(T(X))
iel

where h(T(X)) = |/| — |/| + 1 is the cyclomatic number of the graph T(X)
defined before Proposition 4.1.

Remark. When k = C is the field of complex numbers, we get similarly an
exact sequence

0 -» Hl(T(X), Z) -> Hl(X, Z) ->Hl(X, Z) ^0.

Proof of Proposition 10.2. Replacing J' by J, we may assume without
loss of generality that J' = J. We have an exact sequence of abelian sheaves
onl

i-e¿->e;4. IU(ô,)*-»i
where k(Qj)* is the sheaf whose stalk at Qj is the set of nonzero elements of
the residue field of Qj and 1 at other points. 0^ = UleJ 0^ and a is the map
defined as follows: (i) At smooth points of X, the homomorphism a sends
every element of the stalk to 1, (ii) at Qj with/ G J a loop at i G /, a sends an
element u of the stalk 0£a = (/BXi,q* n 6*^-)* to "(ô,+)/«(ôy~)> and (iii)
at Qj with/ G / an edge from /" to /', a sends an element u = (u+, u~) of the
stalk eiQ - elQ*X ei^- to u+(Qj+)/u-(Qr). Here Q/ and Qf de-
note the points of X lying above Qj as in the beginning of this section, and
u(Qj+), u+(Qj+) etc. denote the evaluation of the sections u, u+ etc. at those
points, i.e. the image in the residue field. We thus have an exact sequence

1 -* H°(6¿) -* H°(G$) -> II k* -*■ Pic(^f ) -* Pic(* ) ̂  1.
/e/

It is immediate to see that the map H°(Q$)-* U.jeJ k* coincides with the
coboundary map 8: C0(r(A-), k*) -» CX(T(X), k*).

Remark. By the definition of J(F) and £(F) for a line bundle F G LB(Y),
we have an exact sequence of 0,,.-modules

0->F-+£(F)^   0   k(Qj)^0
JBJtF)
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where k(Qj) is the sheaf on X concentrated at Qj with the residue field as the
stalk there. We analyze how the surjection £(F)-» ©ye/(f) k(Qj) depends
on a cochain in CX({I, J(F)}, k*) later in §12 where we introduce the notion
of presentation.

Definition. We define a surjective homomorphism

deg:Pic(;r)-*c0(r(;r),z)
by deg L = 2,s/ deg^(F,>„ where L = (L,),e/ is in Pic(X) = U,eI Pic(f,)
and degç(Z-,) is the degree of the invertible sheaf L¡ on X¡.

Proposition 10.4. For a line bundle F in LB(X), its Euler-Poincaré char-
acteristic is given by

X(F) =[v(I), deg £(F) + d(J - J(F))/2] + x(0*),
where d(J') is the graph-theoretical degree defined immediately after Proposition
4.1.

Proof. From the exact sequences

0-»F-h>£(F)->    ©    k(Q;)^>0   and
j<BJ(F)

o -» 0^ -» ex -+ 0 ¿(a) ->o

we get X(F) = X(£(F)) - \J(F)\ and x(0*) = x(®x) " |/| = 2/e/ rf©*,) "
|/|. But by the Riemann-Roch theorem, we see that

X(£(F)) = 2 XÎÊi(F)) = 2 (deg^íEXF)) + x(0¿,)).
/e/ is/

Hence we conclude x(F) - x(0*) = [v(I), deg £(F)] + \J - J(F)\, which is
equal to [v(I), deg £(F) + d(J - J(F))/2] by Lemma 4.2.

Definition. We denote by LB°(X) the subset of LB(X) consisting of line
bundles F with x(F) = x(©*)> i-e-

[v(I), deg £(F) + d(J - J(F))/2] = 0.

Obviously LB°(A0 contains the subgroups LB°(AT) n Pic(X) d Pic°(A0 of
Pic(A") consisting of locally free line bundles F of total degree [v(I),
deg £(F)] = 0 and deg £(F) = 0, respectively. Pic0^) acts on LB°(A-) by
tensor product F (-» L <g) 0x F ior F in LB°(X) and L in Pic^X).

We now consider the set A"(r(A0) of Delony polyhedra for the graph r(A0
we introduced in §5. Its 0-skeleton is

Sk°(K(T(X)) - C,(F(^), Z),
which acts on K(T(X)) by translation. We consider the action of the subgroup
HX(T(X), Z).
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Definition. We denote

K(T(X)) = K(T(X))/HX(T(X), Z),
the set of equivalence classes of Delony polyhedra for T(X) with respect to
the translation action of HX(T(X), Z).

It is easy to see that the face relation in K(T(X)) can be induced from that
of K(T(X)), i.e. for D' and D in K(T(X)), D' is a face of D if there exist D' in
D' and D in D such that D' is a face of Z). Thus K(T(X)) is a complex, whose
0-skeleton is

Sk°(K(T(X))) = C,(IXn Z)/HX(T(X), Z)XdCx(T(X), Z).

dim D and Supp F> can be well defined as dim D and Supp D, respectively,
for a D in Z>. Although ¿(F>) depends on a particular choice of D in D, we
see that db(D) is uniquely determined, which we denote by db(D). Note also
that the subset 3D of dCx(T(X), R) makes sense.

The motivation for the introduction of this quotient complex is the follow-
ing:

Theorem 10.5. There exists a canonical surjective map

D:LB°(X)-^K(T(X))

which
(1) induces a bijection from the set of Pic°(X)-orbits in LB°(A0 onto K(T(X)),

i.e.

D: LB°(X)/Pic°(X)^K(T(X)),

(2) is compatible with the order, i.e. for F and F' in LB^X), F is in the
"closure" of the Pic°(X)-orbit of F' if and only if D(F') is a face of D(F),
satisfies

(3) Supp D(F) = J- J(F),
(4) deg £(F) + d(J - J(F))/2 = db(D(F)),

for all F in LB°(X), and
(5) fits into the following commutative diagram:

LB°(T)-—y K(T(X))
u u

LB0(X) n Pic(X) -^-> Ct(T(X), Zi/H^iX), Z) -^* dCx(T(X), Z)
n n

Kc(A) —£—> PicW-^i-► C0(T(X), Z).
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Proof. If F is in LB°(A0, we have
[v(I), deg £(F) + d(J - J(F))/2] = 0

by Proposition 10.4. For simplicity let us denote J" - J - J(F). Since T(X)
is connected, deg £(F) + d(J")/2 is necessarily contained in dCx(T(X), Z)
by what we remarked at the beginning of §4. Consider the expression
d(J")/2 - de(J")/2. By definition, this is equal to 2,e/ a¡v¡/2, where

a,, = |{/ G J"; one end of/ is at i with loops at i counted twice} |

- 2 M*,]
ye/"

= 2|{/G/";/ loopat/}|+   2 (["*» 9ey]2 " [«*• 8ey])'

which is an even integer, since [c„ 3e7] = 0 or ± 1. Thus d(J")/2 - de(J")/2
is contained in C0(T(X), Z). Hence deg £(F) + d(J")/2 - de(J")/2 is in
C0(r(A-), Z) n 3C,(IPQ, R) = 3C,(r(*), Z). We conclude that there exists |
in CX(T(X), Z), unique up to translation by HX(T(X), Z), such that

deg £(F) = 3« + e(J")/2) - d(J")/2.
Consider the Delony polyhedron D in K(T(X)) defined by

D=U+   2   W> 0 < ft < 1 for/ G /").
v       ye/" J

Then Z> is determined by F uniquely up to the translation by HX(T(X), Z)
and we have b(D) - £ + e(7")/2, deg £(F) = 36(Z>) - ¿(/'0/2 and
Supp D = J". Thus we get (3), (4) and (5). Since {F G LB(JSf); Supp D(F) =
/"} = Picí^í/ - /")) by Proposition 10.1, we get (1) by applying known
results for the Picard group to the curve X(J - J"). We postpone the proof
of (2) until we come to the precise definition of "closure" in terms of a
functor (cf. §12, Proposition 12.10).

11. Stable and semistable line bundles. Let 4> be an element of dCx(T(X), R).
We defined in §6 the notions of «Hemistable and <#>-stable Delony polyhedra,
and defined subsets K^(T(X)) d K%(T(X)) d ^stable(T(A)) which are in-
variant under the translation by HX(T(X), Z). Except for the middle set, they
are subcomplexes of K(T(X)).
_Definition. For 4, in dCx(T(X), R), we denote by K^Ttf)), K^(T(X)) and
^«.-stabie(rX^O) the quotient of these subsets with respect to the translation
action of HX(T(X), Z). _

Remark. K^,(T(X)), K%(T(X)) and Ä^stable(T(X)) are finite sets. Indeed first
of all K°(T(X)) is in one to one correspondence with the quotient of the
Namikawa decomposition Deï4p(H1(T(X),R)) by the translation action of
p(Hx(T(X), Z)), secondly À^suble(T(Ar)) is a subset of this, and finally there is
a finite-to-one map p: K^(T(X)) -* K°(T(X)).
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By means of the surjective map D: LB°(A) -> K(T(X)) we defined in
Theorem 10.5, we now introduce the notions of semistability and stability for
line bundles.

Definition. Let <i> be in dCx(T(X), R). A line bundle F in LB°(A) is called
<H¡emistable (resp. ^stable) if D(F) is in K^(T(X)) (resp. K^ubXe(T(X))). We
denote by LB£(A"), LBj'fAO and LB^subXe(X) the set of isomorphism classes
of <i>-semistable line bundles, those line bundles with D(F) in K%(T(X)), and
<í>-stable line bundles, respectively.

By Propositions 6.4 and 6.6, we have:

Proposition 11.1. Let 4> be in dCx(T(X), R). Then a line bundle F in LB°(A)
is 4>-semistable (resp. 4>-stable) if and only if 3D(F) c 4> + 3K,(0) (resp.
3.0(F) C4> + reLint dVj(0)).

By Corollary 7.2, we have:

_ Proposition 11.2. (i) For A in Arr(T(A")), the sets K^X)), K°(T(X)),
K*-st*b,e(r(X)), LßO(A-), LB™(A) and LB^/aWe(A) stay the same as long as4>is
in de(J)/2 + rel.int^.

(ii) For £ in CX(T(X), Z) and 4> in dCx(T(X), R), the translation by £ induces
bijections

K,(T(X)) Z K^+di(T(X)),   K°(T(X)) Z K°+H(T(X)) .
and

Kç-siable^iX )) ~* K++»£st*bie(T(X ))•

By Proposition 7.6, we have:

Proposition 11.3.

LBl(X) = LBlslabU(X)
if and only if 4> is nondegenerate, i.e. 4> — de(J)/2 is in the interior of a
top-dimensional polyhedron in Att(T(X)).

We now construct algebraic schemes Jac<Mtable(Ar) and Jac^A), the closed
point sets of which are LB°.stoble(A') and a quotient set of Lb£(A), respec-
tively. The technique we employ is the geometric invariant theory of Mum-
ford [20]. The situation we encounter is surprisingly similar to that encoun-
tered by Seshadri [32] in the case of vector bundles on a nonsingular curve.
We postpone until a later section the analysis of the equivalence relation
defined by the quotient map LB£(A) -» Jac^AXSpec k).

Let us choose locally free line bundles {M¡}iel on X such that

degree*, ®6jr^)-V
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For n = 2,<=/ n¡v¡ in C0(r(A), Z), we define a locally free line bundle on X
by

6x(n) = <g> M9\
<e/

In particular, &x(n) is ample if n, > 0 for all i in 7. For a coherent ©^-module
G, we have

X(G(n)) = 2  rank^(G)«,. + X(G).
¡e;

Definition. We call P(n) = x(G(n)) the generalized Hilbert polynomial of
G\

Let 4> be in SQíJXA), R). We have seen in the remark at the beginning of
this section that the complex K^,(T(Xy) is finite. Moreover, F in LB^(A) has
the following properties: D(F) is in K^(T(X)) and the sequence

0^F^£(F)-*    0    k(QJ)->0
ye/(F)

is exact,_where £(F) = (£,(F)),e/ is in Pic(Ä) with deg £(F) = db(D(F)) -
¿(Supp D(F))/2 and J(F) = J - Supp D(F). We easily see from these facts
that there exists a positive integer 9 such that deg^(£,(F)) > — 0 for all Fin
LB°(A) and all i in /.

