
Compaction Algorithms for Non-Convex Polygons 

and Their Applications

Citation
Li, Zhenyu. 1994. Compaction Algorithms for Non-Convex Polygons and Their Applications. 
Harvard Computer Science Group Technical Report TR-15-94.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25619464

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25619464
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Compaction%20Algorithms%20for%20Non-Convex%20Polygons%20and%20Their%20Applications&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


Compaction Algorithms for

Non-Convex Polygons and

Their Applications

A thesis presented

by

Zhenyu Li

to

The Division of Applied Sciences

in partial ful�llment of the requirement for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May, 1994



c
 1994 by Zhenyu Li

All rights reserved.



Contents

List of Figures 6

1 Introduction 11

1.1 Automated Marker Making : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

1.1.1 Cutting and Packing Problems : : : : : : : : : : : : : : : : : : : : : 11

1.1.2 Two-dimensional Packing and Marker Making : : : : : : : : : : : : : 12

1.1.3 Project Background : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.1.4 Problem Representation for Marker Making : : : : : : : : : : : : : : 15

1.2 Compaction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.2.1 Description and Examples : : : : : : : : : : : : : : : : : : : : : : : : 17

1.2.2 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.2.3 De�nitions and a Lower Bound : : : : : : : : : : : : : : : : : : : : : 19

1.2.4 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

1.3 Contribution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

1.3.1 A Position-Based Optimization Model : : : : : : : : : : : : : : : : : 25

1.3.2 A Velocity-Based Optimization Model : : : : : : : : : : : : : : : : : 27

1.3.3 Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

1.4 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2 Compaction Using a Velocity-Based Optimization Model 30

2.1 High Level Description of the Compaction Algorithm : : : : : : : : : : : : : 30

2.2 Collision Detection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.2.1 Collision Detection For Two Translating Polygons : : : : : : : : : : 32

2.2.2 A Collision Detection Algorithm : : : : : : : : : : : : : : : : : : : : 33

2.3 Finding Vertex-edge Touching Pairs : : : : : : : : : : : : : : : : : : : : : : 35

2.3.1 Type of Contact : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.3.2 A Simple Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.3.3 A Sweepline Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.3.4 An Alternative Algorithm : : : : : : : : : : : : : : : : : : : : : : : : 37

2.4 Non-penetration Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : 37

2.5 Bounds on the Velocities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

2.6 Non-Penetration Constraints for Vertex-Vertex Contacts : : : : : : : : : : : 39

2.7 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3



3 The Theory of Minkowski Sum and Di�erence 43

3.1 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

3.1.1 Polygon Intersection and Containment Problems : : : : : : : : : : : 44

3.1.2 Con�guration Space Approach : : : : : : : : : : : : : : : : : : : : : 45

3.2 De�nitions and Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

3.3 Applications: Intersection and Containment : : : : : : : : : : : : : : : : : : 49

3.3.1 Intersection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

3.3.2 Containment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

3.4 Algorithms for Computing Minkowski Sums : : : : : : : : : : : : : : : : : : 54

3.4.1 Convex Polygons : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.4.2 Simple Polygons : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.4.3 Starshaped Polygons : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.4.4 Monotone Polygons : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4 Compaction Using a Position-Based Optimization Model 59

4.1 The Theory of a Position-Based Optimization Model : : : : : : : : : : : : : 60

4.1.1 Non-Overlapping Conditions for Two Translating Polygons : : : : : 60

4.1.2 A Locality Heuristic : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

4.1.3 Linear Constraints with the Boundaries of the Container : : : : : : 63

4.1.4 The Position-based Compaction Algorithm : : : : : : : : : : : : : : 63

4.1.5 Running Time and Robustness : : : : : : : : : : : : : : : : : : : : : 65

4.2 Compaction Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

4.2.1 Leftward Compaction : : : : : : : : : : : : : : : : : : : : : : : : : : 66

4.2.2 Vector Compaction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

4.2.3 Bumping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

4.2.4 Gravity Compaction : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5 Separation of Overlapping Polygons and Database Driven Marker Mak-

ing 77

5.1 De�nition and Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5.2 Algorithm for Separating Overlapping Polygons : : : : : : : : : : : : : : : : 81

5.3 Layout Made Easy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

5.3.1 Database Driven Automated Marker Making : : : : : : : : : : : : : 84

5.3.2 Shape Matching Criteria : : : : : : : : : : : : : : : : : : : : : : : : : 85

5.3.3 An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

5.3.4 Cut Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

6 Compaction with Small Rotations 89

6.1 Rotational Compaction by Relaxation : : : : : : : : : : : : : : : : : : : : : 89

6.1.1 Translational Relaxation of a Single Polygon : : : : : : : : : : : : : 89

6.1.2 Rotational Compaction of a Single Polygon : : : : : : : : : : : : : : 91

6.1.3 Algorithm for Rotational Compaction Using Relaxation : : : : : : : 93

6.2 Rotational Compaction Using Linearization : : : : : : : : : : : : : : : : : : 93

6.2.1 Formulation for Translation Only Compaction : : : : : : : : : : : : 99

6.2.2 Other Vertex-Edge Supporting Pair : : : : : : : : : : : : : : : : : : 100

6.2.3 Linearization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

6.2.4 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

4



6.2.5 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

6.3 Comparison of the Two Rotational Compaction Methods : : : : : : : : : : 102

7 Floating 108

7.1 Distance Between Polygons : : : : : : : : : : : : : : : : : : : : : : : : : : : 110

7.2 Controlling the Distance Between Polygons : : : : : : : : : : : : : : : : : : 111

7.3 Linear Constraints for Floating : : : : : : : : : : : : : : : : : : : : : : : : : 112

7.4 Maximize the Minimum Distance Between Polygons : : : : : : : : : : : : : 113

7.5 Separating Polygons by a Speci�c Distance : : : : : : : : : : : : : : : : : : 113

7.6 Maximizing the Overall Distance between Polygons : : : : : : : : : : : : : : 114

7.7 \Uniform" Distribution of Free Areas : : : : : : : : : : : : : : : : : : : : : : 114

7.8 Maximize the Minimum Distance Between Polygons: An Alternative Method 116

7.9 Floating For Overlapped Layouts : : : : : : : : : : : : : : : : : : : : : : : : 117

8 Mixed Integer ProgrammingModel for Compaction and Two-Dimensional

Packing 120

8.1 Limitation of the Locality Heuristic : : : : : : : : : : : : : : : : : : : : : : : 120

8.2 MIP Formulation for Optimal Two-Dimensional Packing/Compaction : : : 124

8.2.1 Algorithms for Finding Convex Covering : : : : : : : : : : : : : : : : 129

8.3 MIP Formulation for Multiple Containment Problem : : : : : : : : : : : : : 130

9 The Complexity of the Compaction Problem 134

9.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

9.2 The PSPACE-Hardness of Compaction : : : : : : : : : : : : : : : : : : : : : 135

9.2.1 Review of the Warehouseman Problem : : : : : : : : : : : : : : : : : 136

9.2.2 PSPACE-hardness Proof : : : : : : : : : : : : : : : : : : : : : : : : : 137

9.3 Compaction in an Exponential Number of Moves : : : : : : : : : : : : : : : 139

9.4 Finding a Local Minimum Requires an Exponential Number of Moves : : : 141

10 Conclusion 145

A Vectors and Cross Products 149

Bibliography 152

5



List of Figures

1.1 A human generated pants marker in apparel manufacturing. : : : : : : : : : 14

1.2 Marker coordinate systems and points on the boundary of a piece. : : : : : 16

1.3 Another leftward compaction example. : : : : : : : : : : : : : : : : : : : : : 18

1.4 General compaction: minimizing the area of the bounding rectangle. : : : : 20

1.5 Strip compaction: minimizing the length of a �xed width bounding rectangle. 20

1.6 Reduction of strip compaction to general compaction. : : : : : : : : : : : : 21

1.7 Reduction of PARTITION to strip compaction. : : : : : : : : : : : : : : : : 22

2.1 An example of vertex-edge contact : : : : : : : : : : : : : : : : : : : : : : : 36

2.2 An example of vertex-vertex contact : : : : : : : : : : : : : : : : : : : : : : 36

2.3 (a) The vertex A of P touches the edge BC of Q. P moves with velocity u

and Q moves with velocity v. (b) The position of P and Q after time interval

�

t. 38

2.4 A vertex-edge supporting pair. : : : : : : : : : : : : : : : : : : : : : : : : : 40

3.1 The Minkowski sum for a circle and a square. : : : : : : : : : : : : : : : : : 47

3.2 The Minkowski sum and intersection detection. : : : : : : : : : : : : : : : : 50

3.3 Minkowski sum and non-overlapping placement. : : : : : : : : : : : : : : : : 51

3.4 The Minkowski di�erence and polygon containment problem. : : : : : : : : 53

3.5 The Minkowski sum of two starshaped polygons. : : : : : : : : : : : : : : : 55

4.1 The \nearest" convex region in the exterior of the Minkowski sum. : : : : : 62

4.2 An example of leftward compaction: input. : : : : : : : : : : : : : : : : : : 67

4.3 An example of leftward compaction: output. : : : : : : : : : : : : : : : : : : 67

4.4 The human generated pants marker in Figure 1.1 after leftward compaction. 68

4.5 Left: A human generated pants marker. Right:The human generated marker

after compaction. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

4.6 An example of vector compaction. : : : : : : : : : : : : : : : : : : : : : : : 71

4.7 An example of opening a gap. : : : : : : : : : : : : : : : : : : : : : : : : : : 72

4.8 An example of gravity compaction. : : : : : : : : : : : : : : : : : : : : : : : 76

5.1 Reduction of PARTITION to separation of overlapping polygons. : : : : : : 78

5.2 Minkowski sum of two slightly overlapped polygons. : : : : : : : : : : : : : 81

5.3 Marker generated by matching and substitution. : : : : : : : : : : : : : : : 88

5.4 Marker after elimination of overlaps and leftward compaction. Length =

312.64 in, e�ciency = 88.98% : : : : : : : : : : : : : : : : : : : : : : : : : 88

6



5.5 Marker after adjustment on 3 small polygons. Length = 310.87 in, e�ciency

= 89.48% : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

5.6 The corresponding marker generated by a human. Length = 308.61, e�ciency

= 90.14% : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

6.1 An example of translational relaxation for polygon 12. : : : : : : : : : : : : 92

6.2 An example of rotational relaxation for polygon 12. : : : : : : : : : : : : : : 94

6.3 An example of rotational compaction using relaxation: a human generated

marker and the result rotational compaction using relaxation. : : : : : : : : 95

6.4 An example of rotational compaction using relaxation (continued): the com-

parison with translational only compaction on the same marker. : : : : : : 96

6.5 A single iteration of rotational compaction using linearization. : : : : : : : : 103

6.6 The �nal result of rotational compaction using linearization after successive

iterations. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

6.7 An example of rotational compaction using linearization: a human generated

marker and the result of rotational compaction using linearization. : : : : : 105

6.8 An example of rotational compaction using linearization (continued): the

comparison with translational only compaction on the same marker. : : : : 106

7.1 An example of oating : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

7.2 C(d) | the convex set obtained by translating the boundary lines of C by a

distance of d : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

7.3 The translated convex set for slightly overlapped polygons : : : : : : : : : : 119

8.1 The limitation of the locality heuristic : : : : : : : : : : : : : : : : : : : : : 122

8.2 Reduction of PARTITION to selecting the right combination of convex subsets.123

8.3 Successful selection of the right combination of convex subsets solves PAR-

TITION. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

8.4 Length cannot be shortened without exchanging the positions of the polygons 128

8.5 Example of �nding optimal compaction using MIP formulation : : : : : : : 129

8.6 Correctness of the convex covering algorithm. : : : : : : : : : : : : : : : : : 131

8.7 Quadratic running time of the convex covering algorithm. : : : : : : : : : : 131

8.8 Example of trim placement using multiple containment algorithm. : : : : : 133

9.1 The reduction of warehouseman problem from the symbol transposition prob-

lem. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135

9.2 The construction of a domino. : : : : : : : : : : : : : : : : : : : : : : : : : : 137

9.3 The reduction of compaction from the symbol transposition problem through

the reduction of the warehouseman problem. : : : : : : : : : : : : : : : : : 138

9.4 Construction and the initial state of a block puzzle. : : : : : : : : : : : : : : 139

9.5 (a) The �nal state. (b) A dead-end situation. : : : : : : : : : : : : : : : : : 140

9.6 The construction of a motion propagation device. : : : : : : : : : : : : : : : 144

9.7 The replication and concatenation of the motion propagation device. : : : : 144

A.1 De�nition of vectors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

A.2 The geometric interpretation of cross product : : : : : : : : : : : : : : : : : 150

7



Abstract

Given a two-dimensional, non-overlapping layout of convex and non-convex polygons,

compaction refers to a simultaneous motion of the polygons that generates a more densely

packed layout. In industrial two-dimensional packing applications, compaction can improve

the material utilization of already tightly packed layouts. E�cient algorithms for compact-

ing a layout of non-convex polygons are not previously known.

This dissertation o�ers the �rst systematic study of compaction of non-convex polygons.

We start by formalizing the compaction problem as that of planning a motion that minimizes

some linear objective function of the positions. Based on this formalization, we study the

complexity of compaction and show it to be PSPACE-hard.

The major contribution of this dissertation is a position-based optimization model that

allows us to calculate directly new polygon positions that constitute a locally optimum

solution of the objective via linear programming. This model yields the �rst practically

e�cient algorithm for translational compaction{compaction in which the polygons can only

translate. This compaction algorithm runs in almost real time and improves the material

utilization of production quality human-generated layouts from the apparel industry.

Several algorithms are derived directly from the position-based optimization model to

solve related problems arising from manual or automatic layout generation. In particular,

the model yields an algorithm for separating overlapping polygons using a minimal amount

of motion. This separation algorithm together with a database of human-generated markers

can automatically generate markers that approach human performance.

Additionally, we provide several extensions to the position-based optimization model.

These extensions enables the model to handle small rotations, to o�er exible control of

the distances between polygons and to �nd optimal solution to two-dimensional packing of

non-convex polygons.

This dissertation also includes a compaction algorithm based on existing physical sim-

ulation approaches. Although our experimental results showed that it is not practical for

compacting tightly packed layouts, this algorithm is of interest because it shows that the

simulation can speed up signi�cantly if we use geometrical constraints to replace physical

constraints. It also reveals the inherent limitations of physical simulation algorithms in

compacting tightly packed layouts.

Most of the algorithms presented in this dissertation have been implemented on a SUN

SparcStation

TM

and have been included in a software package licensed to a CAD company.

8



Acknowledgement

This thesis is the product of my work on the automated marker making project at Harvard

University. I would like to thank the Alfred P. Sloan Foundation and the Textile/Clothing

Technology Corporation for funding the project.

I am much indebted to my thesis advisor Professor Victor Milenkovic of Harvard Uni-

versity for the huge amount of e�ort he spent in guiding my research. He is always there to

share his quick wit, to clarify and enhance my thinking and to spark new ideas. Without

his timely guidance, this thesis would not have been completed. His engineering savvy and

active leadership in the marker making project is indispensable for the successful imple-

mentation of the compaction algorithms presented in this thesis. This whole thesis can be

considered joint work with him. I thank him for being a guru in almost every aspect.

Many thanks to Professor Fred Abernathy { the principal investigator of a project of

which the marker making project is a part. I thank him for his encouragement, for o�ering

his insight on textile and apparel industry and for enlightening and enjoyable conversations.

Many thanks to Professor Harry Lewis and Professor Les Valiant for serving in my

program committee and for their interests in my thesis work.

Special thanks to Karen Daniels for being a wonderful o�cemate and a great \teammate"

on the marker making project. We have shared the learning process of several courses and

had fruitful cooperations on the marker making project. Her careful reading and criticism

of my writings have been extremely helpful.

Thanks to Professor Leonidias Guibas for his illuminating computational geometry class

at MIT; to Dr. Richard Szeleski of DEC Cambridge Research Laboratory for helpful discus-

sions and for drawing our attention to the physically based simulation method; to Murray

Daniels (Karen's husband) of MITRE Corporation for providing user interface software and

for his generous help in customizing the software; to Binhai Zhu of McGill University for

interesting discussions about computational geometry and a joint work.

I would also like to thank the undergraduate students who have worked on geometric

algorithms under the supervision of Professor Milenkovic; most of them have made direct

contributions to the marker making project: Rajarshi Bhattacharyya, Jackie Chang, Shiv-

ashish Chatterjee, Sanjoy Dasgupta, Jacqueline Huang, Matt LaMantia, Sanjay Madan,

Kirat Singh, Venkatesh Reddy, and Lee Wexler. I would especially mention Sanjay Madan.

He started working on the marker project in June 1993 and worked directly on the com-

paction software. He helped to reorganize the compaction software and to implement new

9



compaction functions.

I thank my fellow graduate students at Aiken Computation Laboratory for making it

an interesting place to work. Thanks also to Carol Harlow and Baiba Menke for providing

administrative assistance; to the computer system support sta�s at Aiken for managing our

project machines and for answering system related questions.

Lastly, I thank my wife for her understanding, support and love.

10



Chapter 1

Introduction

1.1 Automated Marker Making

1.1.1 Cutting and Packing Problems

In the past thirty years, a class of problems, categorized as Cutting and Packing problems

[DD92] [Dyc89] [SP92b], have been topics of extensive study in both operations research

and computer science because of their extremely wide application areas and their great

theoretical challenge. Some of the well-known packing problems in the class include:

One-dimensional Bin Packing The problem of putting variable sized items (the sizes

are represented as integers) into bins of the same capacity and minimizing the number

of bins used, subject to the condition that the total size in each bin does not exceed

the capacity [ECL91].

Cutting Stock An extension of the one-dimensional bin packing problem. Instead of

having the same capacity, the bins have k di�erent capacities, where k is �xed. There

are unlimited supplies of bins for each capacity. Bins of the same capacity are assigned

the same cost. The objective is to minimize the total cost while packing the items

into these di�erent sized bins [GG61] [GG63]. This problem is also called variable

sized bin packing when the cost of a bin is proportional to its capacity [Mur87].

Two-dimensional Bin Packing The problem of packing a set of rectangles of di�erent

height and width into rectangular bins such that the rectangles do not overlap with

each other. The bins are of the same width and height. Usually, there are additional

restrictions on the orientation of the rectangles, such as the edges of a rectangle must

11



be parallel to those of the bin that contains it and no rotation of a rectangle is allowed.

The objective is to use the minimal number of bins to pack all the rectangles [CMD82].

A variation of the problem is called strip packing : instead of using many bins of the

same size, a bin of �xed width and unlimited length is used and the objective is to

pack all the rectangles using minimum length [BECR80] [ECS90].

Two-dimensional Packing Generalizations of two-dimensional bin packing in which the

objects being packed can be non-rectangular and the restrictions on orientation can

also be lifted.

It is well-known that the one-dimensional bin packing problem is NP-complete [GJ79].

The NP-hardness of the other packing problems can be shown by a reduction to the one-

dimensional bin packing problem. The two-dimensional packing problems in which objects

are not allowed to rotate can be shown to be in NP (and therefore NP-complete) by an

argument similar to the one used in [MDL91]. In spite of the extensive research e�orts

devoted to these problems, most of the problems still lack solutions that are satisfactory in

practice { a fact that demonstrates the inherent di�culty of the problems.

Another interesting Cutting and Packing problem is that of packing the maximum num-

ber of copies of a single item. Typically, the material and the item are both rectangles, and

only one orientation is allowed. There are variations involving non-rectangular material

or item and multiple orientations [Gar79]. Closely related to this problem is the covering

problem: what is the minimum number of copies needed to cover the sheet of material

[CKSS81]? The tiling problem [G

�

79] is a combination of packing and covering: cover the

whole plane with non-overlapping copies of a single item (or a few items).

1.1.2 Two-dimensional Packing and Marker Making

Problems of packing non-rectangular polygonal objects onto a rectangular strip of ma-

terial are of central importance to the sheet metal, ship building, furniture, leather and

textile industries. These problems are also known as polygon nesting or layout problems.

The non-rectangular polygonal objects to be packed are also referred to as irregular shapes

in the operations research literature. The objects represent pieces to be cut from a sheet of

material. The output produced by a two-dimensional packing algorithm is called a layout .

In apparel manufacturing, the process of strip packing a set of polygons, which corre-

spond to garment pieces, on a roll of cloth of �xed width but unlimited length is called

marker making . The layout generated by the process is called a marker . In practice, a

12



marker is not the optimal strip packing but one of near minimum length. The shapes of

garment pieces are mostly non-rectangular as depicted in Figure 1.1.

The material utilization, or the e�ciency , of a marker is the ratio of the area occupied

by the garment pieces to the area of the strip of cloth. A source in the textile industry

estimates that about 90 percent of the cost in apparel manufacturing is due to the cost of

material. Therefore, the e�ciency is considered the most important factor in judging the

quality of a marker.

Currently, marker making is done by experienced human marker makers with the assis-

tance of interactive CAD systems. One of the easiest types of markers to generate is the

pants marker. But even for this type of garment, a human marker maker needs about a half

year of training before he/she can generate markers of acceptable e�ciency. In about 45

minutes, an experienced human marker maker can generate a pants marker with e�ciency

of around 90 percent , which is estimated to be within 1 percent of the optimal. The marker

shown in Figure 1.1 is generated by a human marker maker. Current automated marker

making systems fall short of human performance by 5 to 10 percent in marker e�ciency for

pants markers.

1.1.3 Project Background

The results presented in this thesis are developed from the automated marker making

project supervised by Professor V. Milenkovic at Harvard University. The goal of the project

is to match human performance on pants markers.

Because of the di�culty of the general two-dimensional strip packing problem embodied

in automated marker making, it is necessary to �rst concentrate on a relatively simple

domain such as pants. Pants markers are chosen as the target because their pieces can

be easily classi�ed by size and the art of making high e�ciency pants markers has been

mastered by experienced human marker makers whose knowledge can provide valuable

heuristics on algorithm design. It is hoped that the techniques developed in this project

can be carried over to other domains such as jacket markers or blouse markers and other

industries such as sheet metal and ship building.

In pants markers, there is a clear distinction between large pieces which are called panels

and small pieces which are called trim pieces . As can be seen from Figure 1.1, the panels

are the front and back pieces and the trim pieces are waist bands, packet facings, belt-loops,

etc. From observing the marker making procedure of the best human marker makers, we

13



Name:
Width:
Length:
Pieces:
Efficiency:

45725a
59.75 in
321.88 in
126

90.62%

F

i

g

u

r

e

1

.

1

:

A

h

u

m

a

n

g

e

n

e

r

a

t

e

d

p

a

n

t

s

m

a

r

k

e

r

i

n

a

p

p

a

r

e

l

m

a

n

u

f

a

c

t

u

r

i

n

g

.

1

4



discovered that the task of making pants markers is clearly divided into two steps: �rst

place all the large panels and then place all the trim pieces in the \gaps" { the unoccupied

areas left over between the large panels or between a large panel and the boundaries of

the marker. Consequently, our project decomposes the placement task into two parts: the

placement of large panels and the placement of the trim pieces.

In addition to panel and trim placement, a third part of our project focuses on solving

a di�erent problem which we call the compaction problem. Compaction takes a human or

machine generated layout as input and generates a more e�cient layout by simultaneous

motion of the polygons. Our goal is to �nd practical algorithms for compaction. The results

presented in this thesis are obtained from my work on the compaction part of the project.

1.1.4 Problem Representation for Marker Making

In marker making, the garment pieces are represented by polygons which are digitized

from the garment patterns drawn by human pattern designers. In the rest of the thesis,

we will use the terms piece and polygon interchangeably. The vertices of a polygon are the

sample points on the boundary of a pattern, and each pair of vertices is connected by an

edge (i.e. a straight line segment). There are more vertices and shorter edges in regions

of higher curvature, and fewer vertices and longer edges in regions of lower curvature. In

Figure 1.2, we identify the vertices in the upper left part of a pattern piece (piece 0) with

small dots. There is a local coordinate system attached to each piece. The origin of the local

coordinate system is usually �xed at the center of the bounding box of the piece: the smallest

rectangle containing the piece with sides parallel to the coordinate axes. The coordinates of

the vertices are speci�ed in the local coordinate system. The position of piece in the marker

is given with respect to a global coordinate system. The origin of the global coordinate

system corresponds to the lower left corner of the rectangular sheet of cloth on which the

pieces should be laid. The placement of the pieces is restricted to a horizontal rectangular

strip in the �rst quadrant of the global coordinate system. The strip which represents a roll

of cloth will be called the marker region

The marker region is bounded from the left by the y axis and is open on the right.

After the panel placement phase, the uncovered regions remaining in the marker region are

broken into a set of connected components [DM94]. We use the term gaps to refer to these

components in trim placement and compaction. Gaps are represented as polygons.

The rules of marker making sometimes permit a piece to change its orientation by

15



0

1

2

3

4

5

6 x

y
global  coordinate system

local  coordinate system

Figure 1.2: Marker coordinate systems and points on the boundary of a piece.

rotating and/or ipping in the local coordinate system. A basic rotation amount is speci�ed

for each piece. The amount is usually 45, 90 or 180 degrees. A piece can be rotated by

a multiple of its basic rotation amount about its local origin. In addition to multiples

of its basic rotation amount, a piece can also rotate by some small amount called tilt

which is usually less than 3 degrees but can be as large as 7 or 8 degrees depending on

the individual apparel manufacturer. In the sample production markers we have from a

large pants manufacturer, more than 80 percent of the pants markers contain tilted pieces.

Flipping of a piece is done with respect to the local x axis.

16



1.2 Compaction

1.2.1 Description and Examples

The central topic of this thesis is compaction. Informally, compaction can be thought

of as the action of squeezing out the extra free spaces in an existing layout to produce a

shorter layout and hence a tighter packing of the polygons. Suppose we view the pieces as

rigid bodies and imagine that we could apply forces on them. Then we can make a tighter

packing by pushing the right boundary of a marker to the left to shorten its length.

The analogy of compaction using rigid bodies and forces naturally leads to the formu-

lation of compaction as planning a continuous motion for the polygons to minimize an

objective \energy" function. Usually, the objective function is the area of the strip of ma-

terial used by the layout which is equivalent to the length of the strip since its width is

�xed. In this formulation, ipping a polygon or rotating it by its basic rotation amount

(usually 90 or 180 degrees) are not allowed since they are not continuous motions. On the

other hand, continuous motions such as translation and tilting a piece within its tilt limits

are permitted.

Figure 1.3 shows an example of compaction. A human generated jacket marker is shown

on the left. The compacted marker is shown on the right. The marker e�ciency has been

improved by more than 3 percent after compaction. In this example, polygons are allowed

to translate and tilt.

1.2.2 Motivation

A marker acts as a cutting plan for a human or robotic cloth cutter. Usually, many

layers are cut at the same time; also, the same marker may be used many times as a cutting

plan. It follows that even a small percentage increase in e�ciency for a marker results in a

large savings in material. For pants manufacturing, each time a marker is used, sixty layers

of cloth are cut at the same time, and a 1 percent increase in e�ciency represents a savings

of about $25. A representative of a large pants manufacturer estimates that a 0.1 percent

average improvement in e�ciency will save his company about two million dollars per year.

Compaction proves to be an extremely hard task for humans. Production quality mark-

ers are packed very tightly: every piece is touching its surrounding pieces, so there is no

room for moving only one piece. Thus, moving one piece at a time can not shorten the

marker length. We can verify this fact by the following strategy. First, order the pieces

17



Name:
Width:
Length:
Pieces:
Efficiency:

24306f−1x
46.00 in
234.44 in

71.39%
96

Name:
Width:
Length:
Pieces:
Efficiency:

24306f−1x−re
46.00 in
224.09 in

74.69%
96

F

i

g

u

r

e

1

.

3

:

A

n

o

t

h

e

r

l

e

f

t

w

a

r

d

c

o

m

p

a

c

t

i

o

n

e

x

a

m

p

l

e

.

L

e

f

t

:

A

h

u

m

a

n

g

e

n

e

r

a

t

e

d

j

a

c

k

e

t

m

a

r

k

e

r

.

R

i

g

h

t

:

T

h

e

m

a

r

k

e

r

a

f

t

e

r

l

e

f

t

w

a

r

d

c

o

m

p

a

c

t

i

o

n

.

1

8



from left to right according to the left boundary of the bounding box of each piece. Next,

visit the pieces sequentially according this order, and move each piece as far to the left as

possible without overlapping other pieces.

1

Most of the production markers we tested using

this strategy did not show improvements in e�ciency.

Therefore, the ability to move many pieces at the same time is essential to compaction.

However, it is beyond the capability of human marker makers to handle the simultaneous

motion of many, possibly hundreds of pieces

2

. This gives rise to the demand for e�cient

computer algorithms for compaction. In addition to the direct bene�t of cost savings,

compaction algorithms can also facilitate manual or automated marker making.

1.2.3 De�nitions and a Lower Bound

In this section, we give a de�nition of compaction and show a preliminary hardness

result that compaction is NP-hard. The proof is simple and easy to understand. We use

the result here just to illustrate the di�culty of the problem. We will return to the same

topic in Chapter 9 where we show that the problem is PSPACE-hard.

We de�ne the compaction problem as a two-dimensional coordinated motion planning

problem for a set of objects such that the area of the bounding convex hull or the bounding

rectangle of the objects is minimized (see Figure 1.4). We consider only the case where

the objects are rigid bodies and are represented as polygons. A translational compaction

problem is a compaction problem in which the polygons are only allowed to translate. A

rotational compaction problem is a compaction problem in which the polygons are allowed

to translate and rotate. In contrast with the strip compaction problem de�ned in the next

paragraph, we will refer the compaction problem de�ned in this paragraph as the general

compaction problem.

Since our interest in studying compaction arises from strip packing applications (specif-

ically, marker making) in which the motion of the objects is restricted to a strip of �xed

width and arbitrary length, we de�ne strip compaction to be a special form of the com-

paction in which the motion of all the polygons is con�ned to a bounding rectangle whose

top, left and bottom sides are �xed and whose right side can move freely. The goal is to

minimize the length of the bounding rectangle (see Figure 1.5).

As far as the complexity of motion planning is concerned, it is easy to show that general

compaction is at least as hard as the strip compaction. We prove this fact by the reduction

1

In Chapter 4, we will show how to implement this strategy.

2

Some markers we have successfully compacted contain more than 400 pieces

19



Figure 1.4: General compaction: minimizing the area of the bounding rectangle.

Figure 1.5: Strip compaction: minimizing the length of a �xed width bounding rectangle.

20



Figure 1.6: Reduction of strip compaction to general compaction.