Thus LB£(A) is contained in the family Be consisting of isomorphism
classes of 0^-modules F' which have an exact sequence of the form

O-+/"^0 L,-> 0   *(£.)->0
/e/ ye/'

for a subset J' of y and for L¡ in Pic(Â0 with deg^(L,) > - 0 for all / in F
Obviously 2?e is a bounded family, hence for ñ = 2ñ,u, in C0(T(X), Z) with

«, large enough for all i in I, H°(F'(n)) generates F'(n) and H\F'(n)) = 0 for
all F' in 2?0. For details see Ishida [36].

We fix such ñ. Then for F in LB°(A), the generalized Hilbert polynomial of
F(ñ) is given by

P(n) = x(F(ñ)(n)) =[v(I), n + ñ] + X(0*).
Take a vector space F over A: with

dimE = P(0)=[v(I),ñ]+x(ex).
Then F(/ï) is a quotient 0^.-module of 0* ®k E for all F in LB°(A).

Consider Q(E/P) = Quoti©^ ®k E/P), Grothendieck's scheme parame-
trizing all quotient 0^--modules G of Bx ®k E with x(G(n)) = P(n). It is easy
to modify the proof in [FGA, Exposé 221] to show that Q(E/P) is a. protective
algebraic scheme over k. For a closed point q in Q(E/P), we denote by Gq
the corresponding quotient

ex®kE^Gq^0.
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Let R(E/P) c Q(E/P) be the subset consisting of q with
Gq torsion-free,

F—> H°(Gq) is an isomorphism,

H\Gq) = 0.
Then R(E/P) is obviously a GL(F)-invariant open subset (cf. Corollary in
the Appendiix) of Q(E/P) with respect to the canonical action of GL(F).
Moreover, Gq is isomorphic to Gq- if and only if q and q' are in the same
GL(F)-orbit.

For q in R(E/P), there exists a unique F in LB°(A) such that Gq =
F(ñ). Let

R.(E/P)DR+miàt(E/P)
be the open subsets of R(E/P) consisting of q with G9 = F(ñ) for F in
LB°(A) and LB£_stable(A), respectively. We now come to our main existence
theorem^

Theorem 11.4. (1) A good quotient Jac^(A) = R<f)(E/P)/GL(E) exists.
Two points q and q' in R^(E/P) go into the same point of Jac^A) if and only if
the closures of GL(F)-orbits of q and q' intersect.

(2) Jac^A) is aprojective algebraic scheme.
(3) Jac^A) is reduced.
(4) The restriction of the above quotient induces a geometric quotient

R*-s,ab,e(E/P) -* Jac^MWe(A)

which is a principal PGL(E)-bundle, locally trivial in the Zariski topology.
(5) The universal quotient sheaf G on X X R^.stab¡e(E/P) satisfies the

following property: there exists an invertible sheaf M' on R^.síab¡e(E/P) such
that P$M' ® G descends to X X 3&c^slable(X).

Proof. By Proposition 11.2 (i), we may assume that 4> has rational
coefficients, i.e. is in 3C,(r(A), Q). For ñ in C0(T(A), Z), we define X =
X(ñ, 4>) = 2,g/ \ü, by

\. = {[»,, ñ -d(J)/2 + 4>]+ x(0*..)}/F(O),
where

f(o) = [0(/), ñ] + X(ex) = 2 x(e*,) +[«*/). « -d{j)/i]
/e/

by Lemma 4.2. If ñ¡ = [v¡, ñ] is large enough, then \ is a positive rational
number for all t in I. Moreover, we see that 2,e/ A, = [v(I), X] = 1, since
[v(I), 4>] - 0.

We now choose a positive integer N such that N¡ = X¡N are integers for all
i. Then let us choose N smooth points *,,..., xN of X so that N¡ of them are
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on the component X¡ for all / in I. Then we have a GL(F)-morphism

t:R(E/P)^P(E)n

by assigning to q in R(E/P) the point r(q) = (Ta(q))x<a<N where ra(q) is the
point of the projective space P(F) defined by the one-dimensional quotient

ia(q): E -» Gq(xa) = the fiber of Gq at *„.

Let Z = P(E)N, and we consider the stability and semistability of its points
with respect to the standard action of SL(F) introduced by Mumford [20].
According to his theory, a point z = (za)x<a<N of Z with the one-dimen-
sional quotient za: E ->• F„ is semistable (resp. stable) if and only if for all
nonzero proper subspaces E' of E, we have

2     dim za(E')/N > dim F'/dim E   (resp. >)
Ka<N

(see also Seshadri [32]).
We denote by Zss and Zs the open subsets of Z consisting of semistable

and stable points, respectively. Then we have the following basic existence
theorem in the geometric invariant theory (Mumford [20] and Seshadri [32],
[33]):

Theorem. Regardless of the characteristic of k, a good quotient Za/GL(F)
and a geometric quotient ZS/GL(E) exist. Moreover, Z"/GL(E) is projective,
ZS/GL(E) is its open subscheme and Zs -» ZS/GL(E) is a principal
PGL(F)-bundle, locally trivial in the Zariski topology.

In general, if there is a proper injective GL(F)-morphism from a scheme Y
to Z" which sends an open subscheme Y' of Y to Zs, and if a good quotient
Z"/GL(F) and a geometric quotient ZS/GL(E) exist, then a good quotient
7/GL(F) and a geometric quotient Y'/GL(E) exist. This is the so-called
method of covariant. See Mumford [20] and Ramanathan [35, Lemma 4.1].

Thus (1), (2) and (4) of Theorem 11.4 are consequences of the following:

Proposition 11.5. Given <f> in 3C,(T(A), Q), we can find ñ in C0(T(AO, Z)
with fa, ñ] sufficiently large for all i, a large enough positive integer N so that
X¡(ñ, 4>)N = N¡ are positive integers for all i, andan ordered set (xa)x<a<N ofN
smooth points on X with N¡ of them on the component A, for all i in I such that

(i) the morphism t: R(E/P) —» Z = P(E)N is injective,
(ii) i(Rq(E/P)) is contained in Z", and for q in R^(E/P), the point r(q) is

in Zs if and only if q is in R^slable(E/ P), and
(Hi) the induced morphism r: R^E/P) —* Za is proper (even a closed

immersion).
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Proof, (i) can be proved by the "diagonal" argument as in Seshadri [32].
For the proof of (ii), we need the following lemmas, the first of which is
obvious:

Lemma 11.6. For a nonempty proper subset V of I and F in LB(A"), we denote
by Sj(F) the subsheaf of germs of sections of F which vanish completely on the
subcurve U ,gy A, of X. Then there exists an exact sequence of Qx-modules

0 -> Sr(F) -» F-> © £,(F)-*      ©      k(QJ) -» 0,
;er ye/(i-)(/')

where J(F\I') is the set of edges j in J(F) both of whose end points are in /'. In
particular, we have

x(Sr(Fj) = x(F) - 2 X(£,(F)) +\J(F)(I')\.
i si-

Lemma 11.7. Let F be in LB°(A"). Then F is 4>-semistable (resp. 4>-stable) if
and only if for every nonempty proper subset I' of I, we have

[v(I - I'), X(ñ, 4>)]x(F(ñ)) > x(Sr(P(")))   (resp. ».
Proof. We know that x(P(")) = -P(0)- Hence by the definition of X(ñ, 4>),

the left-hand side is equal to [v(I - I'), ñ - d(J)/2 + 4>] + 2ie/_r x(©*,)-
Let us now compute the right-hand side using Lemma 11.6. First of all, we
have

\J(F(ñ))(I')\ = \J(F)(I')\
= [v(I'), d(J(F))/2] - (8J(nv(I'), 8AF)v(I'))/2

by Corollary 4.4. Secondly by the Riemann-Roch theorem and Theorem 10.5
(4), we have

-  2 X(£,(F(«))) =[v(I'), -db(D(F)) + d(J - J(F))/2 - ñ]
¡er

- 2 x(H).
¡er

Since x(F(/i)) = F(0) = [v(I), ñ - d(J)/2] + 2,e/ x(©*,)> we conclude that

x(Sr(F(ñ))) =[v(I- I'), ñ -d(J)/2] -[v(I'), db(D(F))}

+ 2 x(&x)-(sAFAnsAF)v(n)/2.
iei-r

Note that v(I) = v(I') + v(I - I') and 8J(F)v(I) = 0. Hence the left-hand
side of the lemma is not less than (resp. greater than) the right-hand side if
and only if

[v(I - I'), db(D(F)) -4>]< (SAF)v(I - I'), 8Jinv(I - I'))/2
(resp. <). Thus by Corollary 6.3 and the remark after that applied to the
graph {/, J(F)}, we see that the inequalities of the lemma are satisfied for all
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nonempty proper subsets I' of / if and only if db(D(F)) — 4> is contained in
3 VJ(r)(0) (resp. in reLint 3 VJ(F)(0)). By Propositions 6.4 and 6.6 we are done.

We now continue the proof of Proposition 11.5. We have chosen ñ so that
E^*H°(Gq) and H \Gq) - 0 for all q in R(E/P). Thus X(Gq) = dim F and
x(S¡(Gq)) — dim Er, where Er is the subspace of E = H°(Gq) consisting of
sections which vanish completely on the subcurve U ilE/< X,. If ñ¡ is large
enough for all /', we see easily that Er generates Sj(Gq).

For a subspace F' of F and a smooth point * of A, let us denote by E'(x)
the image of F ' by the quotient linear map F -* Gq(x) = the fiber of Gq at *,
hence its dimension is either 0 or 1.

Then by definition, dim Er(xa) = 0 or 1, according as *a is in U ,<=/- A, or
not. Since A', = X¡N is the number of points *a on the component A"„ we get
[v(I - I'), X(ñ, 4>)} = 2,e/_7. NJN = 2Ko<JV dim Er(xa)/N. Thus by
Lemma 11.7, q is contained in R^E/P) (resp. R^su\,\e(E / P)), if and only if

2     dim Er(xa)/N > dim Er/dim E   (resp. >)
\<a<N

is satisfied for all nonempty proper subsets I' of I.
To prove (ii) of Proposition 11.5, we need to show that for ñ and A^ large

and properly chosen, the inequality

2     dim E'(xa)/N > dimF'/dimF   (resp. >)
l<a<N

is satisfied for any nonzero proper subspace E' of F, if the same inequality is
satisfied for all subspaces of the form E' = Er for a nonempty proper subset
I' of /.

For F in LB°(A) with Gq = F(ñ), we have an exact sequence

0-»G?^© F,.^    ©    k(Qj)-*0
¡el JSJ(F)

where L¡ = £,(F)(ñ,) G Pic(Â,). Given a nonzero proper subspace E' of F, let
I' be the subset of / consisting of i for which the composed map E' -» 0^
®k E' —* L¡ is zero. Thus E' is a subspace of E,,. If F' = Fr, then automati-
cally I' is a nonempty proper subset, and there is nothing to prove. We now
suppose E' ¥= Ej- Then for i in I — I', we have a nonzero map Qx¡ ®k E' —*
L¡. Let 7). be the cokernel, which is a torsion ©^-module. Obviously |Supp(F,)|
< deg¿(Z,,)- But 2,s/ deg¿.(L,)ü, = deg £(F(«)) = ñ + deg £(F) assumes
only a finite number of admissible values for q in R^E/P). Hence deg^(L,)
is bounded above by a constant c depending on ñ. Thus for /in I — I', we get

2    dim F'(*J > Nt - |Supp(F,)| > Nt - deëx(LJ

> A^, - c.
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Hence

2     dim E'(xa)/N - dim F'/dim F

> 2    (ty - c)/N - dim F'/dim F
/e/-/'

=    2     dim E,.(xa)/N - c\I - I'\/N - dim F'/dim F

> (dim Fr - dim F')/dim F - c|7 - I'\/N,
which is positive if N is large enough, since dim Er > dim F' by assumption.