21



Figure 1.7: Reduction of PARTITION to strip compaction.

of strip compaction to general compaction shown in Figure 1.6. Given a set of polygons

as an input to strip compaction, we make it an input to general compaction by adding a

rectilinear \container" polygon and a \piston" polygon that jointly enclose the original set

of polygons. The piston polygon can slide horizontally but has no vertical freedom. It is

clear that the strip compaction problem has a minimum length if and only if the general

compaction problem has a minimum area bounding box or bounding convex hull.

Therefore, a lower bound for strip compaction naturally establishes a lower bound for

general compaction. Next, we show strip compaction is NP-hard.

Theorem 1.1 The strip compaction problem is NP-hard even when all the polygons are

rectangles and can only translate.

Proof: We reduce the NP-hard PARTITION problem to strip compaction. The PARTI-

TION problem is de�ned as follows: Given a set S of integers, decide if S can be partitioned

into two subsets S

1

and S

2

such that the sum of the elements of S

1

equals the sum of the

elements of S

2

. We reduce PARTITION to compaction by the construction shown in Fig-

ure 1.7. For an instance fa

1

; a

2

; : : : ; a

n

g of PARTITION, we build rectangles of height 1 and

length a

i

, (i = 1; : : : ; n). We put the rectangles into a container of height 2. PARTITION

has a solution if and only if the blocks can be compacted to the length

P

a

i

=2. 2

In the rest of the thesis, we will refer the strip compaction problem as the compaction

problem or simply compaction.

1.2.4 Related Work

As far as we know, no e�cient algorithm has been previously published on how to

compact non-convex polygons (see [SP92a] for a survey of current results). In industry,

several CAD �rms have tried some \one piece at a time" methods, which are not successful

in practice.

22



VLSI Design

Previous research e�orts in compaction are largely concentrated in the �eld of VLSI de-

sign [AKS90] [Len84] [Map90] [MFS87] [SSVS86] [Won85] [Mal90]. The idea of compacting

a VLSI circuit layout is quite natural since it allows more transistors to be packed in the

same area.

The layout problems in VLSI design are generally quite di�erent from polygon nesting

problems. The basic objects in a VLSI layout are rectangles, which represent gates, and

variable-length rectilinear

3

wires that link the gates. There are minimum separation condi-

tions imposed on the location of the rectangles. For example, one such condition might be

that the lower boundary of a rectangle be three distance units above the upper boundary

of another rectangle.

Finding the minimum area compaction for a VLSI layout is NP-complete. The general

compaction problem is usually decomposed into two one-dimensional problems in the x

and y direction in which rectangles can only slide horizontally or vertically. By exploiting

the special forms of the inequalities which express the constraints (each inequality has

two variables), one-dimensional compaction can be reduced to calculating the longest (or

shortest) path in a constraint graph [Len84] [Won85]. In [AKS90], a sweepline type of

algorithm to solve the one-dimensional compaction of layout consists of only rectangles

(i.e. no wires). Other techniques include simulated annealing [MFS87] and \zone-re�ning"

[SSVS86] { a technique which simulates the crystal re�nement process.

The above mentioned techniques depend on the simple shape (rectangular or rectilinear)

of the objects in order to build constraints on the relative positions of the objects. Most of

them cannot make further improvement to a layout in which the left and right boundaries of

the rectangles are touching or have met the minimum separation condition. We found that

the techniques are not readily extendible to non-rectangles and not capable of squeezing

out the last few fractions of a percent of material waste in an already tightly packed layout.

Physically Based Simulation

Physically based simulation methods provide a plausible approach to compaction. These

methods simulate the pieces as rigid bodies and apply a set of forces to move the bodies in

the desired direction. A local minimum is reached when the bodies cannot be moved further.

3

Rectilinear means that the edges are parallel to the coordinate axes. Sometimes the term orthogonal is

used instead.

23



These simulation methods fall into two types: spring model and contact force model. The

di�culty we have found with physically based simulation methods is that these algorithms

run very slowly.

Spring model methods (also called penalty methods) [MW88] [PB88] allow the pieces to

inter-penetrate slightly. A restoring force is determined by the amount of inter-penetration.

From these forces, the motion of the pieces is computed by numerical integration. This

integration is carried out by cutting time into steps. Small steps are required to ensure

accuracy and numerical stability of the integration; however, small steps means many steps

and greater computational cost. Furthermore, strongly enforcing the non-overlapping con-

dition implies a strong restoring force, and stronger forces require smaller steps. It is

generally very di�cult to choose an acceptable step size, especially when many di�erent

forces are involved. Layout compaction involves hundreds of frequently changing contacts,

each change of contact requires a new numerical integration, and each numerical integration

requires many steps. Hence, under the spring model, solving a compaction problem requires

many steps and a long running time. Due to its long running time, the spring model is not

suitable for compaction.

Contact force model methods (also called analytical methods) [Bar89] [BB88] have been

recently studied in computer graphics. Contact forces are introduced at contact points

to prevent inter-penetration. A system of di�erential equations is solved to �nd a set of

consistent contact forces. The bodies then move with constant velocities in accordance with

the contact forces. A collision detection algorithm is used to �nd the time interval until

the next collision occurs. The simulation proceeds from time interval to time interval until

the local minimum is reached. Contact force methods have the advantage that the time

intervals are much larger and more easily determined than the time steps of the spring model

methods. However, there still are di�culties. Solving the system of di�erential equations

for determining the contact forces is time-consuming for problems of non-trivial size.

Even setting these di�culties aside, our experience shows that in the case of many

contacts the local minimum is reached only after many time intervals because the pieces

tend to \rattle" against each other.

Another problem of contact force method is that it is NP-hard to resolve vertex-vertex

contacts. Basically, the problem is that when two vertices from two polygons are in contact,

one has to choose which way the vertices \pass" each other. Does one go to the other's

left or right? There are situations where the polygons are \locked" with each other. We

24



can show that it is NP-hard to determine if there is a simultaneous choice of motion for

each pair of vertices that \unlock" the layout. This problem persists for the velocity and

position based compaction algorithm we developed in this thesis. However, the occurrence

of a locked layout is extremely rare and we believe it does not have much impact in practice.

Robot Motion Planning

In the area of robot motion planning, research has been concentrated on how to plan the

motion of a single object in an environment consisting of polygonal or polyhedral obstacles, a

problem referred to as the generalized movers' problem [Rei79] [Rei87] [SS90]. The problem

is shown to be PSPACE-hard by John Reif [Rei79] [Rei87] and the current best algorithm

for it is that of Canny which runs in single exponential time [Can87].

The research on planning simultaneous motion of many objects has been limited to a

few negative results. The best known of them is the PSPACE-hardness result obtained by

Hopcroft, Schwartz and Sharir on the Warehouseman's problem. The result states that

planning the coordinated motion for a set of rectangles inside a rectangular container is

PSPACE-hard.

However, the techniques developed in the context of single object motion planning,

especially the con�guration space approach [LPW79], prove to be extremely useful in com-

paction. For planning the motion of a polyhedron in three dimensions, the con�guration

space is the six-dimensional space of all the possible values for the three positional pa-

rameters and the three rotational parameters. The con�guration space is partitioned into

connected components classi�ed as free space or forbidden regions . Each point in a free

space gives a con�guration (position and orientation) of the polyhedron which is clear of

obstacles. The boundaries between free spaces and forbidden regions are generally high

degree algebraic surface patches. However, if the polyhedron is only allowed to translate

and the environment consisting of only polyhedral obstacles, then the boundaries of free

spaces are polyhedral surfaces.

1.3 Contribution

1.3.1 A Position-Based Optimization Model

The main contribution of this thesis is the �rst fast and practical algorithm for com-

pacting a layout consisting of non-convex polygons. The algorithm has been implemented

25



and tested on production quality human generated markers. Our experiments show that

even though production quality markers are very tightly packed, almost all of them can be

improved in e�ciency by our compaction algorithm. The algorithm runs in almost real time

in practice. Thus, it solves industrially signi�cant problems and �lls a gap in the research

of compaction algorithms.

The key to the algorithm is a position-based optimization model which is essentially a

linear programming formulation of coordinated motion planning of many translating objects

under a set of \forces". These forces are de�ned by a potential function on the positions

of the objects. The model is based on the con�guration space approach [LPW79] in robot

motion planning and a new locality heuristic. The locality heuristic enables us to �nd a

maximal convex subset of the free space and makes the direct calculation of positions of the

polygons possible via linear programming.

The position-based optimization model is highly exible. Various types of layout tasks

can be accomplished by specifying appropriate forces applied on the polygons and by adding

and/or modifying constraints. For example, to solve the compaction problem itself, we can

add an imaginary \piston" piece on the right of the layout and specify a leftward force

applied to the piston piece. In the trim placement phase, we often need to enlarge a gap

in order to put more pieces or larger pieces in the gap. Such a task can be accomplished

by specifying forces that push away the pieces surrounding a gap. Other tasks, such as

simulating objects in a gravitational �eld, �xing some polygons while allowing others to

translate or even eliminating the overlap among the pieces in a marker, can be accomplished

directly by applying the optimization model.

It is interesting to notice that the position-based model is capable of eliminating overlaps

in a marker. This is because the slack variables for each non-overlapping constraint in our

model exactly correspond to the amount of overlap between pairs of polygons. We realized

that we could extend the model by making these variables explicit in the constraints and

adding them to the original objective of our model. The extended position-based model

can eliminate overlaps, apply forces, and even oat pieces away from each other (negative

overlap) in any desired combination.

The overlap-elimination algorithm has been applied in database driven automatedmarker

generation. The underlying idea is to collect high quality markers generated by experienced

human marker makers into a database. When a new marker making order comes in, we

search the database for a similar marker. Then we match the pieces and do a piecewise

26



substitution of the corresponding pieces. The substitution process will inevitably introduce

overlaps. By applying separation and leftward compaction, we can generate a marker of

su�cient quality automatically. A CAD company in the textile industry is now vigorously

pursuing the database driven automated marker making idea.

We have studied several other extensions to the position-based optimization model.

We o�er two methods, relaxation and linearization, to extend the model to handle small

rotations (tilts). These methods are the �rst known attempts for solving the rotational

compaction problem. In another extension, we replace the linear programing formulation

used in the model with a mixed integer programming (MIP) formulation. We use the MIP

formulation to �nd the optimal solution of the two-dimensional strip packing problem and

to solve the multiple containment problem, the problem of placing non-convex polygons in

a non-convex container.

1.3.2 A Velocity-Based Optimization Model

Another contribution of this thesis is a velocity-based model for performing compaction

tasks. This model is more in line with the physically based simulation methods using con-

tact forces. However, by removing the concepts of mass and force and directly computing

velocities, this model yields a new, more e�cient, time-interval-based simulation technique

for translational compaction. We had expected that direct computation of velocities would

allow our algorithm to solve the compaction problem in a reasonable amount of time. Unfor-

tunately, when compacting tightly packed layouts, our simulation method runs two orders

of magnitude slower than the the compaction algorithm derived from the position-based

model. Even though our new, velocity-based simulation techniques reduced the running

time by at least an order of magnitude over previous physical simulation methods, the al-

gorithm still took hours to run on typical markers on a 28MIPS workstation because of the

number of times it had to recompute velocities. This can be viewed as a important negative

result that demonstrates the inherent limitation of the physically based approach.

Nevertheless, our velocity-based model provides an interesting alternative to the current

physically based simulation methods. For example, formulating the non-penetration con-

straints is quite involved in physically based simulation methods. In our method, however,

the non-penetration constraints are purely geometric and are very easy to set up. In ad-

dition, we have observed from experiments that our simulation method is quite e�cient in

bringing loosely packed layouts to a relatively tight status. We believe our method will give

27



better performance in the simulation applications, such as animation, for which obeying

physical laws is not essential.

Both the position-based and the velocity-based models apply to general polygonal shapes.

Therefore, the algorithms can be applied not only to markers of all types of garments but

also to polygon nesting problems in other industries.

1.3.3 Complexity

In this thesis, we also study the lower bound of the compaction problem. We show com-

paction to be PSPACE-hard by a reduction from the PSPACE-hard symbol transposition

problem through the well-known Warehouseman problem [HSS84]. In addition, we give the

�rst explicit constructions that show an exponential number of moves is necessary in the

worst case for the compaction problem. More speci�cally, we give two such constructions.

The �rst construction shows that an exponential number of moves is required even if the ob-

jects involved in compaction are as simple as rectangles and U-shaped objects. The second

construction is more contrived. But it shows that �nding a local minimum of compaction

using the compaction algorithm in Chapter 4 requires an exponential number of moves.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 presents a new, velocity-based compaction algorithm. This algorithm simpli-

�es the existing contact-force based physical simulation approach. The algorithm solves a

velocity-based optimization model to generate a set of velocities for the set of polygons in a

layout and then simulates motion until a new contact occurs. We discuss its long running

time for tightly packed markers and why that is an inherent drawback of physically based

methods.

Chapter 3 gives background knowledge about con�guration spaces Minkowski sums and

Minkowski di�erences, which play a central role in the position-based optimization model.

When planning the translational motion of a polygon in a environment consisting of a single

polygonal obstacle, the con�guration space can be obtained by calculating the Minkowski

sum of the polygon and the obstacle. We show that for certain classes of polygons (star-

shaped), the Minkowski sum can calculated very e�ciently. The position-based model can

be applied to non-star-shaped polygons by decomposing them into star-shaped polygons.

28



Chapter 4 develops the position-based optimization model which directly determines

new positions for the polygons. We then give several algorithms based on the model to

solve the compaction problem and perform some layout related tasks. As a result of the

direct calculation of positions, the algorithms based on the model do not use simulation nor

do the have time as an explicit parameter.

Chapter 5 de�nes the problem of separating overlapping polygons, studies its complexity,

and shows how the position-based model yields a separation algorithm that �nds a locally

optimal solution to this problem. We next demonstrate that by combining the separation

algorithm and a database of human generated markers, we can have an automated marker

making system that very quickly generates markers close to human performance.

Chapters 6, 7 and 8 contain extensions to the position-based optimization model. Chap-

ter 6 develops two rotational compaction algorithms. Chapter 7 introduces variables which

represent distances between polygons into the position-based model. We use these distance

variables to control the amount of overlaps between polygons or to oat polygons away from

each other. Chapter 8 introduces a mixed integer programming (MIP) formulation which re-

places the linear programming (LP) formulation in the original position-based model. Then

we show that the two-dimensional strip packing and the multiple containment problems can

be reduced to a mixed integer program through the MIP formulation.

Chapter 9 studies the complexity of the compaction problem. We show that compaction

is PSPACE-hard even for rectangles. We then give two explicit constructions to show that

coordinated motion planning in general and compaction in particular require an exponential

number of moves in the worst case.

Finally, Chapter 10 concludes the thesis by summarizing the results and discussing open

problems and directions for future work.

29



Chapter 2

Compaction Using a

Velocity-Based Optimization

Model

In this chapter, we give an optimization model for determining the velocities of rigid

bodies under a set of forces, and we use this model to create a velocity-based compaction al-

gorithm. Like the previously proposed physically based simulation methods (Section 1.2.4),

our algorithm uses time intervals to advance the simulation steps. However, by ignoring the

dynamic properties of the rigid bodies, our simulation method is simpler and faster than

the previous simulation algorithms using the contact force model.