For the proof of Proposition 11.5 (iii), we proceed as on p. 363 of Seshadri
[32]. For q in Q(E/P), Gq is a quotient of Qx <8>k E with the generalized
Hilbert polynomial x(Gq(n)) = P(n) = [v(I), n] + P(0). In particular, Gq has
rank one on each component of A. Let Tq be the torsion part of Gq. Let
Gq = GJ Tq, which is in LB(A). We extend t: R(E/P) -> Z to a multivalued
map

f : g(F/F) ^ Z = P(F)"
by setting r(q) = (fa($)),<a<Ar with

.       = Í E -* <?,(*«) if *a G Supp(F,),
[ arbitrary one-dimensional quotient of F    if *a G Supp(F9).

We now show that ñ and A^ can be so chosen that they are large enough
and that for q in Q(E/P) not in R^E/P), r(q) is not in Z*. Note first that
dim H°(Tq) is absolutely bounded. Indeed, {Gq; q G Q(E/P)} is a bounded
family. Hence /2q can be so chosen that H°(Gq(n¿)) generates Gq(n0) and
H\Gq(n0)) = 0. Then dim H°(Tq) < dim H°(Gq(no)) = P(n0).

When 9 is not in R^(E/P), we need to show that there exists a nonzero
proper subspace F' of F such that

2     dim E'(xa)/N < dim F'/dim F
l<a<W

if w and A' are properly chosen, where E'(xa) is again the image of E' by the
quotient map ra(q). Consider

^ = ker[F^i/0(G,)^/F°(Gi)].

Case (1). If K1= 0, we take F' = >T. Then obviously 2,<<X<A, dim F'(*„) <
|Supp(F9)| < dim H°(Tq) is absolutely bounded above. Hence

2     dim E'(xa)/N < Supp(r,)/Af,
Ka<N

which is less than dim F'/dim F if A' is large enough.
Case (2). If K = 0, the composed map E-+H°(Gq)-* H°(Gq) is injective.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



58 TADAO ODA AND C. S. SESHADRI

In particular, F -» H°(Gq) is injective. Since Gq is a line bundle, we have an
exact sequence

o-»G,(-«)-»e l;^ © *(£.)-*0
<€/ ye/'

for L/ in Pic(Z,) and a subset J'oiJ.
Case (2a). If deg¿(L,0 > — 0 for all /, then, by what we said immediately

after Proposition 11.3, Gq( — ñ) is contained in Be. By our choice of ñ, we thus
have H\Gq) = H\Gq) = 0. Hence dim H°(Gq) = x(Gq) = P(0) = dim F
and E^H°(Gq) D FT0^). If H°(Tq) j* 0, we let F' be the inverse image of
H°(Tq) in F. We then proceed as in Case (1). Thus we may assume
H°(Tq) = 0, i.e. Tq = 0 and Gq = Gq. This means that q is in R(E/P). Since
9 is not in Rq(E/P) by assumption, there exists, by what we saw in the proof
of (ii), a nonempty proper subset I' of I such that 21<a<Af dim E,-(xa)/N <
dim Er/dim E. Hence r(q) is not semistable in Z.

Care (2b). Let 7' be the subset of 7 defined by
7' = {/ G 7; deg,,(A') < -0}.

We may assume 7' to be nonempty. Since F generates Gq, hence Gv, F
generates L¡(ñ¡) generically for all i. Thus we get

0 < áe&ziLKñ,)) <ñ¡-9
for i in 7'. Let F' be the subspace of F consisting of elements which go, by
the composed map F -» H°(Gq) -» H°(Gq), to the subspace of sections of G?
vanishing completely on the subcurve U ,<=/< Xt. Thus F' is the kernel of the
composed map E -» H°(Gq)-+ © (6/- 7f°(L/(«,)). But the dimension of the
image of this composed map is bounded above by 2,e/- dim H°(L'¡(ñ¡)),
which is bounded above by

2   deg^L/tà)) + c' <  2 («, -») + C
¡er ¡er

= [v(I'),ñ] -|/'|0 + c',
for an absolute constant c'. Since dim F = F(0) = [ü(7), ñ] + x(©*)> we get
dim F' > [ü(7 - I'), ñ] + x(©*) + l^'l* ~ C. On the other hand since
F'(*a) = C unless xa is in U ,s/_/- A, or in Supp(F?), we have

2     dimF'(*J<     2     AT,. +|Supp(r,)|
k«<jv ¡ei-r

=   2   \(Ä,*)^+|supp(r,)|
fe/-/'

= {[o(/-/0,Ä-d(/)/2 + *]+   2   x^l^/no)
+ |supp(r9)|.
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Suppose for a moment that f(q) is semistable. Then we should have

2     dim E'(xa)/N > dim F'/dim F.
Ka<N

Hence from what we saw above, we get

|Supp(r,)|//v+f[0(/-/'),ñ-</(/)/2 + *]+   2   x(©*))/f(0)

> 2     dim E'(xa)/N > dim F'/dim F

> {[o(7 - 7'), »] + X(ex) +\I'\9 - c'}/P(0).
Then we have

P(0)\Supp(Tq)\/N + [v(I - I'), -d(J)/2 + *]

+    2     X(©*,)-X(0*) + C>|7'|0.
ie/-/'

Since F(0) = [t>(7), «] + x(®*) and |Supp(7ç)| is absolutely bounded above,
we may choose N and « so that they are large enough and moreover the
inequality

/»(0).|Supp(r,)|//V<l
is satisfied. If we choose 9, as we may, to be greater than 1 + [u(7 —
7'), -d(J)/2 + 4>] + c' + 2ie/_r x(G*;) - X(0*)> we have a contradiction,
since |7'| > 1.

See Ishida [36] for the proof of the fact that t can even be made a closed
immersion.

For the proof of Theorem 11.4 (5), we imitate Mumford-Newstead [25].
Since we deal with rank one sheaves, our proof is much simpler than theirs.
For simplicity, we denote R^.stilb\e(EjP) = R and Jac(jHStable(Ar) = J in this
proof, since there is no confusion of them with our previous notations here.
Fix a smooth point * of X. Then the restriction G |* X R of the universal
quotient sheaf GouXxRXoxxR can be identified with an invertible
sheaf on R, since G\X X q is locally free at * X q for all q in R. Let M' be
the invertible sheaf on R dual to G|* X R. GL(F) acts on A X R trivially on
the first factor and in the standard way on the second factor. Then G has a
natural GL(F)-linearization compatible with the GL(F)-action on X X R.
The center Gm of GL(F) acts trivially on X x R and by scalar multiplication
on G. On the other hand, M' has the induced GL(F)-linearization, in which
Gm acts by the scalar multiplication of the inverse. Therefore, G' = PfM' ®
G has a GL(F)-linearization in which Gm acts trivially. We thus conclude that
G' has a PGL(F)-linearization. Since we know that R^*J is a principal
PGL(F)-bundle by (4), this linearization is equivalent to descent data on G'
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with respect to X X R -»■ A x J. By the fundamental theorem of the descent
theory in [FGA, Exposé 190], G' descends to a sheaf on A" x J.

It remains to show Theorem 11.4 (3), i.e. Jac+(A0 is reduced. Since it is a
good quotient of R^(E/P), it is enough to show that R^E/P) is reduced.

For simplicity, let us denote R — R^E/P) in this proof. Consider the
product R X P(F*). Let Y be its subset consisting of points (q, u) with

q: Qx ®k E -» Gq surjective,   u: E* -» k surjective,

such that the composite map

1®U* 1
r:Bx -» Qx®kE^Gq

is injective with Coker(r) having support consisting of d = [t>(7), ñ] distinct
points of A. Consider the projection Px: Y-* R. By definition, q induces an
isomorphism E^>H°(Gq), H\Gq) = 0 and Gq is in LB°(A")(ñ). Since ñ¡ was
chosen large enough for all i in 7, we see immediately that Px( Y) = R.

Let Hilb^ be the Hilbert scheme of A" parametrizing 0-dimensional sub-
schemes D of A with x(©z>) = d = [v(I), ñ\ Consider the map

w: y-*Hilbl
which assigns to (q, u) in Y the dual of r

r* = (1 ® u) » q*: G* = OComjG,, 6,) -* 0*.
Since Coker(r) has support consisting of d distinct points, we see that r* is
injective with Coker(r*) consisting of d distinct points. Obviously, the image
w(Y) — H is the open subset of Hilb£ parametrizing reduced 0-cycles D on X
of degree d, whose ideal sheaf ID has the property 7¿ G LB°(A")( - n).

Lemma 11.8. (i) Y is an open subscheme of R X P(E*).
(ii) w: Y -» H is a formally smooth morphism.
(in) H is reduced.

From this lemma, we conclude that R = R^(E/P) is reduced. Indeed, we
have

R x P(F*)

U  open
p

R «—!-Y-^-** H C Hilb*

with Px | Y and w formally smooth and with H reduced. Hence R is necessarily
reduced.

Proof of Lemma 11.8. Let S be a noetherian A>scheme and let (q, u) be an
S-valued point of R X P(E*), i.e. q: 0^xS ®k E-* G is a surjection with an
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S-flat 0^-x^-module G and u: ©s ®k F* ->• L is a surjection with an invert-
ible sheaf L on S. Consider the composite map

r: e^s'Ti-' ®6s 0XXS ®t E^G

and its dual

/■*: G* = SCom^G, ©^xs) - 0^xS.

we know by the Lemma in the Appendix that the images of closed points of 5
by this S-valued point are contained in y if and only if r is injective with
S-flat cokernel whose support has d components each of which projects
isomorphically onto S. Hence Y is obviously open, and we get (i).

We identify Y with the open subscheme of F X P(F*) whose S-valued
points have the property that r is injective with S-flat cokernel whose support
has d components each projecting isomorphically onto 5. In this case the
restriction of the dual r* to each fiber is injective. Hence again by the Lemma
in the Appendix we conclude that r* is injective with S-flat cokernel whose
support has d components each projecting isomorphically onto S. Thus r*
defines an S-valued point of the open subscheme H of Hilb£, hence w is a
morphism. We now show (ii). Let S' be a noetherian fc-scheme and let S be a
closed subscheme of S' defined by a nilpotent ideal sheaf. Let D' be an
S'-valued point of H, hence a subscheme of A" X S' finite and flat over S',
each of its d components projecting isomorphically onto S', and, moreover,
its defining ideal 7' having the property that its restriction to each fiber
X X s' belongs to LB°(A)(- «). On the other hand, let (q, u) be an S-valued
point of Y, i.e. a surjection q: 6XxS ®tf-> G with S-flat G and a surjection
u: 6S 0k E* -» L with an invertible sheaf L on S such that /•*: G* -* &xxs
coincides with the restriction of F «-» QXxS- to A" X S. By the Corollary in
the Appendix, we see that G' = 3Come^s(7', <SXxS) is S'-flat. Moreover, G
is the restriction of G ' to A X S. Consider the projection

P2: X X S'^S'.
Since H\G'\X X s') = 0 for all closed points s' of S', we see that R lP^G' =
0, and P£G' commutes with base change (cf. Mumford [21]). Thus the
restriction of PfG' to S coincides with P*G. Since we may assume S' to be
local, it is easy to see that the isomorphism

6x®kE~>P;G

extends to an isomorphism

6r ®kE~>P*G'.
Obviously, we have thus a surjective homomorphism q': GXxs, ®kE^>G'
which lifts q, and a surjective homomorphism u': S-, ®k E-+L' with an
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invertible sheaf F' on S' which lifts u. Thus we have (ii).
It remains to show (iii), i.e. 77 is reduced. But by definition, H parametrizes

subschemes D of X consisting of d distinct points of X. Thus there exists a
surjective map o: U ^ H from the open subset U of the rfth Cartesian
product Xa = X X ■ ■ • XX consisting of points * = (*„..., xd) with *, ^
*, for i =£j. Since o is actually the quotient map with respect to the action of
the symmetric group of degree d, and since U is reduced, we conclude that H
is reduced.

Thus we conclude the proof of Lemma 11.8, hence Theorem 11.4.
Remark. It is much easier to show that Jac^^^A") is reduced. In fact, the

completion of the local rings at its closed points are of the form

k[ [*„ *'„ . . . , *r, x'r,yx,. .. ,ys] ]/ (*,*'„ ..., *,*;)•

Indeed, since Jaci>.stabl<:(A') represents a functor, as we see below, we can
easily show that there is a formally smooth surjective morphism H'-*
JaVsubie(^) for an open subscheme H ' of H, which is reduced by Lemma
11.8 (iii). This is the method employed by D'Souza [7], when A is irreducible,
or more generally when 4> is nondegenerate, since Jac^XA) = Jac^^^A") in
this case by Proposition 11.3.

12. Families of line bundles and presentations. In this section, we consider
flat families of line bundles on A parametrized by a fc-scheme S. Then we will
be able to interpret schemes Jac^A) and Jac^_stable(A) in the previous section
in terms of the functors they represent.

We note first the following: If S is the spectrum of a field, then we define
line bundles on A" X S as torsion-free everywhere rank one 6XXS-modules.
Then for a line bundle F on A" X S, we can define, as in § 10, the subset 7(F)
consisting of those/ in J for which F is locally free at Q. X S. The invertible
sheaf £(F) on X x S is defined as ©^ ®e F/6XxS-torsion. Then the
definition of 7J(F), LB(A" X S), LB°(A" X S), LB™(A X S) and LB£.stable(A
X S) is an immediate consequence of these observations.

Let 4> be an element of 3C,(T(A), R), which will be fixed throughout this
section.

Definition. We denote by W* the contravariant functor from the category
of Ä>schemes to that of sets defined as follows: for a fc-scheme S, W*(S) is
the set of isomorphism classes of coherent ©^-x5-modules F, which are S-flat
and whose restrictions Fs to X X s, for closed points s of S, are line bundles,
i.e. Fs G LB(A x s). For a ¿-morphism S' -h> S, the map W*(S) -+ W*(S') is
defined by the pull-back ©s, <8>Ss F. We denote by W% (resp. !PJ.stable) the
subfunctors for which W$(S) (resp. W$_SUii;Xe(S)) consists of F with Fs G
LB°(A X s) (resp. LB^.stable(A X s)) for all closed points s of S.
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W* d WÎ D ^stable are presheaves of sets in the Zariski topology of the
category of ¿-schemes.

Definition. We denote by W, W^ and W^stabXe the sheafification of W*,
W* and W*_stabXe, respectively, in the Zariski topology.

For a ¿-scheme S, we can easily see that

W(S) = W*(S)/Pic(S),    W¿S) = W*(S)/Pic(S),
W^bXe(S) =   ^stable(S)/Pic(S),

where Pic(S) acts on W*(S) by tensor product P*M ® F for an invertible
sheaf M on S and F in W*(S). Alternatively, for a fixed smooth point * of X,
we can think of W(S) as the set of elements F in W*(S) endowed with a
rigidification F|* X S-»05.

Note that W(Spec k) = LB(A"), H^(Spec k) = LB°(A") and
^-stable by tensor product Fm> P*L (g) F for L in Pic^-(S) and F in W(S).
We see easily that we have bijections

WjP\cx Z K+(T(X )),    W^bXc/Picx Z K^ubXe(T(X )).
Convention. As in the beginning of §10, we identify a module on X X S

with its direct image by X X S -» X X S. For a closed point Q on X, we
denote by [Q] the divisor on X defined by the point. 6X([Q]) is the invertible
sheaf on A defined by the divisor [Q]. For an ©^-module F and/ in 7, we
denote by F(Qj) the restriction of F to gy X S+-S. If L is an ©jf-module,
then we have a canonical decomposition

¿(ôy)  =  F(ôy + ) © L(Qj-),
where F(£^+) and L(Q~) are the restrictions of L to gy+ X SZ-S and
G^~ X S*-S, respectively. When S = Spec /? is affine, we denote by R(Qj)
the structure sheaf on Qj X S <— S.

Definition. Let S be a ¿-scheme. A presentation a: L^>N = ®JerNj
over S is a surjective 0XXS-homomorphism from an invertible sheaf L on
À X S to a direct sum N = (& JmJ. Nj of invertible sheaves A, on Qj X S for
a subset J' oí J. A morphism from a presentation a: L -» AT to another a':
7/ -» A" is defined as a pair (b, c) consisting of an 0^xs-homomorphism b:
L -» L' and an QXxS-homomorphism c: N —> N' such that c ° a = a' ° b.

Definition. We denote by Pres*(?) the contravariant functor from the
category of ¿-schemes to that of sets defined as follows: for a ¿-scheme S,
Pres*(S) is the set of isomorphism classes of presentations over S. For a
¿-morphism S' -» S, the map Pres*(S) -» Pres*(S') is defined by the pull-
back under X X S' -*X X S in an obvious way. For a subset J' oî J and m
in C0(r(*), Z), we denote by Pres*(w, J'; ?) the subfunctor of Pres*(?)
defined as follows: for a ¿-scheme S, Pres*(m, J'; S) is the set of isomor-
phism classes of presentations a: L—> N such that deg Ls = m for all closed
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points s of S and that N is the direct sum N = © J€lJ, N- of invertible sheaves
Nj on Qj X S.

It is immediate to see that F = ker(a) for a presentation a: L —» N is a flat
family of line bundles on X parametrized by S, i.e. F G Jf*(S). Thus we
have a functorial morphism

ker: Pres*(S) -* W*(S).
Definition. We denote by Pres(?) and Pres(/w, /'; ?) the sheaf if ications

defined by
Pres(S) = Pres*(S)/Pic(S),

Pres(/n, J'; S) = Pres*(m, J'; S)/Pic(S),
where Pic(S) acts on Pres*(S) by the tensor product

1 ® a: P$M ®6jxj L -> P£M ®ejrxj JV

for M in Pic(S) and a: L -+ N in Pres*(S).
Thus there is a canonical morphism of functors

ker: Pres(?) -» If(?).
Definition. For /w in C0(r(A), Z), we denote by PicJ the connected

component of the Picard scheme Pic¿ of X consisting of those invertible
sheaves L on X with deg L = m. We denote by 9m the universal Poincaré
invertible sheaf on X X Pic^ determined up to the tensor product of an
invertible sheaf on Pic^.

Proposition 12.1. The functor Pres(/n, J'; ?) is represented by the II>ey. Px-
bundle over Pic^, obtained as the fiber product over P\cx of Px-bundles
P(^(ôy+) © VJ.QT)) over Picx for j in J'.

Henceforth, we identify Pres(m, J'; ?) with this fiber product.
Proof. Let a: L^>N= ®JsrNj be a presentation over S. Then by

restriction onto Q¡ X S<- S, we have a surjective 0s-homomorphism

a(QJ): L(QJ) = L(Q+) ®L(Q~)^Nj,
which gives rise to a section of the P,-bundle P(L(ßy+) © L(Qj~)) over S for
each / in J'. The rest of the proof is an immediate consequence of the
universality of &m.

Definition. We denote by StPres(?) and StPres(w, 7'; ?) the subfunctors of
Pres(?) and Pres(/w,7'; ?), respectively, defined as follows: for a ¿-scheme S,
StPres(S) consists of strict presentations, i.e. presentations a: L^> N =
©ye/- Nj f°r which the restriction of a(Qj) to L(Qj+) and L(Qf) are both
surjective onto A^ for each/ in J'.

Definition. For a free Z-module A of finite rank, we denote by Gm ® A
the algebraic torus over k defined as the spectrum of the group algebra over k
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of the dual Z-module of A, i.e. the algebraic torus whose character group is
dual to A.

Corollary 12.2. StPres(/n, /'; ?) is represented by the Gm ® C,({7, /'},
Zybundle over Pic^ obtained as the fiber product over Pic^ of the Gm-bundles

§pec( ©z(9>m(ô,+) ®6s ̂ ÂQiYT\
which is obtained by deleting the zero and infinite sections from the Px-bundle
P(9m(Qj+) © 9m(Q-)),forj in J'.

The proof of this corollary is immediate from the definition of strictness.
Henceforth, we also identify StPres(/w, J'; ?) with this fiber product.
We have an exact sequence of Z-modules

C0({7,7'}, Z) % C,({7, J'), Z) -* H\{I, J'}, Z) -* 0,
thus we have an exact sequence of algebraic tori

Gm ® C0({/,7'}, Z)%Gm ® C,({7,7'}, Z)-> Gm ® H\{I,J'), Z)-> 1.
On the other hand, Gm ® C0({7,7'}, Z) can be thought of as the automor-
phism scheme Aute .(E) of an invertible sheaf L on X, where for i in I, the ith
factor Gm acts as the scalar multiplication on the restriction L|A^ of L on the
irreducible component X¡ of A. Then obviously the induced action of Gm ®
C0({1,7'}, Z) on StPres(/n, /'; ?) is through the coboundary map

8j.: Gm ® C0(T(X), Z) = Gm ® C0({7, J'}, Z)^Gm® 8rC0({I, J'}, Z).
As in Proposition 10.1, we can identify the Picard scheme Pic^y.) of the

partial normalization ct(7'): A(7') -> X as the universal scheme parametrizing
flat families of line bundles F whose restriction Fs to each closed fiber
satisfies J(FS) = J'. For m in C0({7,7'}, Z) = C0(r(A"), Z) we denote by
Pic^y-j the connected component of Pic^-) consisting of invertible sheaves L
on A(J') whose pull-back by A -» X(J') have degree m.

Proposition 12.3. The map which assigns ker(a) to a presentation a: L^*N
gives rise to a morphism

ker: StPres(/w, 7'; ?) -* Pic£(y0,
by which we can identify the right-hand side as the quotient of the left-hand side
by the canonical action of Autei(0^), or equivalently, as the Gm ®
H '({7,7'}, Zybundle over Pic^ associated to the left-hand side with respect to
the surjective homomorphism Gm ® C,({7, J'}, Z) -» Gm ® H\{I, J'}, Z).

Remark. This is a more precise version of Proposition 10.2.
Proof. Let F be a flat family of line bundles on X parametrized by a

¿-scheme S such that 7(FJ = 7' for all closed points 5 of S, i.e. F is an
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invertible sheaf on X(J') X S. We denote by F the pull-back of F by
X X S -> A(7') X S. Assume further that deg Fs = m for all closed points 5
of S. There is a canonical injective 0;rxS-homomorphism F^> F. Let ä be the
projection F-> F/F. Then obviously ó is a strict presentation. It is easy to
see that the map Ft-> ä defines a functorial morphism

Picx(r)(S) -* StPres(m, /'; S)
which is the right inverse of ker. Let a: L—>Nbea. strict presentation over S
such that ker(a) is 6XxS-isomorphic to F. Then the injective ©¿.^-homo-
morphism F—»ker(a)--> L induces an 0¿xS-isomorphism F-+L. Thus we
conclude that the set of isomorphism classes of strict presentations a over S
for which ker(a) = F is in one-to-one correspondence with the orbit of ä
under the action of Autejfxs (F) = (Gm ® C0({7, 7'}, Z))(S).

In particular for 7' = 7, we get

Corollary 12.4. Let m be in C0(T(X), Z). Then Pic" is the Gm ®
Hl(T(X), Zybundle over Pic^ associated to the Gm ® CX(T(X), Zybundle
StPres(m, 7; ?) with respect to the surjective homomorphism Gm ® C,(T(A), Z)
-» Gm ® Hi(T(X), Z). Furthermore, StPres(m, 7; ?) is obtained as the fiber
product over Pitfj? of Gm-bundles

speci © {«ym(Qn®ex<$m(Qj-rT)

over Pitff forj in J.

For J' — J and m = 0, we get:

Corollary 12.5. The generalized Jacobian variety PicJJ- is an extension

0 ̂  Gm ® H \T(X ), Z) -» Pic° -» Pic^ -* 0
and is obtained as the quotient of StPres(0, 7; ?) by Gm ® 8C0(T(X), Z), where
the extension

0 -* Gm ® C,(r(X ), Z) ^ StPres(0, 7; ?) -» Pic^ -+ 0

« obtained as  the fiber product over Pic^  of the  Gm-extensions of Pic^
corresponding to the invertible sheaves

%(Qj+)®eP^%(Qj-rl-

Proposition 12.3 enables us to describe flat families F of line bundles
parametrized by 5 for which J(Fj) remains constant for closed points s of S.
To study our functor W(S), however, we need to know also flat families F for
which J(FS) varies from point to point. For this purpose, we next study
presentations which need not be strict.
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Lemma 12.6. Let S be the spectrum of a field. For a presentation a:
L-+N = © Jer Nj over S, let F = ker(a). Then we have 7(F) c 7' and the
canonical injective 6X xS-homomorphism f: F-+L induces an injective QxxS-
homomorphism g: £(F) —> L. There are disjoint subsets J'+ and 71 of J' such
that L is exxS-isomorphic to £(F)(2,gyja+] + 2yeyJÔ/]).