2.1 High Level Description of the Compaction Algorithm

Let us for the moment view the polygonal pieces in a marker as frictionless rigid bodies

and simulate their motions within a rigid rectangular container. We see that compaction

can be performed by applying forces to the pieces in the desired directions. For example, to

shorten the length of a layout, we can add a \piston" piece on the current right boundary

of the layout and by assign a leftward force to the piston piece. Hence, it is quite natural

to apply physically based simulation methods for compaction.

As reviewed in Section 1.2.4, there are two basic approaches to physically based simula-

tion methods: the spring model and the contact force model. Spring model based methods

have numerical problems caused by the sti� di�erential equations associated with the spring

30



forces introduced between contact points. These methods are not seemed to be suitable to

our application. We will therefore concentrate on the contact force model.

In contact force based algorithms, the simulation process proceeds according to time

intervals. The control loop of a typical contact force based simulation algorithm consists of

three steps: (1) collision detection, (2) building non-penetration constraints and (3) solving

for a set of new motions. Let t

k�1

be the starting time of the current simulation step. A

contact force based simulation �rst calculates the next collision time t

k

using a collision

detection algorithm according to the current motions of the objects.

1

It then advances

the simulation to t

k

using the current motions. Next, a set of non-penetration constraints

are built for the objects that are in contact at t

k

. The constraints ensure that the new

motions calculated will not cause inter-penetration among the objects currently in contact.

The algorithm then concludes the current simulation step by updating the motions of the

objects with a set of new motions calculated from the non-penetration constraints. The end

time t

k

for the current simulation step becomes the starting time of the next step. The term

time interval refers to the time between two simulation steps, which is the time between

two consecutive collisions.

Our velocity-based algorithm uses the same general control loop as the contact force

based simulation algorithms for rigid bodies. However, we replace the contact force model

with a velocity-based optimization model which allows us to calculate velocities using lin-

ear programming. Our model is based on the observation that, for compacting a two-

dimensional layout, the most important property of the objects is rigidity. Rigidity ensures

that no inter-penetration can occur among the pieces. If translation is the only motion

allowed, then the rigidity condition for an object is that every point on the object has the

same velocity. As shall be shown later, the non-penetration condition for two touching

object can be expressed as a set of linear constraints on the velocities of the two objects.

These constraints plus an objective that maximize the velocities in the direction of the

forces comprise a velocity-based optimization model which replaces the Newtonian physics

based di�erential equation formulation to solve for a new set of velocities.

We now give the high level description of the velocity-based compaction algorithm, and

then supply several low level details in the following sections.

Step 1. (Initialization) The input is a layout consisting of N polygons and a constant

\force" f

i

, 1 � i � N , for each polygon. The forces represent the desired directions

1

The initial motion at t

0

might be simply a leftward motion of the \piston" piece.

31



we want the polygons to move. Assign a \velocity" variable v

i

= (v

ix

; v

iy

) to polygon

i, 1 � i � N . The magnitudes of the velocities of the movable polygons are bounded

by a constant c, that is, �c � v

ix

; v

iy

� c for 1 � i � N . Initially, each v

i

is set equal

to f

i

and scaled down to satisfy the magnitude constraint.

Step 2. Let the current time be t

k�1

. Find the next collision time t

k

using a collision

detection algorithm to be described later. Let

�

t = t

k

� t

k�1

be the time interval

between the current time and the next collision time. If Steps 3 and 4 have been

executed at least once and if

�

t is less than a prede�ned threshold, terminate the

algorithm. Otherwise, translate polygon i (1 � i � n) by

�

tv

i

and go to Step 3.

Step 3. Identify all the vertex-edge touching pairs at time t

k

. A vertex and an edge form

a vertex-edge touching pair if the vertex and the edge are from two di�erent polygons

and the vertex is incident on the edge.

For each of the vertex-edge touching pairs (A;BC), where A is a vertex of polygon

P

i

and BC is an edge of polygon P

j

(i 6= j), generate a constraint on the velocities of

P

i

and P

j

such that, if P

i

and P

j

move with velocities satisfying the constraint, then

the two edges of P

j

adjacent to A cannot overlap BC. As will be shown later, the

constraint is a linear inequality in v

i

and v

j

.

Step 4. Set up a linear program that maximizes �f

i

�v

i

. The linear program is subject to

the non-penetration constraints built in Step 3 and the upper and lower bounds on

the magnitude of the velocities as speci�ed in Step 1. This objective and constraint

set form our velocity-based optimization model. Solving the linear program yields a

new set of velocities. Goto Step 2.

2.2 Collision Detection

2.2.1 Collision Detection For Two Translating Polygons

Given a pair of translating polygons P and Q, we �rst note that if an edge e

P

of P and

an edge e

Q

of Q are going to collide, the �rst collision between e

P

and e

Q

cannot occur

solely on two interior points of P and Q. In other words, at the earliest collision time, at

least one vertex is involved. Therefore, we can capture the earliest collision time by only

considering the vertices of P and the edges of Q and vice versa.

32



Let the velocities of P and Q be u and v respectively. Let A be a vertex of P and BC an

edge of Q. Let the starting time of the current simulation step be t

k�1

. We de�ne function

CollisionTime(A, BC, u, v, t

k�1

, t

k

) to return the collision time between A and BC if the

collision occurs before t

k

. Otherwise, CollisionTime(A, BC, u, v, t

k�1

, t

k

) just returns t

k

.

Note that the collision time between A moving with velocity u and BC moving with

velocity v is the same as the collision time between a static BC and A moving with relative

velocity u�v. Thus, there is a collision between A and BC within time interval

�

t = t

k

�t

k�1

if and only if the line segment AA

0

intersects the line segment BC, where A

0

= A+

�

t(u�v)

is the new location of A relative to BC at time t

k

. Therefore, collision detection for a

moving vertex and a moving edge within a pre-speci�ed time is reduced to the problem of

testing whether two line segments intersect and �nding the intersection point. Milenkovic

[Mil88] proposed a numerically robust algorithm for line segment intersection which is used

in the implementation of our algorithm.

2.2.2 A Collision Detection Algorithm

Let t

k�1

be the starting time of the current simulation step. The algorithm for �nding

the next collision time among the objects is as follows.

Algorithm for Collision Detection.

Input: a layout L consists of N polygons P

1

; P

2

; : : : ; P

N

.

The velocities of these polygons are v

1

, v

2

, : : :, v

N

.

for every pair of polygons P = P

i

and Q = P

j

(1 � i � N , 1 � j � N , i 6= j)

for every vertex A in P and every edge BC in Q

t

k

(= CollisionTime(A, BC, v

i

,v

j

, t

k�1

, t

k

);

During the execution of the algorithm, the variable t records the earliest collision time

calculated so far. Initially, t

k

is assigned T where T is a prede�ned value. For simplicity, we

give T a relatively large value within which a collision is likely to occur. The next collision

time t

k

is then reduced successively when CollisionTime(A, BC, v

i

,v

j

, t

k�1

, t

k

) �nds an

earlier collision time. When the algorithm terminates, t

k

holds the time of the earliest

collision.

Assuming the maximum number of vertices in a polygon is M , the collision detection

algorithm clearly runs in O(N

2

M

2

) time. The algorithm is simple and easy to implement.

33



Note that if there is no collision occurs within time interval T , then it is safe to advance

the simulation by T . That is, assuming the velocity of polygon P

i

is v

i

for 1 � i � N ,

translated every polygon P

i

to its new position P

i

+ Tv

i

(1 � i � N) and resume the

simulation at that point.

The algorithm, although simple, includes the steps necessary for a collision detection

algorithm. The running time can be improved in various way. For example, for polygons

P

i

and P

j

, we can �rst test whether their bounding boxes collide within time interval T . If

not, then we can omit the collision detection for P

i

and P

j

.

Another way of improving the running time is that instead of checking all O(N

2

) pairs

of polygons, we can �rst eliminate the pairs that cannot collide in time T and only check

the remaining pairs. We eliminate a pair by testing their extended bounding boxes . For a

polygon P

i

, its extended bounding box B

i

is the minimal area axis parallel rectangle that

includes both P

i

and P

i

+ v

i

T . Obviously, if B

i

and B

j

(i 6= j) do not intersect, P

i

and P

j

cannot collide within T . By using a sweepline algorithm [PS85], we can identify all K pairs

of overlapping B

i

's in O(N logN +K) time. If we choose T to be small, which we do for

a tightly packed layout, then only the extended bounding boxes of a pair of \neighboring"

polygons can intersect. In that case, K is linear in N since the \neighboring" graph of a

layout is a planar graph. Hence, the running time of the sweepline algorithm is actually

O(N logN). And since for each \neighboring" pairs, we check O(M

2

) vertex-edge pairs

at most, the overall running time of the collision detection algorithm can be reduced to

O(N(logN +M

2

)) in practice.

We can further improve the running time for determining when the �rst contact between

P

i

and P

j

occurs from O(M

2

) to O(M logM), again using a sweepline algorithm. The

sweepline is parallel to v

i

� v

j

. As we sweep through each vertex A of P , we determine

the smallest t such that A + t(v

i

� v

j

) is on an edge of Q. Similarly, as we sweep through

each vertex B of Q, we determine the smallest value of t such that B + t(v

j

� v

i

) touches

P . By maintaining a dynamic list of active edges of P and Q along the sweepline, we can

determine each value of t in O(logM) time. This improvement reduces the overall running

time of the collision detection algorithm to O(N(logN +M logM)).

34



2.3 Finding Vertex-edge Touching Pairs

2.3.1 Type of Contact

In our application, the input to the compaction algorithm is a non-overlapping layout.

That is, in the initial con�guration no point of a polygon P

i

can be in the interior of another

polygon P

j

, for i 6= j, 1 � i; j � n. It follows that the next collision can only occur on the

boundaries of the polygons.

For two polygons that are in contact at the next collision time t

k

, the contact among

the points on the boundaries of the two polygons can be classi�ed into the following types:

� vertex-edge contact.

� edge-edge contact.

� vertex-vertex contact.

As shown in Figure 2.1 and Figure 2.2, an edge-edge contact can be broken into two

vertex-edge contacts; and a vertex-vertex contact can be broken into four vertex-edge con-

tacts. So we only need to concentrate on �nding all the vertex-edge contacts, i.e. the

vertex-edge touching pairs.

2.3.2 A Simple Algorithm

A simple algorithm for �nding all the vertex-edge touching pairs is to check every pair

of polygons and, for each pair of polygons, test the vertex-edge incidences for every vertex

of one polygon against the edges of the other polygon. This algorithm is essentially the

same as the simple collision detection algorithm and runs in O(N

2

M

2

) time.

2.3.3 A Sweepline Algorithm

Given a layout of N non-overlapping polygons we can �nd all the vertex-edge touching

pairs in the layout by calculating the arrangement of the NM edges in the layout explicitly

[Ede87]. The pairs of intersecting edges in this arrangement has the property that their

intersection occurs at the place where one vertex of an edge is incident on the other edge.

Hence, the pairs of intersecting edges in the arrangement forms the vertex-edge touching

pairs.

By Chazelle and Edelsbrunner's result [CE88], the arrangement of the O(NM) edges

can be computed optimally in O(NM log(NM) + K) time where K is the total number

35



E

F

A

B

C

D

A

E

F

C

B

C

D

A

Figure 2.1: The non-penetration constraint for an edge-edge contact can be broken into two

vertex-edge contacts: (A;CB) and (C;AF )

A

B

C

E

F

D

Figure 2.2: The non-penetration constraint for an vertex-vertex contact between

6

FAE

and

6

BCD can be broken into four vertex-edge contacts: (A;BC), (A;CD), (C; FA) and

(C;AE).

36



intersecting edge pairs which, in our case, are vertex-edge touching pairs . Assume that there

is no more than a constant integer c > 0 number of vertices incident on one point, there is

at most O(NM) vertex-edge touching pairs. Hence the algorithm runs in O(NM log(NM))

time.

2.3.4 An Alternative Algorithm

The previous two algorithms run separately with the collision detection algorithm. The

two algorithms assume that the collision detection algorithm has run to the end and the

simulation has been advanced by a time interval

�

t found by the collision detection algorithm.

An alternative method for �nding vertex-edge touching pairs is to augment the collision

detection algorithm of Section 2.2. This method generates a list of vertex-edge touching

pairs during the execution of the collision detection algorithm.

Assume t

k

is the next collision time calculated when the collision detection algorithm

terminates. If vertex A of polygon P and edge BC of polygon Q yield the earliest collision

time so far, then (A, BC) is a candidate vertex-edge touching pair at time t

k

. We use a list

L to record the all the candidate vertex-edge touching pairs. If t, the collision time between

A and BC, is the earliest collision time recorded so far, then we include (A, BC) in L. Let t

0

be the collision time between D and EF , the next vertex-edge pair to be checked. If t

0

< t,

then (A;BC) and the vertex-edge pairs currently in L cannot be vertex-edge touching pairs

at t

k

. Therefore, we delete the elements in L and insert the pair (D, EF ) into L. If t

0

= t,

then (D, EF ) is appended to L as a candidate. In the last case, which is t

0

> t, L is not

changed. When the collision algorithm algorithm terminates, L contains all the vertex-edge

touching pairs at time t

k

. Since this algorithm is part of a collision detection algorithm, it

runs in the same time as the collision detection algorithm, namely O(N(logN +M logM)).

2.4 Non-penetration Constraints

The purpose of the non-penetration constraints is to ensure that, starting from the

next collision time, a vertex-edge touching pair cannot inter-penetrate each other when the

simulation advances.

Let A be a vertex of polygon P that is touching edge BC of polygon Q at the collision

time. The points on the boundary of a polygon are ordered counterclockwise, i.e. the

interior of polygon Q is on the left side of the directed edge BC. Polygon P is to be moved

with velocity vector u and polygon Q with velocity vector v. After a time interval

�

t, A is

37



B

A

P

Q

P

A+ u t

B + v t

C

C+ v t

Q
u

v

(a) (b)

Figure 2.3: (a) The vertex A of P touches the edge BC of Q. P moves with velocity u and

Q moves with velocity v. (b) The position of P and Q after time interval

�

t.

moved to A

0

= A+ut and edge BC is moved to B

0

C

0

where B

0

= (B+vt) and C

0

= (C+vt)

(See Figure 2.3). The condition that A

0

does not penetrate B

0

C

0

requires that A

0

stay on the

right-hand side of the directed edge B

0

C

0

, i.e. A

0

, C

0

and B

0

should be in counterclockwise

order. By Lemma A.3 (see Appendix A), this condition can be expressed as:

B

0

A

0

�B

0

C

0

� 0

that is

((A+ ut) � (B + vt))� ((C + vt)� (B + vt)) � 0

This simpli�es to

(A� B)� (C �B) + (A� B)� (u� v)t � 0

and

BA �BC +BA � (u� v)t � 0

since A was touching BC,

BA �BC = 0

and since t > 0, the non-penetration constraint becomes:

AB � (u� v) � 0 (2:1)

which expands to:

(A

y

�B

y

)u

x

� (A

y

�B

y

)v

x

� (A

x

�B

x

)u

y

+ (A

x

� B

x

)v

y

� 0

38



Thus, we have shown that the non-penetration constraint is a linear inequality on the

velocities u and v.

In the above formulation, vertex A must not be incident on vertex B, since in that case

the constraint we have just derived will be a null constraint. When A is incident on B, we

can derive the non-penetration constraint from:

B

0

C

0

�A

0

C

0

� 0

which expands and then simpli�es to

(u� v)�AC � 0 (2:2)

2.5 Bounds on the Velocities

In the algorithm, we have speci�ed upper bounds on the magnitude of the veloci-

ties. These bounds are necessary because from the previous section we see that the non-

penetration constraints derived forms homogeneous system of inequalities. That is, in the

constant terms of the constraints are all zeros. It is possible that optimizing the the objec-

tive function �f

i

v

i

can cause the velocities to increase without bound. On the other hand,

simultaneously scaling of all the velocities will not a�ect the behavior of the simulation.