Moreover, a is strict if and only if L = £(F) and J' = 7(F).

Proof. Without loss of generality, we may assume S = Spec ¿. Let/ be in
7 and consider the restriction of/: F-» 7, to the fiber at Qj

AQj)- F(Qj) -* L(Qj) = L(Qj+) © L(Q-)
whose cokernel N(Qj) is either 0- or 1-dimensional over ¿. In particular
AQj) =£ 0. If/ is in 7(F), i.e. F is locally free at Qp then F(Qj) is 1-dimen-
sional, hence dim N(Qj) = 1, i.e./ is in J'. Thus we have 7(F) c 7'./induces
an ©¿-homomorphism 0¿ ®e^.F —>• L, hence an injective ©¿-homomorphism
g: £(F),-> L by the definition of £(F) as 0¿ ®0^F/0¿-torsion. Since g is
©¿-linear, we getg(Qj) = g(ß/) © g(Q~) for/ in7. The cokernel of g(Qj) is
0- or 1-dimensional. In the former case, g is an isomorphism near ft. In the
latter case,/ is in 7' and either g(Qj¥) is an isomorphism and g(Qj~) = 0 or
ozce versa. Since coker(/), hence coker(g), have 1-dimensional stalk at Q> in
this case, we conclude that L is ©¿-isomorphic near Qj to £(F)([ßy-]) or
£(F)([öy+]), respectively. Thus we are done.

We next study presentations over the spectrum of a discrete valuation ring.
Let S = Spec R — (tj, s}, where R is a discrete valuation ring over k with

quotient field ¿(tj) and the residue field k(s). Let w be a uniformizing
parameter for R.

Definition. For a flat family of line bundles F in W(S) parametrized by a
discrete valuation ring, we denote by £(F) the double ©¿x5-dual of the
pull-back_0¿ ® qxF of F by X x S -> X x S.

Since A X S is a 2-dimnesional regular scheme, it is well known that £(F)
is an invertible sheaf on X X S. There is obviously a canonical injective
6Xxs-homomorphism/: F—> £(F).

Proposition 12.7. For a flat family of line bundles F in W(S) parametrized
by a discrete valuation ring, the canonical <9XxS-homomorphism ä: £(F)—>
t(F)/F is a presentation with

1(F)/F«     ©    R(Qj).ye/</y

£(F) is uniquely determined, up to isomorphism, as the invertible sheaf on
X X S whose restriction to X X tj is t(Fj). Moreover, given a presentation a:
L—*N= ©yey Nj with ker(a) « F, we necessarily have J(FV) c 7' and
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Lmt(F)l 2   [ôy+]+   2   [Qj-])
Vye/;     ' ye/'_     '     /

for disjoint subsets J'+ and J'_ of J'. The restriction an of a to X X tj is strict if
and only z/7(F„) = 7' and L = £(F).

Proof. Our proof is a modification to our situation of Langton's proof in
[15] for vector bundles. By the definition of £(F) as the double dual, we see
immediately that t(F)v is isomorphic to t(Fj), which we defined as the
quotient modulo torsion of the pull-back of Fv by X Xi¡-»í X tj. Since X
is proper and smooth over ¿, a connected component of its Picard scheme
Pic¿ is proper and separated over ¿. Hence by the valuative criterion, we see
that £(F) is the unique invertible sheaf on A X S whose restriction to A X tj
is isomorphic to £(F^). Let us now consider the restriction äv of ä to X X tj.
Then we have an exact sequence

0->F„^£(F„)^     ©    ¿(T,)(a)-*0.
/e/(ig

From what we have seen above, £(F) can be thought of as an i?-submodule
of the middle term. The image of £(F) by äv is obviously isomorphic to
®jej(F¿R(Qj)- Let

a': £(F) ^    ©    *(a)

be the restriction of <L to £(F). Then a' is a presentation over S. Let
F' = ker(a'), which is S-flat and which obviously contains F.

We now claim F = F'. Let C = F'/F. Then the support of C is obviously
contained in {Qj X s}JSJ, hence in particular C is F-torsion and ©^^-tor-
sion. By tensoring F' with the exact sequence

0->BXxS^6xxS-*exxs->0, (*)
we have an exact sequence

0 ̂  Tor?*~(F', 0*Xi) ^ F'^ F'^ F;-* 0.
Since F' is S-flat, the multiplication by it is an injection on F'. Hence

Toif'«(#",e^x,)-o.
Then by tensoring <SXXs with the exact sequence 0-» F-» F'-» C-»0, we
have an exact sequence

0 -» Torf— ( C, 0* X) ) ̂  Fs ̂  F/ ^ Cs ̂  0.
The first term vanishes, since it is obviously QXxs-torsion and is contained in
Fs which is 6Xxs-torsion-free by definition. Thus again by tensoring 6^XJ
with (*), we have an exact sequence 0^C-»C-»Cj->0. On the other
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hand, C is F-torsion. Thus we have C = 0. The rest of the proof is similar to
that of Lemma 12.6 and is immediate.

From the proof of Proposition 12.7, we get:

Corollary 12.8. Let S be the spectrum of a discrete valuation ring. Then
there is a surjective map

ker: {isomorphism classes of presentations a over S with a^ strict) —* W(S)

which identifies W(S) as the quotient of the left-hand side with respect to the
canonical action of 8C0(T(X), R*), where R* is the multiplicative group of units
ofR.

Again by the proof of Proposition 12.7, the restriction map a\-+ a^ from
A x S to X x tj gives rise to a bijection

{isomorphism classes of presentation a over S with av strict} -» StPres(Tj).

W(S) is the quotient of the left-hand side by the canonical action of
8C0(T(X), R*), while W(-q) is the quotient of the right-hand side by the
canonical action of 8C0(T(X), ¿(tj)*) by Proposition 12.3. The discrete valua-
tion of R gives rise to an exact sequence

1-»F*^¿(tj)*^Z^0.
Thus we have an isomorphism

ord: ÓC0(r(A), ¿(Tj)*)/ÔC0(r(A), R*) Z 8C0(T(X), Z).
Thus we get:

Corollary 12.9. Let S be the spectrum of a discrete valuation ring. Then
there is a canonical action of 8C0(T(X), Z) on W(S) such that the canonical
map W(S) -» W(r¡) induced by the inclusion tj -* S gives rise to a bijection

W(S)/8C0(T(X),Z)=*W(r,).
Remark. This corollary shows that the functor W is far from being

separated.

Proposition 12.10. Let S be the spectrum of a discrete valuation ring and let
F' and F" be in LB°(A X tj) and LB°(A X s), respectively. Then there exist
M' G Pic°(A" X tj), M" G Pic°(A X s) and F_G W(S),_such that F„ s M'
®e^ F' and Fs = M" ®exxf" ¿fand only if D(F') < D(F"), i.e. the map

D: LB°(A-) -+ K(T(Xj)
defined in  Theorem  10.5 is order reversing: F" is in the "closure" of the
Pic°(A)-orbit ofF' if and only if D(F') is a face of D(F").

Remark. This is nothing but Theorem 10.5 (2), whose proof we postponed
until now.
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Proof. Let F be in W(S). Then by Proposition 12.7, a: £(F) -> t(F)/F
= ® Jej(F)R(Qj) is a presentation over S with ker(a) = F. Consider its
restriction toi Xi

a,:ñ(F)s-+    ©     ¿(*)(ß.)/•s'to)
with ker(a,) = F^. aä need not be strict over s. Thus by Lemma 12.6, there
exist disjoint subsets 7+ and 71 of 7(F,0 such that t(Fj) is 0¿Xí-isomorphic
to

mÍ    2     [Ôy+]+     S     [Ôy-]l
Vye/; y'e/^ /

In particular, we have deg t(Fs) = deg t(F)s - 2,e/|{/ G 7+H71; at least
one end of/ is at i}\v¡. Moreover, we obviously have J(FS) = J(Fj) — J'+ —
71, hence by Theorem 10.5 (3), we get Supp D(FS) = Supp ^(F,)H7;H71.
By Theorem 10.5 (4), we have db(D(Fs)) = deg t(Fs) + ¿(Supp D(Fj))/2
and db(D(Fv)) = deg £(F„) + ¿(Supp Z>(F„))/2. Since deg £(F), =
deg £(F)„ we see that db(D(Fs)) - db(D(Fr¡)) = rf(71H71)/2 - 2l6/|{/ G
7+IL/l; at least one end of/ is at z'}|u, = — (l/2)2,e/|{/ G J'+UJ'_;j not a
loop and at least one end of/ is at z"}|u„ which is equal to — 3(e(71) —
e(J'_))/2, since Qj* is on Xi and Q~ is on A,., if/ is an edge from i to /'.

Let D' be a Delony polyhedron in the /Y,(r(A), Z)-equivalence class
D(FJ1). Then the polyhedron defined by

z>" = />'+( 2   '/-*,)+ 2 ^;0</,<l)
Vye/; ye/'_ J

satisfies D'<D" and 6(F)") = 6(1»') ~ e(7^)/2 + e(J'_)/2. Thus F>" is in
7>(Fj) and D(FV) < D(Fj). Moreover, it is not hard to see that by replacing F
by an element of W(S) whose image in W(y) is in the Pic°(A X Tj)-orbit of
Fv, we can get arbitrary disjoint subsets J'+ and 71 of 7(F,0 in this way. Thus
by Theorem 10.5 (1), we are done.

Definition. Let F and F' be line bundles in LB°(A). F' is said to be in the
4>-closure of F if the following conditions are satisfied:

(i) There exist Delony polyhedra D G D(F) and D' G D(F') with D < D'
and p(rel.int D) c p(rel.int D'). Let D' be of the form

D' = D+i   2   tj(-ej) +   2   W 0 < t, < l)
lye/; ye/'. J

for a decomposition Supp D' = Supp £>II71H71. Then
(ii) F' is ©^-isomorphic to the kernel of the composition
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£(*■)(-  2   W)-   2   [ôy-])^£(F)-^£(F)/F
V    ye/; ye/l /

-H-        ©        k(Qj) ®e/(F)/F
yS/ —Supp £>

of the canonical inclusion and the canonical projections.

Proposition 12.11. Let q and q' be closed points of R^(E/P) defined in § 11.
Then q' is in the closure of the GL(E)-orbit of q if and only if Gq( — ñ) is in the
4-closure of Gq( —ñ) as elements of LB^(A).

Proof. By the choice of « in the definition of R^(E/P), a point q" is in the
GL(F)-orbit of q if and only if Gq~ = Gq. Thus q' is in the closure of the
GL(F)-orbit of q if and only if there exist the spectrum S = {tj, s} of a
discrete valuation ring with k(s) = k and a flat family of line bundles
G G W(S) such that G„ s ¿(tj) ®k Gq and Gs s Gq. and that there is a
surjective homomorphism S^xs ®k E^>G. Note that this last condition is
superfluous, since other conditions imply that R1P2 G = 0 hence P2 G is a
free F-module of rank F(0), which is noncanonically isomorphic to R ®k E.
Let F = G ® Pf<Sx(-ñ), F = Gq(-ñ) and F' = G^-ñ). Then we should
have F„ ^ ¿(tj) ®k F and Fs s F'. Let a: £(F) -* £(F)/F ^ ©yS/(0 k(Qj)
be the canonical projection. Then a is a presentation over k with ker(a) = F.
Its base extension a* to F

a*: R ®k £(F) -* R ®k t(F)/R ®k F s    ©    F(ß)
ye/(/-)

is a presentation over S with ker(a*) = R <8)k F. Since both R ®k F and F
have the same image ¿(tj) <8>k F in ^(tj), we see by Proposition 12.7 that F is
obtained as the kernel of the restriction a' to R ®k £(F) of (a*)n ° b for an
element b in C0(r(A), ¿(tj)*) acting by the multiplication of b¡ on the
restriction of ¿(tj) ®k £(F) to A,. Thus we have an exact sequence

O^F^R ®k £(F)X    ©    F(a)^0.
ye/(F)

The restriction a's oí a' to X X s is a presentation over ¿ with ker(aO = F¿ but
need not be strict. Let ß = ord b G C0(T(A), Z) and let

7; = {/ G 7(F); (8ß, ej) > O},

71 = {/ G 7(F); (8ß, ej) < O},
^={j£J(F);(8ß,ej) = 0}.

Then we see easily that

£(FJ=£(F)(-   2   [Q/]-   2   [ó/])\     y'e/; y'e/l /

and that F, is the kernel of the strict presentation over k obtained by
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composing the canonical injection t(Fs) -» £(F), the canonical projection a:
£(F) -> t(F)/F s ®JeJ(F) k(Qj) and the canonical projection
©ye/(F) k(Qj)-* ©ye/; KQj)- As m &* proof of Proposition 12.10, we see
that for 7) in D(F), the Delony polyhedron defined by

D' = D + \  2   '/-*,)+   2   tJeJ;0<tJ<\)
lye/; y'e/; J

is in D(Fj). Thus the rest of the proof is an immediate consequence of the
following:

Lemma 12.12. Let D < D' be in K(T). Then
p(rel.int D) c p(rel.int D')

if and only if there exists 8ß G 8C0(T, Z) such that

D'-D+l   2    'y(-ey) +   2    W 0 < $ < 1
I y'e/; y'e/^

wAere

7; = {/ G 7 - Supp D; (60, ej) > 0},
71 = {/ G J - Supp Z>; (Ô/3, ej) < 0}.

Proof. We first prove the "if part. Suppose there exists 8ß as in the
lemma. There exists c in CX(T, Z) such that D = c + {2ySSupP£) tjCf, 0 < z) <
1}. Thus 7)' = c + (2yey {,e,e,; 0 < t) < l},where

1        if/ G Supp Z)U71,
- 1     if/ G 71,
0        otherwise.

Let>> be in relint D, i.e. 0 < (y — c, ej) < 1 for/ G Supp TJ) and (y — c, ej)
= 0 for/ £ Supp D. If we choose sufficiently small positive number r, then

y + r8ß is in rel.int D'. Indeed, (7 + r8ß - c, ej) = (y - c, ej) + r(8ß, ej) is
strictly between 0 and tj for/ G Supp DH71II71 and equals 0 otherwise.
Thus p(y) = p(y + r8ß) G p(rel.int £>'). We next prove the "only if part. As
before, let

f     2      tJe/,0<tj<l),
tyeSuppi) J

Í2   tjW'OKtj
lye/

D = c +

D' =  C +   j    2    {,«y<y; 0  < (,   <   1
lye/

where e, = 1, - 1 or 0, according as/ is in Supp 7)H71, in 71 or otherwise.
Let y be in relint D. Since p(y) is in p(rel.int D '), by assumption, there exists
8ß' in 5C0(r, R) such that y + 8ß' G rel.int Z)', i.e. (>> - c + 8)3', <?,) is
strictly between 0 and e, if/ G Supp DII71H71 and equals 0 otherwise. But
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since (y — c, ej) = 0 if / G Supp D, we see that (8ßf, ej) is strictly between 0
and e, if / G 7+LL71 and equals 0 if / G Supp 7>H71H71. Consider the set
of coboundaries 8ß G 5C0(r, R) with (8ß, ej) positive, negative or 0, accord-
ing as/ G J'+,j G 71 or/ G Supp DUJ'+JU'_. This set is not empty, since
5/3' belongs to it. Then there certainly exists a rational element 8ß G
8C0(T, Q) in this set. Multiplying 8ß by a suitable positive integer, we
conclude that there exists an integral element 8ß G 8C0(T, Z) in this set, and
we are done.

Definition. Line bundles F, and F2 in LB^(A") are said to be «^equivalent
if there exists F3 in LB£(A") which is in the <i>-closure of both F, and F2.

From this definition, we immediately see the following:

Corollary 12.13. Let q and q' be closed points of R^(E/P). Then the
closures of their GL(E)-orbits intersect if and only if Gq( — n) and Gq(—n) are
4>-equivalent as elements of LB°(A").

We are now ready to state the main theorem of this section.

Theorem 12.14. Let </> be in dCx(T(X), R). Then the reduced projective
algebraic scheme Jac^X) and its open subscheme 3&c^_slable(X) admit an action
of the generalized Jacobian variety Pic¿ and satisfy the following properties:
there is a Picx-admissible morphism of set functors

vv^^Jac^A-)
(i) which induces an isomorphism of functors

W^-stable'-   Wç.s,abie^>5a.Cç_stable(X)

'■e- ^stabu is represented by Jac^^iA").
(ii) The map

^(Spec ¿): LB°(A") = »'„(Spec ¿) -* Jac„(X)(Spec ¿)
is surjective and induces a bijection from the set of ^equivalence classes in
LB°(A) to Jac^XXSpec ¿).

(iii) Wq is universal among morphisms from W+ to representable functors, i.e.
if w': Wç -» Y is a morphism of set functors with Y representable, then there is
a unique morphism of schemes u: Jac„(A") -» Y such that u ° w^ = w'.

Corollary 12.15. Jac^A") represents the functor W+ if and only if 4> is
nondegenerate, i.e. 4> — 3e(7)/2 is in the interior of a top-dimensional
polyhedron in Arr(r(A)).

Proof of Theorem 12.14. It is now standard in the geometric invariant
theory to deduce this theorem from Theorem 11.4.

From what we saw in §11, the universal quotient sheaf G on A X
Rç(E/P) satisfies the property that Gq(-ñ) G LB°(A) for all closed points q
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of Rç(E/P). Thus Px*ex(-ñ)® G determines an element of W^(R^(E/P))
by the definition of W+ at the beginning of §12. Thus we have a morphism of
functors

u:R^(E/P)^Wr
It assigns to a closed point q G R^(E/P) the element Gq( — ñ) G
W^Spec ¿). u is obviously invariant under the action of Gh(E) on
R^E/P), since q and q' are in the same GL(F)-orbit if and only if Gq m Gq,
by §11.

Let S be a ¿-scheme and let F G W^(S) be a flat family of line bundles on
X parametrized by S, which defines an element of W^(S). Then by the choice
of ñ, we see that R lP2¿F ® PfÜx(ñ)) = 0, P2J,F ® PfBx(ri)) is a locally
free sheaf on S of rank F(0) and the canonical homomorphism

p;p2m(F ® pfex(ñ)) -» f ® pfex(ñ)
is surjective. There exists an open covering S = U » S„ such that the
restriction of P2 (F ® PfQx(ñ)) to S„ is free. Then there exists a surjective
homomorphism from S*^ ®kE to the restriction of F ® Pf6x(ñ) to
X X S„. Thus by the universality of R^(E/P), there exist morphisms S„->
R^(E/P), determined up to GL(F)-action, which induces the restriction of
F ® Pf6x(n) on X x S„ by pull-back. Composing these morphisms with the
projection F„(F/F)-> Jac^A"), we have morphisms S„ -> Jac^A). By the
GL(F)-invariance of the quotient, they patch up to be a morphism S-»
Jac„(A), which is uniquely determined by the image of F G W%(S) in
^(S) = W%(S)/Pic(S). We thus get a map

^(S)^Jac„(A)(S),
which is obviously functorial in S. Thus we obtain a morphism of functors

>V W^-»Jac,(A-)
which obviously induces

^«.-stable1   "astable ~* JatVstable(^ )•

w^ is universal among morphisms from W^ to representable functors. Indeed,
if w': Wç -> Y is a morphism to a representable functor, we have a morphism
w' » u: Rq(E/P) -» y, which is obviously GL(F)-invariant. Since Jac„(A) is
a good quotient, hence a categorical quotient, by Theorem 11.4, w' ° u factors
through a morphism Jac„(A) -» Y. Since closed points q and q' of R^(E/P)
go into the same point of Jac^A) if and only if the closures of their
GL(F)-orbits intersect by Theorem 11.4 (1), we see that

^(Spec ¿): ^(Spec ¿) = LB°(A") ̂  Jac„(A-)(Spec ¿)
induces a bijection from the set of «^-equivalence classes in LB^(A') to
Jac^AXSpec ¿) by Corollary 12.13. Since a modification G' by an invertible
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sheaf on R^.subie(E/ P) of the restriction of the universal quotient sheaf G to
X X F„.stable(F/F) descends to A x Jac^stable(A) by Theorem 11.4 (5), we
see that G' ® Pf<9x(-ñ) also descends to X x Jac^stable(A"). Since
R<hst*bie(E/ P)-* JaVstabie(^) is a geometric quotient, we conclude that
^stable is an isomorphism. The statement about the Pic¿-action is straight-
forward. Corollary 12.15 is an immediate consequence of this theorem and
Proposition 11.3.

Recall that at the beginning of §6 we introduced, for a graph T, a surjective
map

u:*,(r)^(r),
which defines an equivalence relation in K^(T): Dx and D2 are ^-equivalent
when n(Dx) = ¡i(D2). Given D in K^(T), \l(D) is the largest element 4>-
equivalent to D. u(7>) is also characterized as the unique element in K^(T)
which is <i>-eqivalent to D. Moreover, D is <jVstable if and only if D is the only
element in the ^-equivalence class of D.

Since the projection p: CX(T, R) -> H '(T, R) induces a bijection

p:K¡(T)^DÚJ[Hl(r,R))
and since the right-hand side is a polyhedral decomposition of H l(T, R), we
have the following, whose proof is left to the reader:

Lemma 12.16. Let D < D' be 4>-semistable Delony polyhedra in K^ÇT). Then
D and D' are 4>- equivalent if and only if

p(rel.int D) c p(rel.int D').

Taking the quotient of

K^(T)^K°(T)P-*T>t\{H\T,Rj)
U

*?(T)
with respect to the translation action of HX(T, Z), we obtain

^(r)4*°(r)4Deï„(tf'(r,R))
u

K¡(T)

where the last term is defined as follows:
Definition. The Namikawa cell complex

Deï^tf1 (T, R)) = DeL/tf1 (Y, R))/p(Hx (T, Z))
is  the  finite  cell  complex obtained as  the quotient of the Namikawa
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decomposition Dsl^(H'(T, R)) with respect to the translation action of
p(Hx(T, Z)). We call a cell in this complex a Namikawa cell. For a Namikawa
cell A7 in Dëyi/'Cr, R)), we define dim JV, Supp Wand db(Ñ) to be dim D,
Supp D and db(D), respectively, for D in K°(T) with p(7>) G A^, determined
up to the translation by elements of HX(T, Z).

Definition. Dx and D2 in K^fT) are said to be «¿»-equivalent if p(Dx) =
fi(Dj), i.e. there exist Dx G Dx and D2 G £>2 such that Dx and D2 are
«/»-equivalent.

Applying Lemma 12.16 to T = T(X), we see by Corollary 12.13_that the
^-equivalence of Fx and F2 in LB£(A") imphes the «equivalence of D (Fx) and
D (Fj). By Proposition 12.11, we conclude that in a «/»-equivalence class of line
bundles in LB°(A) there is a unique F with /J(F) G K°(T(X)), correspond-
ing to the unique closed GL(F)-orbit in the equivalence class of points
defined by the good quotient R^E/P) -» Jac<>(Ar).

By Theorems 10.5 and 12.4 and_Proposition 12.3, we can relate the notions
of «/»-equivalence in LB°(A) and K^(T(X)) more precisely as follows:

Proposition 12.17. The map D of Theorem 10.5 induces bisections

WjPicx Z     K<,(T(X)),
Jac„(A-)/Pic¿     Z      Deï«(#'(r(A),R))

compatible with the map induced by w¿ for the first column and p ° p. for the
second column. For a Namikawa cell N in Deí<(,(7í'1(r(Ar), R)),let 0(Ñ) be the
corresponding Picx-orbit in Jac^AT). Then we have:

(i) The map O is order reversing, i.e. N is a face of N', if and only if 0(N') is
in the closure of O(N).