Speci�cally, if the velocities are all scaled up by a factor of F , then the time interval

�

t

between the current time and the next collision will be scaled down by a factor of F accord-

ingly. Therefore the net e�ect is still that each of the polygons is translated by the same

amount.

2.6 Non-Penetration Constraints for Vertex-Vertex Con-

tacts

We have seen that the a vertex-vertex contact is broken into four vertex-edge contacts.

However, as we will see, it is not necessary to build non-penetration constraint for each

of vertex-edge contacts. A constraint is necessary only if the vertex and the edge form a

vertex-edge supporting pair . Let A be a vertex of polygon P and and BC be an edge of

polygon Q. Let the two edges incident to A be FA and AE. We say that A and BC form

an vertex-edge supporting pair if among the points in edge FA and AE, A has the smallest

directed distance to L

BC

, the line that contains BC (see Figure 2.4). In other words, if

39



A

B

C

E

F

Figure 2.4: A vertex-edge supporting pair.

6

EAF is moved su�ciently far way and moved back towards L

BC

, then A is the �rst point

to hit L

AB

. We say A supports BC if A and BC form a supporting pair. If we draw the

outward normals of FA and AE and the inward normal of BC starting from A, then the

inward normal of BC is included in the \cone" of angle � 180 degrees bounded by the

outward normals of FA and AE.

If A and BC do not form a vertex-edge supporting pair, then force A stay outside BC

does not guarantee non-overlapping condition of FA and AE with BC. Therefore, it is not

necessary to build a non-penetration constraint for A and BC.

From the de�nition, it immediately follows that a concave vertex cannot support any

edge. In a non-overlapping layout, there cannot be concave vertex contact another concave

vertex.

For a convex-concave vertex contact pair, the convex vertex and the two edges of the

concave vertex form two vertex-edge supporting pairs and both of them need to be included

when building non-penetration constraints.

For convex-convex vertex contact pair, there can be only two vertex-edge supporting

pairs among the four vertex-edge contact pairs, and we only need to chose one of these two

vertex-edge supporting pair to build a constraint. This fact can be seen more clearly from

the con�guration space and Minkowski sum point of view (see Chapter 3). We omit the

explanation here.

40



As we discussed in Section 1.2.4, the choice between two of the vertex-edge supporting

pairs for a convex-convex vertex contact pairs is arbitrary. Either one can be chosen to

generate the non-overlapping constraint for P and Q. In making the choice, we want achieve

two goals. The �rst goal to resolve the \locked" layout in which the polygons interlock with

each. The second goal is to make the choice that can leads to a global optimum. However,

we can show it is NP-hard to achieve either one of the two goals.

2.7 Performance

The simulation algorithm described thus far has been implemented on a 28mips Sun

Sparc workstation and tested on real apparel markers. Comparing to the \strict" physically

based methods, our simulation algorithm is simpler. The linear programming formulation

which replaces the di�erential equations or quadratic programming formulations in the

contact-force based physical simulation method should enable it to run much faster. The

experimental results show that the algorithm is very e�cient in converging an initially

loosely packed layout to a relatively tight layout.

However, we discovered that our simulation algorithm has di�culty compacting tightly

packed layouts. When polygons are tightly packed, the chances of collision increase dra-

matically. The time interval is usually very small, which causes numerical problems. Very

frequently, the simulation goes through many small time interval steps before it can make a

signi�cant progress through a large time interval. Thus, the algorithm has not been success-

ful in our application, which involves compacting tightly packed human generated markers.

For a medium sized marker that contains around 40 pieces, the algorithm took more than

40 minutes.

The small time intervals have two causes. First, since there are many pieces, it is likely

that there are two which are \just about" to come in contact. When they do, the simulation

must stop and recompute. We could continue moving other pieces \forward in time" until

they come in contact and possibly make more progress this way. However, the resulting

simulation would have di�erent \time zones" and thus would be even less similar to physical

reality than our current algorithm. The second and more fundamental reason why the time

interval is small is that even if there is only one piece, it is possible to have many small

time intervals. Suppose piece P is in contact with the the \piston" piece on the right. As

the piston moves leftward, P bounces back and forth between the left wall and the piston

piece. Each bounce requires a time interval. In Chapter 4, we will give a position-based

41



model which will allow us to compute a �nal position for P and the piston in one step.

Although some steps of the simulation algorithm are carried out by straightforward

algorithms whose running time can be improved, we determined that the long running

time is mainly due to the small time intervals. The running time of the other steps of the

simulation algorithm is insigni�cant compared to the large number of calls to the the linear

program solver due to the small time intervals.

42



Chapter 3

The Theory of Minkowski Sum

and Di�erence

The Minkowski sum and di�erence are powerful preprocessing tools for polygon inter-

section and containment problems. Using the Minkowski sum and di�erence respectively,

we can convert a polygon-polygon intersection (overlap) query and a polygon-polygon con-

tainment query into point-in-polygon queries which allow us to achieve sub-linear query

times. Although the Minkowski sum and di�erence has been used extensively in robot

motion planning via the con�guration space approach [Can87] [LPW79] [SS90], we have

seen very few e�orts in applying it to packing problems. Throughout our marker making

project, we have demonstrated the greatly utility of the Minkowski sum and di�erence in

packing problems. For example, the Minkowski sum plays a central role in the position

based optimization model to be described in the next chapter. The Minkowski di�erence is

essential in trim placement (see [DLM94] and Chapter 8).

In this chapter, we present the de�nition of the Minkowski sum and di�erence and

discuss its properties and its applications in intersection and containment problems. We

also examine algorithms for computing the Minkowski sums of di�erent types of polygons.

In particular, we prove a crucial property about the Minkowski sum of starshaped polygons

which results in a signi�cantly simpli�ed algorithm for computing the Minkowski sum of

starshaped polygons. We also show that similar properties hold for monotone polygons.

43



3.1 Background

3.1.1 Polygon Intersection and Containment Problems

We consider the following problems for two simple polygons P and Q.

Polygon intersection: Does P intersect (overlap) Q?

Polygon containment: Is P be totally contained in Q?

These two problems arise frequently in marker making (and in general, two-dimensional

packing problems). Therefore, optimal or e�cient solutions to the problems are of great

interest.

Without preprocessing, there exist trivial linear-time lower bounds for both problems.

These lower bounds are actually tight, according to the results of Van Wyk and Tarjan

[TV88] and Chazelle [Cha90]. Van Wyk and Tarjan showed the polygon intersection prob-

lem is linear time reducible to polygon simplicity testing, that is, testing whether a polygon

is self-intersecting. They further showed that testing the simplicity of a polygon is in turn

linear time reducible to polygon triangulation, which is the problem of decomposing a poly-

gon into non-overlapping triangles whose vertices are also vertices of the polygon. The �nal

linear time bound for the polygon intersection problem is achieved by Chazelle's linear time

triangulation algorithm [Cha90]. Therefore, we have

Theorem 3.1 Polygon intersection can be solved in linear time.

Using Theorem 3.1, we show next that polygon containment can also be solved in linear

time.

Theorem 3.2 Polygon containment can be solved in linear time.

Proof: Let P and Q be two simple polygons. A necessary and su�cient condition for Q

containing P is that at least one point of P is contained in Q and P and does not intersect

the boundary of Q. Testing whether an arbitrary point of P is contained in Q takes linear

time.

To test whether P intersects the boundary of Q, we identify a vertex u of P that has

the largest y-coordinate. Extend a ray R vertically upwards from u. It is easy to determine

in linear time the �rst point v of Q hit by R (if there is none, then P is not inside Q).

Cut Q at v if it is not already a vertex. Add edges uv and vu to splice P and Q into one

44



loop: there are two copies of u and two copies of v. Move uv by � to the left and vu by �

to the right, that is, separate the multiple copies of the vertices by 2�. Only six edges are

a�ected by changes in �, and if � is su�ciently small, then these edges do not intersect any

others (unless P and Q have intersecting boundaries). This value of � can be computed in

linear time. Furthermore, for this value of �, the spliced polygon will be simple (not self

intersecting) if and only if P is interior to Q. The linear time bound follows from that

testing the spliced polygon for simplicity takes linear time. 2

Note that the linearity of both the intersection and containment problems depend on

Chazelle's linear time triangulation algorithm. Chazelle's algorithm is a theoretical break-

through in computational geometry. However, the algorithm is extremely complicated and

it remains to be seen whether it can be made practical. It is also not clear whether the al-

gorithm can be made numerically robust. In practice, Chazelle's algorithm can be replaced

by simpler O(n logn) algorithms in [GJPj78] or [HM83].

It follows from the above discussion that, without preprocessing, linear time is the best

achievable for polygon intersection and containment problems. However, in practice there

are situations which require sub-linear query time for intersection and containment prob-

lems, as such queries will be performed a great number of times. Also, there are occasions

when we want to examine all the locations where P can be placed without overlapping

Q in order to select a location according to some criterion. These two requirements give

rise to the demand for a preprocessing tool that can characterize all the non overlapping

placements of P with respect to Q that also yield fast query time. As shall be seen in this

chapter, such a demand is ful�lled by the Minkowski sum and di�erence.

3.1.2 Con�guration Space Approach

The robot motion planning problem is the problem of �nding a continuous motion to

transport an object from a starting position to an ending position such that the object is free

from collision with the surrounding obstacles

1

. There is a set of parameters that uniquely

determines the spatial state of the moving object. Such a set of parameters includes the

position and orientation of the object. It may also include the angles between the links if

the object is an articulated one. When the parameters take on a set of particular values, it

gives a con�guration of the object. The con�guration space for the object is the space of

1

This assumes that the object in its starting and ending positions is free from collision with the obstacles.

45



all the possible values for the parameters. A con�guration is represented as a point in the

con�guration space.

A con�guration in which the object is free from collision with the surrounding obstacles

is called a free con�guration, otherwise it is forbidden. The collection of free con�gurations

is called free space. And the complement of the free space in a con�guration space is

called forbidden space. It has been shown that both free space and forbidden space can be

partitioned into connected components which are called free regions and forbidden regions

respectively. Any path that connects two points in a free region and is totally contained

in the free region represents a continuous motion of the object that is free from collision.

Thus, the motion planning problem can be reduced to �nding a path connecting the points

representing the initial and �nal con�gurations. This is the basic idea of the ingenious

con�guration space approach[LPW79] [Can87] in robot motion planning. In this approach,

the moving object shrinks to a point and the forbidden regions can be viewed as \enlarged"

obstacles.

If we restrict the general motion planning problem to the problem of planning the

motion of a simple polygon translating in a environment consisting of one simple polygonal

obstacle, then the con�guration space has a connected forbidden region. However, the

forbidden region may have holes, and thus the free space may have multiple connected

components. The case of planning the motion of a translating a simple polygon in a closed

environment whose boundary can be represented as a polygon is similar: the forbidden

region is connected but the free region may have multiple components. In both cases,

the components of the con�guration space are closely related to the Minkowski sum. We

will examine the relation in detail in the next section. However, for starshaped polygons,

Theorem 3.14 shows that the structure of their con�guration space is particularly simple:

the free space is a single connected component and so is the forbidden space.

3.2 De�nitions and Properties

We present the de�nition of Minkowski sum and di�erence in set theoretic terms. The

lemmas and theorems in this section are valid for discrete or continuous point sets in the

Euclidean d{space.

46



(23, 3)

(40, 19)

(6, 24) (16, 24)

(11, 19)

(11, 29)

(29, 27)

(34, 22)

(56, 43)

(51, 48)

Figure 3.1: The Minkowski sum for a circle and a square.

De�nition 3.1 Let A and B be two point sets in the Euclidean space, TheMinkowski Sum

of A and B, denoted by A�B, is the point set de�ned as:

A�B =

[

b2B

A

b

where A

b

is A translated by b:

A

b

= fa+ b j a 2 Ag

The Minkowski di�erence of A and B, denoted by A	 B, is a point set de�ned as:

A	B =

\

b2B

A

b

Example 3.1 Figure 3.1 depicts the Minkowski sum of a circle (A) with a square (B). Let

C denote the Minkowski sum. This �gure also provides examples of Minkowski di�erence:

47



we have C 	A = B and C 	B = A. We would like to point out that it is not always true

that (A� B)	 B = A.

We �rst show that A �B can be written equivalently as an algebraic sum of A and B.

This algebraic sum is sometimes easier to apply than the original de�nition. Hence, it can

serve as an alternative de�nition of the Minkowski Sum .

Lemma 3.3

A�B = fa+ b j a 2 A ^ b 2 Bg

Proof: ()) By de�nition, x 2 A�B implies that there exists b 2 B such that x 2 A

b

. It

follows that there exists a 2 A such that x = a + b. Therefore x is also an element of the

set on the right hand side.

(() Similar. 2

We immediately have

Corollary 3.4 A� B = B �A

Notice that, in general, A	 B 6= B 	A.

The next lemma establishes the relationship between Minkowski Sum and Minkowski

di�erence.

Lemma 3.5

A	 B = A� B

where A denotes the complement of A:

A = fa j a 62 Ag

Proof: By de�nition, we have

A�B =

[

b2B

A

b

By De Morgan's law, we have

[

b2B

A

p

=

\

b2B

A

b

The lemma follows from the fact that A

b

= A

b

. 2

Symmetrically, we have

48



Corollary 3.6 A� B = A	 B

The next lemma shows that the \shape" of the Minkowski sum and Minkowski di�erence

are translation invariant.

Lemma 3.7 Let A and B be two point sets. Let s and t be two points. Then

A

s

� B

t

= (A�B)

s+t

and

A

s

	 B

t

= (A	B)

s+t

Proof: The proof is straightforward from the de�nitions of Minkowski Sum and di�erence.

2

As a consequence of Lemma 3.7, if the point sets A and B can only change location but not

orientation, we need to compute their Minkowski sum or di�erence only once. After A and

B and are placed in new locations, all we need to do is to translate the Minkowski sum or

di�erence accordingly.

3.3 Applications: Intersection and Containment

Having studied the concept and the properties of the Minkowski Sum and di�erence,

we now turn to their applications in intersection and containment problems and present

two key theorems in this section. The theorems show that, using the Minkowski Sum and

di�erence, intersection and containment queries on two point sets A and B can be converted

into membership queries on whether a point belongs to A� (�B) or A	 (�B) respectively.

In the case where A and B are both polygons, the membership queries are actually point-

in-polygon queries which can be answered, with proper preprocessing, in time logarithmic

in the size of the polygons

2

3.3.1 Intersection

Theorem 3.8 Let A and B be two point sets and x be a point in the plane. Then A

T

B

x

6=

; if and only if x 2 A� (�B), where (�B) = f�b j b 2 Bg is the reective image of B.

2

The preprocessing involves constructing the Minkowski sum or di�erence polygons and building search

structures on the polygons. In general, the preprocessing step can be expensive.

49



A

B

(−B) A       (−B)

Figure 3.2: The Minkowski sum and intersection detection.

Proof: ()) Let y 2 A

T

B

x

. We have y 2 A and y 2 B

x

. That is, there exists b 2 B such

that y = b+x. Therefore, we have x = y+(�b). Note that y+(�b) is a point in A� (�B).