(ii) 0(Ñ~) is canonically isomorphic to Pic^y-supp^ where m — db(N) —
¿(Supp N)/2. Especially

(iii) dim AT is equal to the codimension ofO(N) in Jac^(A).

In the definition immediately after Proposition 7.6, we denoted by
Br(T(X); 4>) the number of /--dimensional Namikawa cells in
Dd^(H\T(X), R)) for 0 < r < h(T(X)) = h. For each 0-dimensional
Namikawa cell |, 0(|) = Pic|? is noncanonically isomorphic to the general-
ized Jacobian variety Pic¿. Thus we conclude that Jac^(X) is a compacti-
fication of the union of B0(T(X); </>) copies of Pic¿. This compactification
Jac^A) depends only on the polyhedron in Arr(T(A)) whose relative interior
contains 4> — de(J)/2 by Proposition 11.2 (i). In particular, when 4> is nonde-
generate,

Br(T(X); *)«(*)■ complexity(r(A-))

is independent of </>, by Theorem 7.7. Thus by Proposition 12.17, the number
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of Pic°-orbits of each codimension is independent of <J>. However, the actual
incidence relation among these orbits might depend on </> (cf. §8, Example (3)
(ii))-

13. The structure of the compactifications Jac<i)(Ar). Let H D H' be a free
Z-module of rank h and a submodule of finite index. Consider a polyhedral
decomposition Dec of H ®z R by bounded convex polyhedra such that

(i) the set of vertices Sk°(Dec) is contained in H, and
(ii) Dec is invariant under the translation action of H'.
We denote by Dec= Dec/ H' the quotient cell complex, which is a cell

decomposition of the real torus H ®ZR/H' m R^/Z*.
For polyhedral cones and torus embeddings, we refer the reader to Mum-

ford et al. [24] or Miyake-Oda [17].
For £ G Sk°(Dec), consider the finite rational polyhedral decomposition

(f.r.p. decomposition for short) of H ®z R

A(|) = {0(|, AT); £ G AT G Dec}

consisting of polyhedral cones o(|, AT) in H ®z R with the vertex at the
origin generated by the set {* - £; * G N), i.e. if ¿ {j,..., £. are the
vertices of the polyhedron N, then

o(£ N) = R>0(£x - |) + R>0(£2 -{)+•••+ R>o& - «)•
Let us denote T = Gm® H. Then by the general theory, we obtain a torus

embedding T c Temb(|) corresponding to the f.r.p. decomposition A(£). It is
clear that Temb(£) is a complete variety. There exists a bijection

orbf : {N G Dec; N 3 £} Z { F-orbits in Temb(£)}
such that (1) dim N is the codimension of orb^Af) in Temb(D and (2)
orb^A^) is in the closure of OTb((N') if and only if N' is a face of N.

From now on, we let
H= Hl (T(X), Z),   H' = p(7i1 (T(A-), Z)),

Dec = Del^1(r(A-),R))

for a curve X and </> G 3C,(T(A), R). They satisfy the requirements at the
beginning of this section by Proposition 6.1.

rw <^ "  J}■6
Figure 23
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Examples 13.1. (1) A is irreducible with one double point, whose graph
looks like Figure 23 (cf. §8, (1)). In this case, necessarily </> = 0, H = H' and
Dec looks like Figure 24. Thus for any £ G 77, A(£) looks like Figure 25,
hence Tembfé) = P,.

-&, o fe?

Figure 24 Figure 25

(2) A is irreducible with two double points, whose graph looks like Figure
26 (cf. §8, (1)). Again we have </» = 0 and H = H'. Thus Dec and A© for any
£ G H look like Figure 27. We have Temb(£) = P, X P,.

T(X)

Figure 26 Figure 27
(3) A has two components meeting at three points, whose graph looks like

Figure 28 (§8, (2iii)).

T{X)
Figure 28 Figure 29
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(a) Let </> = 0 (cf. §8, (2iiia)). Then Dec looks like Figure 29. At the thick
lattice points (e.g. £ = 0), the white lattice points (e.g. £=—«?,) and the
crossed lattice points (e.g. £ = ex), A(£) look respectively like Figure 30. Since
<?, + e2 + ¿j = 0, we see that Temb(£) in the first case is obtained as the
blowing up of P2 along the three coordinate vertices. In the other two cases,
Temb(£) = P2.

(b) If </> = (u, - vj)/2 (cf. §8, (2iiib)), then Dec looks like Figure 31. At the
thick lattice points (e.g. £ = 0) and the crossed lattice points (e.g. £ = «?,), A(£)
look respectively like Figure 32. In both cases, we have Temb(£) = P2. For
£ G Sk°(Dec) consider the fiber bundle

Pic^ xTTemb(£)
associated with the principal F-bundle Pic¿{ over Pic^ and the F-action on
Temb(£). Note that it depends only on the image £ of £ in Dec. We thus
denote it also by

Pic¿* xrTemb(£).

Figure 31 Figure 32
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Theorem 13.2. Let </> be in 3C,(T(A), R). Then for f in
Sk0(DeÍ<>(#1(r(A'), R))) there exists a morphism

«j: Pic^ X T Temb(£) -+ Jac^A" ).

The normalization of Jac^A) can be identified with the disjoint union of
Pic^ xrTemb(£) with £ running over Sk°(Del^(^ }(T(X), R))). For a pair
£ G N G DeL/// '(r(*), R)), there exists an isomorphism

ge(N): Pic^2Supp^^Pic^ XTovb,1(Ñ)

with m(N) = db(N)^— ¿(Supp N)/2 such that i/| » g^(N) coincides with the
isomorphism Pic^^supp^ ^>0(N) of Proposition 12.17(h). 5&c^(X) is
obtained from the above disjoint union by the identification maps gç(N) with N
and £ running over all Namikawa polyhedra and their vertices.

Corollary 13.3. If </> G3C,(r(A"), R) is nondegenerate, then the normali-
zation of Jac^A") is nonsingular.

Proof of 13.3. It is enough to show that Temb(£) is nonsingular for any £.
Let £ G A^ be a top-dimensional Namikawa polyhedron, and let N be the
unique element in K® with p(Ñ) = N. Then by Theorem 7.7(i), 7 — Supp N is
the set of edges in a spanning tree of T(X). Since Ñ is of the form

Ñ = l+i     2      tjeJeJ;0<tJ<\\
*■ yeSupp/i '

with Ej: = 1 or — 1, we see that the cone a(£, A0 is of the form

*(£,A0=        2 R>0*yP(<y)-
yeSupp/V

As we saw immediately before Lemma 4.6, (piej); j G Supp #} is a Z-basis
of H '(r(A), Z). Thus we are done by the general theory of torus embeddings.

Proof of 13.2. In this proof, we let

C=CX (T(X), Z),    f=Gm®C,   K= K(T(X)),

K+ = Kp(T(X)),   K¡ = K¡(T(X)),   K^abXc = K^bXe(T(X)).
We saw in §6 that K+ consists of faces of K°, Sk°(^stable) = Sk°(K%) and
that p induces a bijection ÄT,£-»Dec. For N in Dec, we denote by Ñ the
unique Delony polyhedron in AT° such that p(Ñ) = AT. Thus by definition, we
have Supp W = Supp Ñ and 3¿>(A0 = db(Ñ). For £ in Sk°(K%), we define a
finite rational partial polyedral decomposition (f.r.p.p. decomposition for
short) of C ®z R by

Â(|) = {«5(£,Z));£G7)G^}
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where ö(£, D) is the cone in C ®z R with the vertex at the origin generated
by {* - £; * G D). As before, there exists a bijection

oTbg: {D G K^; D B £} Z {f-orbits in Temb(£)},

where f c Temb(£) is the torus embedding corresponding to Ä(£). In this
case, Temb(£) need not be complete, but it is clear that Temb(£) is a F-stable
open subset of the F-embedding IiJeJ Px corresponding to the f.r.p.
decomposition («5(£, D); D G K).

(i) By Corollary 12.4, StPres(3£, 7;?) is a principal f-bundle over Pic|* and
Pic¿* is its quotient by the kernel Gm ® <5C0(T(A), Z) of the canonical
surjective homomorphism T ^>T.

(ii) By Proposition 12.1, it is clear that

Pres(3£,7;?) = StPres(3£,7;?) xf II  P„
/e/

the fiber bundle over Pic^ associated with StPres(3£, 7; ?) and the F-action
on EJmJ P,.

(iii) Let us consider its open subset

StPres(3£,7;?) xfTemb(£).

The kernel of the restriction to this open set of the universal presentation over
Pres(3£, 7; ?) defines a morphism

v¡: StPres(3£, 7; ?) Xf Temb(£) -+ Wr

Indeed, let £ G D G K+ with

D = l+\   2   tj(-ej)+   2   W,Q<tj <l]
lye/; y'e/'_ J

and Supp D = 71LI71. Let a: F-» ©yey ¿(ßy) be a presentation over k
corresponding to a closed point of StPres(3£, J; ?) Xrorb|(7)). Then it is
easy to see that its restriction gives rise to a strict presentation

*': 4"   S   [Ôy+]-   2   toy"])-       ©    D *«&)
\    7e/; ye/'_ /     ye/-Supp£>

with ker(a') = ker(zz).
_As we saw in the proof of Proposition 12.10, we see that D belongs to
D (ker a). In particular, ker(a) is «/»-semistable.

(iv) By composing the morphism ü¿ with w^: W^ -» Jac<(((Ar) of Theorem
12.14, we get a morphism

¿- = w<t> o ¿y. StPres(3£,7; ?) X f Temb(£) -> Jac^(A).
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(v) The argument in (iii) actually shows that there exists an isomorphism

§l(D ): StPres(m(F> ), 7 - Supp D; ?)Z StPres(3£, 7; ?) Xf ofb¿(7> )
with m(D) =36(7)) — d(Supp D)/2, which sends a strict presentation a':
L' -» ©ygy_Supp D k(Qj) to the presentation

a-L'i   2    [ßy+] +    2    [ßy-])-©JMßy)-
Vye/; ye/i /     J^J

(vi) Taking the quotient of these by ker[F-> F], we obtain the following:
for £ = p(£) G Sk°(Dec), a morphism

i<( : Pic^ X T Temb(£) -h> Jac^ A )

which depends only on the image £ of £ in Dec, and for N = p(D) in Dec
with £ G D G K°, an isomorphism

g((N): Pic^Supp ^ ^ Pic* X t orb{(* ).

The composition of gi(Ar) with the morphism «| obviously coincides with the
isomorphism

Pic*(S^suppJv)^0(Âr) c Jac^(A)
of Proposition 12.17(h). Here N is the image of AT in Dec.

(vii) Let U be the scheme obtained from U|eSk°(Díí) ̂ ic* Xr Temb(£) by
the identification maps g((N) with N B £ running over all Ar G Dec and
their vertices. Then we have a morphism

u: i/->JaS(A)
which is bijective by (vi), since Jac^A") is the disjoint union of 0(N) with A^
running over Dec by Proposition 12.17.

(viii) We now claim that zz is an isomorphism. Certainly it is enough, by
Theorem 11.4, to show that there is a GL/F)-invariant morphism R =
Rç(E/P)^>U whose composition with u coincides with the quotient
morphism R -» Jac^(A). By Lemma 11.8, we see that the completion of local
rings of R are of the form

k[[*„*'„ . . . ,xr,x'r,yx, . . .,ys] ]/(*,.*'„ . . ., xr.x'j).

In particular, the normalization of R is smooth. Let S be a component of the
normalization of R and let F be the restriction to A X S of G ® Pf ®x(-ñ).
Since S is irreducible and smooth, it is not hard to see that there exists a
presentation a: L-> N over S such that ker(a) = F and that deg L = 3£ for a
£ in Sk°(Ä£). Thus we have a morphism S -» StPres(3£, 7; ?) X f Temb(£).
Composing this with zz{, we get a morphism S -» U. It is obviously indepen-
dent of the choice of the presentation a. Hence we have a morphism from the
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normalization of R to U, which induces a GL(F)-invariant morphism from R
to U.