Thus, x 2 A � (�B).

(() If x 2 A� (�B), then we have x = a+(�b) for a 2 A and b 2 B. Rewrite x = a+(�b)

as a = x + b. Therefore, a belongs to both A and B

x

which implies A

T

B

x

6= ; 2

Corollary 3.9 A

s

T

B

t

6= ; if and only if t� s 2 A� (�B).

Proof: A

s

and B

t

intersect if and only if they intersect after they are both translated by

(�s), i.e. if and only if A

T

B

t�s

6= ;. 2

From Corollary 3.9, we immediately obtain a useful fact which states that A and B

intersect if and only if A� (�B) contains the origin (0; 0).

Example 3.2 Figure3.2 demonstrates intersection detection for two point sets A and B. In

this case, by checking the Minkowski sum of A and (�B), we can verify that the intersection

of A and B is non-empty since the origin is contained in the Minkowski sum.

Let A be a stationary obstacle and let B be a translating object. It is now clear

that A � (�B) is exactly the forbidden region in the con�guration space approach. The

50



Q

P

P       (−Q)

Figure 3.3: Minkowski sum and non-overlapping placement.

complement of A � (�B) corresponds to the free region. In the case where A and B are

two polygons, the free region is the exterior of the polygon A� (�B). The free region gives

all the vectors x by which B can be translated without penetrating A.

Recall that for the polygons in our marker making application, there is a local coordinate

frame attached to each of the polygons. The coordinates of the points in the polygon are

given in the local coordinate system. The location of a polygon in the global coordinate

system is given by the global coordinates of the polygon's local origin. Let P (p) denote the

fact that the local origin of polygon P is placed at point p in the global coordinate system.

When the location of P is not speci�ed, we will assume P is placed at the global origin,

i.e., the local origin of P is coincident with the global origin.

Let P and Q both be placed at the global origin. The geometric interpretation of

Theorem 3.8 for P and Q is: Q(x) does not intersect P if and only if x is outside the

Minkowski sum polygon P � (�Q)

Example 3.3 Figure 3.3 shows that as long as the local origin of polygon Q is placed

outside the Minkowski sum P � (�Q), Q cannot overlap P .

In addition to being a point set, a polygon has boundary points and interior points. We

say a point x is a boundary point of a polygon P if for every � > 0, the disc of radius �

centered at x contains both points of P and points that do not belong to P . All the points

51



of P that are not boundary points are called interior points. If x is an interior point of P ,

then there exists a � > 0 such that the disc of radius � centered at x contains only points

of P .

The two polygon P and Q intersect (i.e. P\Q 6= ;), intersection can further be classi�ed

as overlapping , if an interior point of one polygon is contained in the other and vice versa,

or in contact , if P and Q are incident on their boundary points.

Now we extend Theorem 3.8 to distinguish the case where two polygons overlap.

Theorem 3.10 Polygon P and Q(q) overlap if and only if q is an interior point of P �

(�Q).

Proof: Since P and Q(q) overlap, there exists a interior point x of P that is contained in

Q(q). That is, x = y+ q for y 2 Q. Hence, q = x� y 2 P � (�Q). Now, let d

�

(x) be a disc

of radius � centered at x and contained in P . Then, d

�

(x) � (�y), the Minkowski sum of

d

�

(x) with point (�y), is a disc centered at q and is contained in P � (�Q). Hence, q is an

interior point of P � (�Q).

The other direction is similar. 2

Corollary 3.11 P (p) overlap Q(q) if and only if q � p is an interior point of P � (�Q).

Proof: The proof is similar to the proof of Corollary 3.9. 2

The following corollary will be used in Chapter 7.

Corollary 3.12 P (p) and Q(q) are in contact if and only if q � p is on the boundary of

P � (�Q).

Proof: Follows immediately from Corollary 3.9 and Corollary 3.11. 2

3.3.2 Containment

Theorem 3.8 gives the condition for all vectors x such that B

x

does not intersect A. The

next theorem, which can be considered the dual of Theorem 3.8, gives the condition for all

x such that B

x

is completely contained in A. Before we prove the theorem we �rst give

some intuition. Let A be the complement of A. If A is a polygon, then A is the exterior

of A. For a vector x, the condition that B

x

is totally contained in A is equivalent to the

condition that the intersection of B

x

with A is empty. By Theorem 3.8, this is the same

as x 62 A� (�B), or equivalently, x 2 A� (�B). By Lemma 3.5, A� (�B) is exactly the

Minkowski di�erence A	 (�B).

52



A       (−B)

B

A

Figure 3.4: The Minkowski di�erence and polygon containment problem.

Theorem 3.13 Let A and B be two point sets. Then B

x

� A if and only if x 2 A	 (�B)

Proof: The argument in the preceding paragraph can serve as an informal proof. Here

we present a set theoretic proof.

()) B

x

� A implies for every b 2 B we have x+ b 2 A, or equivalently, x 2 A

(�b)

for every

b 2 B. Hence,

x 2

[

b2B

A

(�b)

Moreover

[

b2B

A

(�b)

=

[

b2(�B)

A

b

By de�nition, the right hand side of the above expression is exactly A	 (�B).

(() Similar. 2

Now it is clear that if we view A as a closed obstacle, the free region for planning the

translation of B inside A is given by A 	 (�B). The set A 	 (�B) is also referred to as

an erosion of A by B in image analysis [Ser82]. Taking the erosion of two point sets is an

important operation in image processing for extracting the \skeleton" of an image.

Example 3.4 Figure 3.4 shows the application of the Minkowski di�erence in a contain-

ment problem for two polygons A and B. The shaded area represents A 	 (�B). As long

as the local origin of B is placed inside A	 (�B), B is totally contained in A.

53



3.4 Algorithms for Computing Minkowski Sums

Previously proposed algorithms for computing Minkowski sums have been limited to

convex polygons and simple polygons, i.e. the polygons that are non-self-intersecting and

without holes. Although their Minkowski sums can be computed e�ciently, convex polygons

are not suitable in our applications where the polygons are mostly non-convex. On the other

hand, the algorithms for computing the Minkowski sum of two simple polygons take a long

time. We have observed that starshaped polygons strike a balance between the e�ciency

of Minkowski sum computation and practicability. We have also observed that in our

application, the majority of polygons are starshaped. The rest can be decomposed into two

or three starshaped components.

3.4.1 Convex Polygons

Guibas et. al. [GRS83] observed that the Minkowski sum of two convex polygons can

be computed in linear time by merging the edge segments of the two polygons.

3.4.2 Simple Polygons

In general, it is easy to show that an edge segment on the boundary of the Minkowski

sum polygon of P and Q is part of an edge segment formed as the sum of a vertex in

P and an edge in Q or vice versa. Let us call the edges formed by the sum of a vertex

in one polygon and an edge of the other polygon candidate edges. If there are n vertices

in P and m vertices in Q, then there are O(mn) candidate edges . A natural idea for

generating the Minkowski sum is to calculate the arrangement [Ede87] of the candidate

edges in O(m

2

n

2

log nm) time. The algorithms in [KOS91] and [AST92] for calculating the

Minkowski sum of two simple polygons followed this idea. Kaul et. al. [KOS91] introduced

the concept of vertex-edge supporting pairs which reduces the number of candidate edges.

In the worst case, the Minkowski sum of two simple polygon can have O(m

2

n

2

) edges and

the same number of holes.

3.4.3 Starshaped Polygons

There is a class of polygons called starshaped polygons which are not as restricted as

convex polygons but also easier to compute than simple polygons. A polygon P is starshaped

if there exists a point k in P such that for each other point p in P , the entire segment kp

54



P       Q
P

Q

k0

k1

k0 k1

v

w

v wu =

Figure 3.5: The Minkowski sum of two starshaped polygons.

lies inside P . Such a point k is called a kernel point of the polygon. Note that a convex

polygon is a special case of a starshaped polygon in which the kernel equals the entire

polygon. Polygons P and Q in Figure 3.5 are examples of starshaped polygons.

We now show how to compute the Minkowski sum of starshaped polygons. First, we

prove a crucial property for the Minkowski sum of two starshaped polygons that greatly

simpli�es the computation of the Minkowski sum.

Theorem 3.14 The Minkowski sum of two starshaped polygons is also a starshaped poly-

gon.

Proof: (See Figure 3.5) Let P and Q be two starshaped polygons. Let k

1

be a kernel

point of P and k

2

be a kernel point of Q. It su�ces to show the k

0

= k

1

+ k

2

is a kernel

point of P �Q. To see this, let u be an arbitrary point in P �Q and by de�nition u = v+w

for v 2 P and w 2 Q. Since P and Q are starshaped, we have that k

1

v is totally contained

in P and k

2

w is totally contained in Q. Therefore, the Minkowski sum k

1

v� k

2

w is totally

contained in P � Q. Notice that k

1

v � k

2

w is a parallelogram with k

0

at one end of a

diagonal and u = v+w at the other diagonal. Hence, k

0

u is totally contained in P �Q. 2

55



Remark: The theorem shows that starshaped polygons are \closed" under Minkowski sum

operations. The only previously known class of polygons that is closed under Minkowski

sum is convex polygons.

It follows from Theorem 3.14 that the Minkowski sum of two starshaped polygons can

not have holes. Thus, the computation of Minkowski sum is reduced to calculating the outer

envelope [Ede87] of the arrangement of the O(mn) candidates by an angular sweepline al-

gorithm. The outer envelope of O(mn) segments can have O(mn�(mn)) [HS86] segments

where �() is the extremely slowly growing inverse of the Ackermann's function. For prac-

tical purposes, it can be considered a constant. The straightforward implementation of

the angular sweepline algorithm runs in O(mn�(mn) logmn) time. Hershberger [Her89]

presented an algorithm for calculating the outer envelope of n line segments in O(n logn)

time. Therefore, we have

Theorem 3.15 The Minkowski sum of two starshaped polygons can be computed in O(mn logmn)

time.

Currently we are using a numerically robust implementation of angular sweepline algo-

rithm for computing Minkowski sum of starshaped polygon. The algorithm is based on the

observation that if we are unsure if a point q lies on the Minkowski sum, we can always

project from the kernel point p through q and take the farthest intersection with a candidate

edge. We have encountered data containing a few non-starshaped polygons but our studies

have shown that all these polygons can be expressed as a union of two and very rarely

three starshaped polygons. For those non-starshaped polygons, we have a decomposition

algorithm to decompose the polygon into a small number of starshaped ones. During com-

paction, the starshaped components of a polygon are \glued" together, that is they have

the same translation and tilt.

3.4.4 Monotone Polygons

A monotone polygon is a simple polygon that can be decomposed into two monotone

chains along a direction which we call the direction of mononicity . A monotone chain

is a piece-wise linear function with respect to the direction of monotonicity. Assume the

direction of monotonicity is coincident with the y-axis, then the a monotone polygon is

composed of a \upper" chain and a \lower" chain.

Like convexity and star-shapedness, the monotonicity of a polygon is a powerful tool in

constraining the complexity of simple polygons and facilitates the design of more e�cient

56



and practical algorithms.

We can consider monotonicity to be a special case of starshapedness in the sense that a

monotone chain can be thought of having a kernel point in the in�nity. By using essentially

the same proof as the one for Theorem 3.14, we can show the following theorem.

Theorem 3.16 If two monotone polygons P and Q have the same direction of monotonicity

d, then their Minkowski Sum P �Q is also a monotone polygon with respect to direction d.

The theorems shows that like the Minkowski sum of two starshaped polygons, the

Minkowski sum of two monotone polygons that share the same direction of monotonic-

ity also has no holes. Therefore, computing such a Minkowski sum is again reduced to the

calculating the outer envelop. Similar to Theorem 3.15, we have

Theorem 3.17 The Minkowski sum of two monotone polygons that have the same direction

of monotonicity can be computed in O(mn logmn) time.

To apply Theorem 3.17, we need to �rst identify, for two given polygons, whether there

exists a direction with respect to which the two polygons are monotone. The algorithm of

Preparata and Supowit [PS81] can decide whether a polygon is monotone and further �nd

all the directions of monotonicity for the polygon in linear time. Using their algorithm, we

can �rst calculate the ranges of the direction of monotonicity for the two polygons and do a

merge in linear time to decide if the two polygons share a common direction of monotonicity.

In three dimensions, there is no known algorithm for testing the monotonicity of a

polyhedron. The authors [LZ] suspect that the problem is NP-hard. However, for polygonal

chains or polyhedral surface patches in three or higher dimension, testing whether there is

a common direction of monotonicity can be done in linear time using linear programming.

We use three dimension as an example, the other dimensions are similar. We assume that

the outward normals of a polyhedral surface have been properly labeled and are consistent

(that is, the surface can be topologically transformed into a plane parallel to the x�y plane

and all the outward normals are upward). Let the outward normal of a face in a polyhedral

surface be n = (n

x

; n

y

; n

z

). The direction of monotonicity d = (d

x

; d

y

; d

z

) must satisfy

n � d � 0

or

n

x

d

x

+ n

y

d

y

+ n

z

d

z

� 0

57



which is a linear constraint in variables d

x

; d

y

; d

z

.

Given several polyhedral surfaces, we build a linear constraint for each of the faces.

There exists a common direction of monotonicity if and only if the linear program with the

aforementioned constraints has a feasible solution. This can be tested in linear time using

Megiddo's algorithm [Meg84].

If two polyhedral surfaces have a common direction of monotonicity, we can form two

polyhedral terrains by projecting the two surfaces to a plane \beneath" and is parallel to

their common direction of monotonicity. It is easy to show that the Minkowski sum of the

two terrains so formed is also a terrain with respect to the direction of monotonicity of the

two original terrains.

58



Chapter 4

Compaction Using a

Position-Based Optimization

Model

In this chapter, we describe a compaction algorithm that directly solves for the positions

of the polygons without the use of time-intervals or simulation. Instead, this algorithm uses

a position-based optimization model. The model contains arti�cial constraints that restrict

the solution space to a convex feasible region. These arti�cial constraints are generated

using a locality heuristic. The locality heuristic in turn relies on Minkowski sums of the

polygons to create an explicit representation of the set of non-overlapping positions of each

pair of polygons: this set is called the free region of the con�guration space, or more simply,

the solution space (see 3.1.2). The objective in the model is a linear function of the positions

of the polygons. The algorithm solves this model using linear programming. The solution

gives a set of new positions for the polygons. Since arti�cial constraints were added, the new

set of positions may not be a local minimum of the objective for the original compaction

problem. The algorithm computes a new model and repeats, terminating when the objective

function cannot be improved by the new model. In practice, very few iterations are required

to �nd a local minimum for the original compaction problem.

This improved algorithm overcomes the di�culties of the previous velocity-based algo-

rithm in compacting tightly packed layouts. It runs two orders of magnitude faster than

the previous algorithm.

In this chapter, we �rst present the position-based optimization model and then describe

59



the applications of the model in implementing various compaction functions.

4.1 The Theory of a Position-Based Optimization Model

4.1.1 Non-Overlapping Conditions for Two Translating Polygons

Recall that in our representation of layout problems, the position of polygon P is given

by the global coordinate of the origin of its local coordinate system. As in the previous

chapter, we use P (c

P

) to denote that P 's local origin is positioned at c

P

and when c

P

is

omitted, P 's local origin is placed at the origin of the global coordinate system. We assume

that the local origin of each polygon is a kernel point of that polygon. (If any polygon is

not star-shaped, then we decompose it into star-shaped polygons and add the constraint

that these polygons must move as one unit.) Let p and q be the new positions of P and Q

respectively. From Theorem 3.1, we have that for two polygons P and Q and two arbitrary

points p and q, P (p) intersects Q(q) if and only if q � p is in P � (�Q). It follows that

planning the simultaneous motion of P and Q is reduced to planning the motion of a single

point q� p, which represents the relative motion of Q with respect to P , in an environment

consisting of a static obstacle P � (�Q). Hence, to guarantee that P and Q do not overlap,

we must force q � p to stay in P � (�Q), the exterior of P � (�Q).

4.1.2 A Locality Heuristic

In our applications, the exteriors of the Minkowski sum polygons are generally non-

convex. In order to use linear programming, we need to �nd a convex subset of the exterior

of a Minkowski sum polygon that can be used to formulate the non-overlapping condition

as a set of linear constraints. We use a locality heuristic to �nd such a convex subset. In

the rest of this section, we explain the locality heuristic in detail.

First of all, our intention is to formalize the compaction problem as a linear programming

problem. Therefore, we need to express the fact that the point q�p must stay in P � (�Q)

as a set of linear constraints on the position variable q � p. One way of building such a

linear constraint is to specify a line segment and restrict q�p to lie in the proper half-plane

delimited by the line segment. For instance, let AB be a line segment and let q � p be

denoted by R, then from Appendix A the following cross product

RA�BA � 0

60



speci�es that R is on the right-hand side (with respect to the direction from A to B) of

AB. In other words, R lies in the half-plane H

AB

which is delimited by AB and contains

right-hand side of AB. The cross product expands to the following linear constraint

(B

y

� A

y

)q

x

� (B

x

� A

x

)q

y

� (B

y

�A

y

)p

x

+ (B

x

� A

x

)p

y

+ A

x

B

y

� A

y

B

x

� 0 (4:1)

on variables p and q, where A

x

; A

y

; B

x

; B

y

are constants. We call H

AB

the half-plane

associated with the linear constraint 4.1.

Geometrically, a set of linear constraints de�nes a convex region which is the intersection

of the half-planes associated with the constraints. Conversely, from a convex region in the

plane, we can derive a unique set of linear constraints on q � p. Furthermore, the set of

linear constraints associated with a convex region is satis�ed by q � p if and only if q� p is

contained in the convex region.

It is clear that by specifying a (non-empty) convex region in P � (�Q), we can form a

set of linear constraints which forces q � p to stay in that convex region and thus ensures

the non-overlapping condition for P and Q. Ideally, if P � (�Q) is convex, we can use

P � (�Q) itself as the convex region to build constraints. However, P � (�Q) can never

be convex because it is the exterior of a simple polygon. Therefore, any convex region we

choose can only be a subset of P � (�Q). Hence, by forcing q�p to stay in a convex subset

of P � (�Q) we actually restrict the freedom of the relative motion of P and Q. To reduce

this limitation, we want the convex region to cover as large an area of P � (�Q) as possible.

Additionally, if c

P

and c

Q

are the current positions of the origins of P and Q, we want

the new relative position q � p to be reachable from the current relative position c

Q

� c

P

via a continuous motion of P and Q. Hence, we also require that the convex region include

c

Q

� c

P

.

The purpose of the locality heuristic is to �nd a region in P � (�Q) with the three

requirements we just identi�ed: convex, large, and contains the point c

Q

� c

P

. The locality

heuristic �nds such a convex region by �rst determining a point on the boundary of the

Minkowski sum that is \nearest" (to be de�ned below) to c

Q

�c

P

. Starting from that point,

it walks clockwise and counterclockwise along the boundary of the Minkowski sum. When

walking clockwise (with respect to the origin of the Minkowski sum), it always makes left

turns. It follows the next edge if it turns to the left (at a concave vertex of the Minkowski

sum), otherwise, it extends the current edge, �nds its intersection with the Minkowski sum

and resumes the walk from that point. This procedure continues until the current edge can

be extended to in�nity. It proceeds analogously in the counterclockwise direction, making

61



c
Q

c
P

−

(0, 0)

Figure 4.1: The \nearest" convex region in the exterior of the Minkowski sum.

right turns instead of left turns (see

constraints consisting of the half-planes to the \outside" of each Minkowski edge it

encounters. The intersection of these half-planes is a convex subset of the feasible solution

space.

Under the locality heuristic, the \nearest" point is not the boundary point with the

closest Euclidean distance to c

Q

�c

P

. Instead, it is the intersection of the segment from the

origin to point c

Q

� c

P

with the boundary of the Minkowski sum. If c

Q

� c

P

is inside the

Minkowski sum, as it would be when we are separating overlapping polygons, the nearest

point is obtained by extending the ray from the origin through the point c

Q

� c

P

until it

intersects the boundary. This choice of nearest point is important for the correct operation

of the separation algorithm and is described more fully in Section 5.2.

Lemma 4.1 Let P and Q be two starshaped polygons. If the origin of the Minkowski sum

P � (�Q) is in its kernel,

1

then the locality heuristic terminates correctly.

Proof: Consider the clockwise walk. The angle about the origin always increases in a

clockwise direction. Since the path taken must remain visible from the starting point (and

indeed from every point in the convex region), the total angle moved about the origin cannot

exceed 180 degrees. Therefore the walk must terminate, and the only way it can terminate

is by extending an edge to in�nity. 2

In the locality heuristic, if the line segment connecting c

Q

� c

P

and the origin of the

Minkowski sum passes through a convex vertex of the Minkowski sum, then either edge of

that vertex can be chosen to generate the convex subset of the free space. This arbitrary

1

If P and Q are both star-shaped, then P � (�Q) will be star-shaped and thus have a non-empty kernel.

62



choice is the same as the one made for a vertex-vertex contact in the velocity-based model

(see Section 1.2.4 and Section 2.6).

4.1.3 Linear Constraints with the Boundaries of the Container

The convex subset C obtained by the locality heuristic naturally yields a set of linear

constraints for a pair of polygons. In addition to the linear constraints for pairs of polygon,

we need to take into account the constraints between the polygons and the boundaries of

the container. These constraints are quite straightforward to build.

Let polygon P be adjacent to the upper boundary of the container and the let h

y

be the

largest y-coordinate of a vertex of P in its local coordinate system

2

Let H be the height of

the container. Then, P does not overlap the upper boundary of the container in its new

position p if and only if

p

y

+ h

y

� H;

which is a linear constraint in p

y

, Constraints with the left and lower boundaries are built

similarly.

The right boundary sometimes is allowed to move. We use a variable l to represent

the current length of the container. Let w

x

be the largest local x-coordinates of P . The

non-overlapping constraint between P and the right boundary becomes

p

x

+ w

x

� l

4.1.4 The Position-based Compaction Algorithm

We �rst present a brief description of the algorithm and then give further explanation.

A position-based compaction algorithm.

Input \force" f

i

for piece i (i = 1; : : : ; N); /* f

i

's are constants */

Assign a variable p

i

for polygon i (i = 1; : : : ; N);

do

L := a list of adjacent pairs of polygon returned from a sweepline algorithm;

S := ;; /* S is the set of linear constraints generated so far */

foreach adjacent pair (P;Q) in L do

2

Here, we assume the P is not rotated or ipped. If this is not the case, h

y

should actually calculated

after taking the rotation and ipping into account. Once calculated, h

y

remains constant as long as P can

only translate.

63



Compute P � (�Q);

S

0

:= a set of linear constraints generated for P and Q

using the locality heuristic;

S := S [ S

0

;

end

foreach polygon P do

S

1

:= the non-overlapping constraints between P and

the boundaries of the container;

S := S [ S

1

;

end

Set up a linear program

maximize

P

N

i=1

f

i

� p

i

subject to S;

Get the set of new positions p

i

(i = 1; : : : ; N) by solving the linear program;

Move polygon i to p

i

(i = 1; : : : ; N);

until the objective function

P

n

i=1

f

i

� p

i

stops increasing.

As in the algorithm in Section 2.1, we assign a set of desired directions f

i

as the \forces"

applied to each polygon; these f

i

's remains constant during the iterations. However, instead

of assigning velocities, we use a set p

i

of variables representing the positions of the polygons.

The non-overlapping constraints of the position-based model are built in the following

way. We �rst use a sweepline algorithm to �nd all the adjacent pairs of polygons. For each

adjacent pair, we �nd the set of half-plane constraints generated by the locality heuristic in

the previous section.

The optimization model is set up with all the constraints from each adjacent pair and

the objective function

maximize

n

X

i=1

f

i

� p

i

This model is a linear program, and its solution is a set of positions which represent maximal

motion in the desired directions satisfying the current set of constraints.

After the motions are applied, the system reaches a minimum with respect to the set of

constraints generated by the locality heuristic. The algorithm may need to iterate because

when the polygons are moved into their new positions, some of the convex regions generated

by the locality heuristic might change. Note that in each iteration, the same linear function

64



is used as objective function. The value of the objective function is either increased, which

triggers the next iteration, or stays the same, at which point the local minimum for the

compaction problem is reached. The �nal position is a local minimum because the convex

regions contain a feasible open ball about the current set of positions.

Furthermore, each step of the algorithm moves the polygons from one point to another

in the same convex subset of the non-convex feasible (non-overlapping) solution space.

Therefore, the straight line motion for each step stays within the solution space, and the

total motion is a piecewise linear subset of the solution space.

Remark 4.1 Actually, manufacturers would not mind if the polygons \leap-fogged" over

each other on the way to a more compact layout. The mixed integer programming gener-

alization of this optimization model (see Chapter 8) does exactly that.

Remark 4.2 When applying the locality heuristic, we assume that the two polygons in-

volved are both star-shaped (or at least their Minkowski sum is star-shaped). We have

encountered data containing non-starshaped polygons. Our studies have shown that all

these polygons can be expressed as a union of two and very rarely three starshaped poly-

gons. For those non-starshaped polygons, we use a decomposition algorithm

3

to decompose

the polygon into a small number of starshaped components. The locality heuristic is then

applied to each pair of components of the two polygons.

4.1.5 Running Time and Robustness

Because the neighbor relation between pairs of polygons can be represented by a planar

graph, a linear number of neighboring polygon pairs is determined by a sweepline algorithm.

4

The convex region found by the locality heuristic usually contains a small number of edges.

Thus, in practice, the total number of constraints is linear in the input size. The algorithm

typically runs in two to �ve iterations before it stops. Leftward compaction for a marker of

120 polygons, with the largest polygons having nearly 100 vertices, runs in 20 seconds on a

28 mips Sun SparcStation.

The algorithm is also numerically very robust. It handles degenerate cases, slightly

overlapped inputs and (slightly) inaccurate Minkowski sums quite well. In particular, the

vertices of the Minkowski sums we use have been rounded to the nearest integer lattice

point.

3

The decomposition algorithm was designed by Victor Milenkovic and implemented by Kirat Singh.

4

Actually, without a bound on the distance a polygon can move, potentially any pair can collide and thus

the graph is complete. We place a bound on the distance to ensure a planar graph.

65



4.2 Compaction Functions

The position-based optimization model e�ectively converts a coordinated motion plan-

ning problem of many translating polygons into a linear program problem. The model is

general and exible. The non-overlapping constraints among the polygons are captured by

the set of the linear inequalities generated by the locality heuristic. Several compaction

functions such as leftward compaction and opening up gaps can be derived from the model

by simply tailoring the objective functions. By adding bounds on the positional variables

to the linear program, we can impose restrictions on the motion of each individual polygon.

For example, disallowing the motion of some polygons is the same as setting the upper and

lower bounds of the corresponding position variables p

ix

and p

iy

to their current values.

In this section, we extend the meaning of compaction to include the simultaneous motion

planning of all the polygons in a layout. We call the compaction in it original de�nition, i.e.

shorten the length of a layout, as leftward compaction. We will describe several compaction

functions derived from the position-based model that are useful to manual or automated

marker making.

4.2.1 Leftward Compaction

For leftward compaction, the objective function is simply

minimize l:

That is, the objective is to generate a motion of the polygons that maximizes the leftward

motion of the \piston" polygon while allowing all the other polygons to move freely. It is

not necessary for all the polygons to move to the left to minimize l. Sometimes, certain

pieces need to move to the right to give a better overall length of the marker. Such motions

are captured by the linear program. Figure 4.3 shows the result of leftward compaction of

the marker in Figure 4.2. Notice that during leftward compaction, polygon 0 moves to the

right in order to give space for polygon 11 to move to the left.

Leftward compaction is used primarily to increase the e�ciency of the �nal layouts which

can either be generated by human or by a computer. Figure 4.4 shows the result of leftward

compaction on production marker shown in Figure 1.1.

66



0

12

3

4

5

6

7
8

9

10

11

12

Figure 4.2: An example of leftward compaction: input.

0

12

3

4

5

6

7
8

9

10

11

12

Figure 4.3: An example of leftward compaction: output.

67



N
a

m
e:

W
id

th
:

L
en

g
th

:
P

ie
ce

s:
E

ff
ic

ie
n

cy
:

4
5

7
2

5
a−

re
5

9
.7

5
 i

n
3

2
0

.7
5

 i
n

1
2

6
9

0
.9

4
%

Figure 4.4: The human generated pants marker in Figure 1.1 after leftward compaction.

68



Improvement in Cloth Utilization

The algorithm has improved the cloth utilization of many production quality human gen-

erated markers (markers that actually go to the cutting room). The average improvement

for the markers from one of the world's largest jeans manufacturers is 0.32%; the average

savings in material is 1.36 inch per marker. As Section 1.2.2 indicated, a 0.1% improvement

in e�ciency would save about two million dollars in material for the manufacturer. In the

leftward compaction example shown in Figure 4.5, the e�ciency of the marker has increased

by nearly 1% and total length has been shortened by 5 inches.

4.2.2 Vector Compaction

We use the term vector compaction to denote compaction in a �xed bounding box. It

has the same objective function as in our general position based compaction model, but

with the additional constraint that the right boundary is �xed:

l = 0:

The forces f

i

can be assigned through the graphical user interface by drawing a vector

on the corresponding pieces. Hence, the forces are referred to as vectors . Only the non-zero

vectors need to be assigned. Usually, only a few polygons need to be assigned vectors.

Figure 4.6 shows a example of vector compaction. Polygon 2 is given a force in the upper

left direction. The other polygons are moved accordingly to allow the maximum motion of

polygon 2 in the speci�ed direction. Polygon 0 is \squeezed" out from the space between

polygon 2 and polygon 3. During the process, polygon 1 is pushed down while polygon 0

is not a�ected by the motion. This example shows, in a certain sense, that our compaction

algorithm is indeed simulating the frictionless motion of rigid bodies in a viscous medium.

The most important application of vector compaction is to enlarge a gap so that more

polygons can be put in it. The polygons surrounding the gap are pushed away from the gap

by the outward \forces" applied on them. In manual marker making, a gap can be identi�ed

on the user interface screen. Then, a human marker maker can assign the outward vectors

on the surrounding polygons manually.

Figure 4.7 depicts the e�ect of opening a gap. The two trim pieces in the middle cannot

be �t into the gap between two large panels. \Forces" are applied to the two large panels

to move one of them upward and the other downward. The result is shown in the lower

part of the �gure. In this example, only translation of the pieces used in compaction.

69



Name:
Width:
Length:
Pieces:
Efficiency:

59.75 in
543.16 in
192

89.62%

 Human generated marker

Name:
Width:
Length:
Pieces:
Efficiency:

59.75 in
537.52 in
192

90.56%

Compacted marker

F

i

g

u

r

e

4

.