Examples. Let us consider the cases where A" is a stable curve of genus 2 in
the sense of Deligne-Mumford [4].

(0) A is a nonsingular irreducible. In this case, Jac^A) = Pic¿.
(1) A is irreducible with one double point ß and with X an elliptic curve.

As we saw in Example 13.1(1), we see that </> = 0, H' = H and Pic¿ xT
Temb(0) is a P,-bundle over Pic¿, which can be identified, noncanonically,
with

p(M[e+])©0*([<r]))-
Let N = [tex; 0 < / < 1}. Then N is a 1-dimensional Namikawa polyhedron,
uniquely determined up to H'-translation. O(N) is canonically isomorphic to
Pic¿ ' as X. Two points in StPres(0,7; ?) XT Temb(0) corresponding to
presentations

a: L^L(Q + )^ k(Q),   a': L' -* L'(Q " ) s ¿(ß)
go into the same point of O(N) if and only if L( — [Q +]) and L'(—[Q ~]) are
©¿-isomorphic. We conclude that Jac^A) is obtained by identifying the
0-section and the oo-section of the P,-bundle P(©¿[ß +]) © ©¿([ß ~]) over X
via the translation in X by its point ß + — ß ~~ (see Figure 33).

P, -bundle \       I\    Translation by

\    |r-g

Figure 33

(2) X is irreducible with two double points (ß,, ß2} and with A = P,. As
we saw in Example 13.1(2), we see that </> = 0, H' = H and StPres(0,7;
?) xrTemb(0) = P, X P,. Let W = {txex + t2e2; 0 < tj < 1}, A^Jr,«^;
0 < z, < 1} and N2 = [t2e2; 0 < t2 < 1}. Then Dec consists of A", >V„ N2
and 0. The point O(A^) in Jac^iA) corresponds to the ©¿--module ©P](—2) =
e*(-[Qî] - [Q£]) with «> ß = ±- Consider presentations a, A: ©¿ -^ ¿(ß,)
© ¿(ß2) where a belongs to orb^A^ = P, X 0 and A belongs to orb0( — Nj)
= P, X oo. Thus there exist elements a+, a~,A+ and A~ in ¿* such that
a(f) = *7(ß,+) + a-f(Q-) and A(f) = A+f(Qx+) + A~f(Q-) for / in
0¿>e,, and a(f) = /(ß2~) and A(f) = /(ß2+) for/in ©¿><?2. Here a + /a~ and
A + /A    are the coordinates of a and A, respectively, in the first factor P,.
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Thus the corresponding strict presentations are
a':<9*(-[ß2-]H*(ß.)> ^©*(-[ß2+]H*(ß>)

with a'(f) - a(f) and A'(f) = A(f) for / in ©¿ßi. Obviously, ker(a') and
ker(/T) are ©^-isomorphic if and only if there exists an ©¿-isomorphism b:
6*(-[ß2+]) -* <9*(-[ß2~]) and c in ¿* such that a'»i = cA'. Since X - P„
there exists a function z onX with (z) — [ß2+] - [ß2-]. The ©¿-isomorphism
b differs from the multiplication by z only by a scalar multiplication. Thus
ker(a') and ker(/i') are ©^-isomorphic if and only if (a + /a~)(z(Qx+)/z(Qx~))
= A+1A~. Note that r = z(Qx+)/z(Qx~) is the cross ratio of
{ß2~> ¿2+> ßf > ßi+}- We conclude that Jac+(A") is obtained from P, X P,
by identifying (*, 0) with (rx, oo) and (0,^) with (oo, ry) (see Figure 34).

?!
Figure 34

(3) Finally X has two nonsingular rational components meeting at three
points. As in Example 13.1(3), let us consider the following two cases:

(a) 4> = 0. In this case Jac^(A) is obtained from Temb(—ëx) = P2,
Temb(<?,) = P2 and Temb(Q) which is the blowing up of P2 along the three
coordinate vertices, by the identifications, as in Figure 35, where a, ß, y, 8, e
and £ are all P,.

?       Temb(0)       7

Temb(-e,) Temb(e,)

Figure 35

(b) </> = (u, — vj)/2. In this case, Jac^A) is obtained from Temb(0) = P2
and Temb(ê,) = P2 by the identifications as in Figure 36, where a, ß and y
are P,.
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Temb(O) w   Temb(ê,)

Figure 36

Remark. The compactifications Jac^A) we obtained in (0). (1), (2) and
(3a) appear in Mumford [22]. On the other hand, (0), (1), (2) and (3b) appear
as stable quasi-abelian varieties in Nakamura [26] and Namikawa [27].

Remark. Let us consider the following identifications in P, X P, :
(*, 0) ~ (/•*, oo),    (0, y) ~ (oo, r'y)

for fixed elements r and r' in ¿* and x,y running over points of P,. It was
pointed out by Deligne to Namikawa that the variety obtained by these
identifications is not projective if r" =£ r"1' for any pair n, n' of positive
integers.

14. Relations with Raynaud's results. Let S = (tj, s) be the spectrum of a
discrete valuation ring with the residue field ¿(i) = ¿. Consider a proper and
flat family Y of curves over S such that 7n is a smooth connected complete
curve over ¿(tj), Ys = X = U,6/ A, is a reduced connected complete curve
over k with at most ordinary double points {Qj)jeJ-

In this case, the relative Picard functor Picy/S need not be separated nor
representable. Raynaud [29] takes its greatest separated quotient ß = ßy/iS.
ß is then represented by a separated and smooth group scheme over S
(Proposition 8.0.1). Moreover, ßT is the Néron model of the Jacobian variety
Pic°  of the generic fiber Yv, if Y is factorial (Theorem 8.1.4).

For simplicity, let us assume that S is Henselian and that y is a regular
scheme.

Let E be the subgroup of Pic(A") generated by

{0^®^0r(A,.);/G7}.

Let Pic,otdeg °(A") be the subgroup of Pic(A) consisting of L G Pic(A) with
total degree [v(I), deg ©¿ ®6x L] = 0. Then we get

fiJ(Spec¿) = Pic(Ar)/F,

(fiT)í(Spec¿) = Pic,otde«°(A)/£.

Lemma 14.1. Let i and Ï be in I. Then the intersection number of X¡ and X¡,
as divisors on Y, is given by

(A,., Xr)Y= -(8v;,8vr).
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Proof. If i ¥= i', then obviously (A,, A, ) Y equals the number of edges/ G 7
joining z and /', regardless of the orientation, which is easily seen to coincide
with -2,ey[t;,., 3e,][tv, 3ey] = -(&>,, 8vr). Note that (A„ 2re/ X,)r = 0
since the second member is the fiber of Y over s. Thus

(A,., Xt)Y- - 2 (A",, Xr)r- (&,, 8v(I - {z})) - -(&„ &>,.),

since ôu(7) = 0.

Corollary 14.2. For i in I, the degree of the pull-back of ©* ®Gy 0y(A,)
to X is given by

deg(0¿®ey©y(A',.))=-3%

Proof. By the definition in §10, the degree is equal to 2re/(A(, X¡)Yv¡,
which is equal, by Lemma 14.1, to

- 2 (&>„ 60f)vr = - 2 [3*Oi, »r]»r = -3*«V
re/ i'e/

Remark. We see that - 3«5: C0(r(A"), Z) --> C0(T(A), Z) is represented by
the intersection matrix of Xjs on Y.

Obviously, E n Pic^A") = {0}. On the other hand, deg induces an
isomorphism from Pictotdeg °(A)/Pic°(A") to 3C,(T(A), Z). Thus in view of
Kirchhoff-Trent's theorem in §4, we conclude:

Proposition 14.3. There is a canonical isomorphism

(Qr/s ),(Spec ¿)/Pic°(A) * 9C, (T(A), Z)/d8C0(T(X), Z).

The order of these groups are equal to complexity(r(A")) which is the number of
spanning trees in T(X). In particular, the group scheme (QY/s)s over k 's
independent of the particular family Y/S containing X as the special fiber.

Corollary 14.4. For a nondegenerate </>, Jac^(A) is a compactification of the
special fiber (QY/S)S °fthe Néron model QY/S of Pic° .

Remark. As was shown by Ishida [36], the geometric invariant theory
enables us to construct projective schemes Jac^,(Y/S) over S, which contain
the Néron model QY/S itself and whose special fiber is the compactification
given in Corollary 14.4.

Appendix. A lemma in M. Artin [1]. We state and prove in this Appendix a
modification of a lemma in Artin [1, Proposition 31] used in connection with
the deformation of singularities. This version can be found also in D'Souza
[7]. See also [EGA, Chapitre OiV, Proposition 19.1.10].
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Lemma. Let A -» B be a local homomorphism of noetherian local rings. Let N
and L be B-modules of finite type with L A-flat. Then a B - homomorphism f:
N -* L is injective with A-flat cokernel if and only if

f®Ak:N®Ak-+L®Ak
is injective, where k is the residue field of A.

Proof. The "only if' part is obvious. We now prove the "if' part. Let
K = Image(/) and C = Coker(/). We thus have exact sequences 0 —» K -» L
-» C -» 0 and A^ —► K -» 0. By tensoring ¿, we get

0 -* TorJ*(C k)-^K®Ak^L®A k—* C ®A k-+0

f I f®k
N ®A k = N <8>A k

Obviously, we conclude that N ®A k-*K ®Ak is an isomorphism and
K ®A k -» L ®A k is injective. Hence first of all we see that Torf (C, ¿) = 0,
i.e. C is ,4-flat by [SGA, 60/61, Exposé IV, Theorem 5.6]. Since L and C are
A -flat, we conclude that K is A -flat. Let A" be the kernel of the surjective
map N -»-» K. Since N ®A k -» K ®A k is an isomorphism, and since K is
A-ñat, we see that N' ®Ak = 0. Hence by Krull-Azumaya's (i.e. the so-called
Nakayama) lemma, we get N' — 0.

Remark 1. We use B in the above lemma only for the finiteness
assumption on L and N, as usual, so that we can use Krull-Azumaya's
lemma.

Remark 2. The original form of this lemma is the following: Let

(L): L2^> Lx~> L0^> F ^>Q

be a complex of F-modules of finite type, which is exact at L0 and F with
Lo, L, and F2 F-free. If (L) ®A k is exact, then (L) is exact and F is /1-flat.
This version follows from ours by taking N = Coker[L2 -* Lx] and L = Lq.

Corollary. Let A -* B be a flat local homomorphism of noetherian local
rings. Let N be a B-module of finite type which is A-flat and satisfies
Ext^A7, B) = 0, where B = B ®A k and Ñ = N ®A k for the residuefield k
of A. Then Hom^JV, B) is A-flat and YiomB(N, B) ®A k = Hom^, B).

Proof. Let

(L):L2^L,-*L0-*Ar-»0

be a resolution of N by free F-modules of finite type. Since N is ,4-flat, we see
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that

(L)®A ¿:¿2-^L1^¿o^AT-^0

is exact. Thus it is a resolution of N by free F-modules of finite type. Let
Lf = Homs(L„ B). Then Lf = Lf ®A k = Hom^L,, B). Since Ext^Â7, B)
= 0 by assumption, we see that

{(L) ®A k}*: 0 -* Hom^A7, B)-*L~Z-+Lf^ £*

is exact. Consider now the complex

(L*): 0 -* Hom^A^, B)-* L$ ̂ > Lf ^> L$.

Obviously (L*) is exact at HomB(N, B) and L$. Consider

/: CokerfFo" -*• Lf ] -» L^.

Then / ®¿ ¿ is injective, since ((F) ®^ ¿}* is exact. Hence by the Lemma
we conclude that/is injective with .4-flat cokernel. Since L* is A -flat, we see
that Coker[Lo* -» Lf] is also A-ñaX. Since L¿* and Lf are yl-flat, we conclude
that HomB(N, B) is ,4-flat.

Remark 3. We apply this corollary when B is A-Rat and B = B ®A k is a
local ring of a reduced curve with at most ordinary double points. Moreover,
N = N ®A k is /3-torsion-free and of rank one on each component, i.e. N is
either B or the maximal ideal of B. In this case, we see immediately that
Extj^JV, B) = 0.
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