5

:

L

e

f

t

:

A

h

u

m

a

n

g

e

n

e

r

a

t

e

d

p

a

n

t

s

m

a

r

k

e

r

.

R

i

g

h

t

:

T

h

e

h

u

m

a

n

g

e

n

e

r

a

t

e

d

m

a

r

k

e

r

a

f

t

e

r

c

o

m

p

a

c

t

i

o

n

.

7

0



0

1

3

4

2

(a)

0

1

2

3

4

(b)

Figure 4.6: An example of vector compaction.

71



Figure 4.7: An example of opening a gap.

72



Opening up gaps has been an important technique used by humans to produce high

e�ciency markers, especially when placing the last few \di�cult" pieces. In making pants

marker, for example, human marker makers �rst place the panel pieces, and the panel

placement determines to �nal length because humans make the utmost e�ort to put all the

trim in the gaps amongst the panels. Frequently, the last few trim pieces can not be �tted

into any of the gaps left. What human marker makers do is to choose a gap and try to

enlarge it. This task is time-consuming and awkward even for experienced human marker

makers when the rest of the markers has already been tightly packed. It is unlikely that

they are �nding the maximal size gap since they can only move one piece at a time. Hence,

our compaction algorithms can greatly facilitate the manual marker making process.

In automated marker making, the gaps in a marker are identi�ed by a program [DM94].

An automatic placement strategy chooses a set of trim polygons and a particular gap in

which to place them. If the trim polygons can be placed into the gap, then vector compaction

is called to enlarge the gap. An \outward" vector for a polygon surrounding that gap can

be drawn from the center of the gap to the center of the polygon itself.

4.2.3 Bumping

Bumping refers to the type of compaction in which only a pre-speci�ed polygon P

b

is

allowed to move within a �xed rectangle; all other polygons are �xed. The objective is to

maximize the motion of P

b

in a direction f

b

maximize f

b

� p

b

Bumping has been provided by some commercial software vendors as a productivity aid

in manual marker making. They use a di�erent algorithm not based on linear programming.

In traditional manual marker making, in which the pattern pieces are laid manually on a

table, a marker carefully places a pattern piece so that it does not overlap any of the

surrounding pattern pieces that have already been placed. Bumping releases human marker

makers from the burden of calculating the non-overlapping position when placing a pattern

piece. With the help of the bumping function, a human marker maker can �rst put a

polygon in a place which is close to its desired �nal position, then specify a bumping vector

and \bump" it into its �nal position. According to the author's observation on the manual

marker making process of several human marker makers, bumping is involved in placing

almost all the pieces.

73



Because commercial vendors use a naive bumping strategy, they might stop prematurely,

failing to move further in a direction that can decrease the objective function. The bumping

method derived from our positioned-based model will always �nd a local minimum of the

bumping problem.

Since, all but one pieces are �xed during bumping, we can simplify our algorithm. For

example, we do not need to �nd all the adjacent pairs; only those adjacent to P

b

. Therefore,

instead of a sweepline algorithm, we can use a linear time algorithm to �nd all the polygons

adjacent to P

b

. The linear program generated is small since it contains constraints for only

a few pairs of polygons (P

b

appears in every pair) and it has only two variables. Therefore,

the algorithm runs very fast.

Bumping is an aid in several of our trim placement algorithms. For example, in a naive

trim placement strategy we had experimented, a trim polygon is placed in the leftmost

position in the gap that can hold it. However, in many occasions, placing the trim polygon

in the leftmost position can induce fragmentation of unplaced region in a gap. Bumping is

applied to reduce the fragmentation. After each trim polygon is placed, bumping is called

to \bump" the polygon into upper-left or lower-left corner of the gap to help to keep the

remaining region of the gap useful for additional trim polygons. In most of the examples

we tried, bumping has improved the �nal results. The total running only increase by a few

percent.

Based on the bumping algorithm, we have designed a strategy to demonstrate that one-

piece-at-a-time methods can not improve the material utilization of tightly packed layouts.

Our strategy is basically a simulation of a generic one-piece-at-a-time method. We use

a sweepline algorithm to sort the polygons by increasing x-coordinate of their leftmost

vertices. Leftward bumping is then performed on the polygons according to the sorted

order. Our experiments show that this strategy does not improve material utilization most of

times. This provides another evidence a coordinated motion planning approach is essential

for solving compaction problem.

4.2.4 Gravity Compaction

Gravity compaction is the action of applying the same \force" to all the polygons as if

the polygons are in a gravity �eld. For a speci�ed force f that is to be applied to all the

74



polygons, gravity compaction has the objective function

maximize

n

X

1

f � p

i

We have observed that when applied properly, the gravity compaction function can

group the otherwise fragmented unplaced regions into several large chunks. An example is

depicted in Figure 4.8.

A downward force has been applied to all the polygons in Figure 4.8 and as a result

the unplaced regions move up to the upper part of the marker region and combine into a

few larger chunks. Larger chunks of unplaced region help increase the e�ciency of trim

placement since they permit more exible of nesting among the trim polygons.

Gravity compaction can also help to \reshape" the unplaced regions inside a gap. Some-

times, the trim polygons in a gap are placed in such a way that makes it impossible to place

an additional trim polygon in the gap even though the total area of unplaced region in

the gap is larger than the area of the unplaced trim polygons. The application of gravity

compaction changes the positions of the trim polygons already placed in the gap and the

con�guration of the unplaced region inside the gap. It may become possible to place an

additional trim polygon in the recon�gured unplaced region. Our experiments shows that

after the application of gravity, more trim polygons can be �tted into a gap. This technique

was �rst used by Karen Daniels to improve the e�ciency of some naive trim placement

strategies.

75



Figure 4.8: An example of gravity compaction.

76



Chapter 5

Separation of Overlapping

Polygons and Database Driven

Marker Making

In the previous chapter, we developed a position-based optimization model and used it

to derive practically e�cient algorithms for various compaction tasks. In marker making

applications, we sometimes encounter the need for solving a seemingly di�erent problem,

the separation problem. The separation problem is the problem of eliminating the overlaps

in a layout by moving pieces away from each other. If necessary, we would even increase

the current length of the marker to give more space for resolving overlaps.

One application of an e�cient algorithm for the problem is to eliminate the overlaps

caused by rounding errors. A more important application is in database driven automated

marker making systems. Such systems aim at generating markers automatically by selecting

an existing marker stored in a database and then matching and substituting corresponding

polygons in the existing marker. Since the substituted polygons are usually not the same as

the original polygons in the existing marker, the substitution process inevitably introduces

overlaps among the polygons. Whether or not the system can produce a valid marker

depends on the successful elimination of the overlaps.

In this chapter, we demonstrate that the capability of resolving overlaps is embedded

in the position-based optimization model. We �rst de�ne and study the complexity of the

separation problem. Then, we show that the same position-based optimization model also

yields an algorithm which gives a locally optimal solution to the separation problem. To

77



B+B
2

B+B
2

Figure 5.1: Reduction of PARTITION to separation of overlapping polygons.

our knowledge, this is the �rst e�cient algorithm for the separation problem. Hence, it

solves an industrially signi�cant problem.

Based on this separation algorithm, we give a new scheme for database driven marker

making. We use the separation algorithm together with a database of human-generated

layouts to automatically generate layouts approaching human performance.

5.1 De�nition and Complexity

Given a set of overlapping polygons, the separation problem is the problem of �nding a

set of translations of the polygons such that, after the translations, the polygons are in non-

overlapping positions and such that the total translation of all the polygons is minimized.

First we show that �nding a global minimum for the total translation is NP-complete.

Theorem 5.1 The separation of overlapping polygons is NP-complete even for rectangles.

Proof: Since rotation is not allowed, we can use the same argument as in [MDL91] to

show that the problem is in NP. To show it is NP-hard we again reduce PARTITION

to the problem. Figure 5.1 shows the construction of the reduction. Let (a

1

; a

2

; : : : ; a

n

)

be the integers in an instance of PARTITION. Let B =

P

n

i=1

a

i

=2. Place n rectangular

pieces of height 1 and length a

i

(i = 1; : : : ; n) inside a rectangular space of size 2 � B

78



in overlapping positions. The rectangular space is then surrounded by many additional

rectangular \blocks" to make sure its size is not easily enlarged. For one piece to move from

one position to another position inside the rectangular space, it needs to move no more

than 1 unit vertically and B units horizontally. The total motion of the pieces is therefore

less than B + B

2

. The surrounding blocks are built in such a way that to increase the

length or the width of the rectangular space, they have to move a total of B + B

2

units

distance. Therefore, PARTITION has a solution if and only if the total displacement in the

separation is less than B +B

2

. The construction can be done in polynomial time. 2

In applications of the algorithm, namely the database driven automated marker making

and correcting overlaps caused by rounding error, the polygons are not grossly overlapped.

They tend to overlap slightly on their boundaries since the polygons being substituted

are matched for similar shape and size or vertices and the position of a polygon has been

rounded to the nearest integer. Next, we show that even with the additional restriction

that the polygons only slightly overlap each other, the separation problem is no easier than

the general case, that is, it remains NP-complete.

We de�ne the degree of overlap r for two overlapping polygons P and Q as the minimum

translation needed for P to be in a non-overlapping position with Q. We say that two

polygons are slightly overlapping if their degree of overlap

r �

1

c

minfW

P

; H

P

;W

Q

; H

Q

g

for a constant c > 1, where W

P

; H

P

;W

Q

; H

Q

are the widths and heights of the bounding

boxes of P and Q.

Theorem 5.2 The separation of overlapping polygons is NP-complete even if the polygons

just slightly overlap each other.

Proof: We reduce the NP-hard 2-PARTITION problem to this problem. The 2-PARTITION

problem is the same as PARTITION except that it requires that the two subsets each con-

tain the same number of integers. Each piece still has height 1 but width 2Bc + a

i

. The

rectangular space in the middle now has size 2� (2Bnc+ B). We divide the n pieces into

two rows each containing n=2 pieces within the middle space. The two rows do not overlap

vertically. Within each row, the pieces are spread out evenly. The degree of overlap between

two adjacent pieces in each row is at most

2B

2Bc+ a

i

� 1=c

79



because 2B is the total overlap. If there is a solution to 2-PARTITION, the moves needed

to make the pieces non-overlapping are as follows: exchange two vertically adjacent pieces

when necessary and do horizontal adjustment within each row. The vertical exchanges have

a total displacement of at most 2n. The total horizontal displacement within each row is at

most nB because each piece has at most B horizontal displacement. So with < 2n(B + 1)

total displacement, we can solve the separation problem. We put 2n(B + 1) surrounding

blocks on each side to restrict the movement of the pieces within the middle space. 2

It is easy to see that the constant c can be replaced by a polynomial F (B; n) and the proof

still works.

Remark 5.1 In the proofs of Theorem 5.1 and Theorem 5.2, we assumed that the distance

used is the usual Euclidean distance. We observe that the proofs are also valid using L

1

distance. The L

1

distance between the two points p

1

= (x

1

; y

1

) and p

2

= (x

2

; y

2

) is de�ned

as follows.

d

L

1

(p

1

; p

2

) = jx

1

� x

2

j+ jy

1

� y

2

j

Remark 5.2 We mentioned in Section 1.2.3 that we will prove the compaction problem to

be PSPACE-hard in Chapter 9. The gap in complexity between the compaction problem

and the separation problem is accounted for by the fact that the compaction problem is

de�ned as a motion planning problem in which the polygons cannot pass through (or jump

over) each other, while in the separation problem there is no such restriction. We would like

to point out that if we eliminate the above mentioned restriction in the compaction problem,

then compaction, separation and packing all become equivalent. The NP-complete layout

problem can be reduced to separation through essentially the same reduction as the on in

the proof of Theorem 5.1 : In Chapter 8, we will develop a mixed integer programming

(MIP) formulation of compaction. Under the MIP formulation, the polygons are permitted

to pass through each other. The formulation gives a direct reduction of compaction to MIP

which shows compaction is in NP. Thus, we establish the NP-completeness of compaction

when the polygons can pass through each other. The same MIP formulation also gives

a direct reduction of the strip packing problem to mixed integer programming. In fact,

compaction and strip packing become equivalent under the formulation.

80



c
Q

c
P

−

(0, 0)

Figure 5.2: Minkowski sum of two slightly overlapped polygons.

5.2 Algorithm for Separating Overlapping Polygons

In this section, we describe a separation algorithm that �nds a local minimum for the

separation problem from the position-based optimization model. On the surface, it seems

that the separation problem may require some di�erent techniques. We observe that the

position-based model is applicable to the separation problem since the non-overlapping

conditions for adjacent polygons are prerequisites to a feasible solution of the position-

based optimization model. Hence, the position-based optimization model o�ers a uni�ed

approach to both problems.

Let P and Q be two overlapping polygons and their current positions be denoted by c

P

and c

Q

. If we displace P by d

P

and Q by d

Q

, then the two polygons will not overlap in their

new positions (c

P

+d

P

and c

Q

+d

Q

respectively) if and only if the point c

Q

�c

P

+d

Q

�d

P

is

outside P �(�Q). The vector from c

Q

�c

P

to the closest boundary point on the Minkowski

sum yields the shortest vector d

Q

� d

P

that separates the two polygons. Suppose we

constrain c

Q

�c

P

+d

Q

�d

P

to remain within a convex subset of the exterior of P�(�Q) that

touches the closest boundary point. If we so constrain every pair of overlapping polygons,

then if a feasible solution with respect to the constraints exists, the solution will give a set

of displacements that separate the polygons.

We again use the locality heuristic to �nd the desired convex subsets. However, we note

that the \nearest" point as de�ned by the locality heuristic is the intersection of l with

81



the boundary of P � (�Q), where l is the line connecting c

Q

� c

P

to the global origin.

Hence, this choice of \nearest" point might not be the same as the Euclidean closest point.

The advantage of this choice is that it guarantees a feasible solution if the following three

conditions hold:

� the polygons are not restricted to stay within a bounding box (container);

� all polygons are starshaped;

� no two polygons have their local origins at the same global position.

To see that this is the case, we �rst �x the positions of the polygons in the global coordinate

system and scale each of the polygons in their local coordinate systems by a scaling factor �.

We choose � to be such that after the scaling, none of the polygons is overlapping another.

Then scale up the whole layout by the same factor � in the global coordinate system. That

is, perform the following projective transformation on the global coordinate system.

(x; y) �! (�x; �y)

The result is a non-overlapping layout. However, this feasibility proof depends on the

fact that each \nearest" point stays at the same spot on each shrinking polygon. This

holds for the given de�nition of \nearest" point. It does not hold for the Euclidean closest

point. The �rst condition appears unrealistic because there is always a bounding strip for

a compaction in practice. However, often a wider strip of material is available from which

to cut the polygons.

As shown in Figure 5.2, if two polygons are slightly overlapping, then the di�erence

between the polygon positions will be slightly inside the Minkowski sum. The convex region

found by the locality heuristic still gives a good indication of the direction of motions

to separate the two polygons. Thus, we can use the locality heuristic from the previous

chapter to �nd the convex regions. Non-overlapping constraints are built similarly as in the

position-based optimization model of the previous chapter. A feasible solution that satis�es

the constraints ensures the separation of overlapping polygons.

We now specify the objective function to complete the description of the algorithm.

Since the goal is to �nd a non-overlapping con�guration with minimal amount of total

displacement, the objective function is therefore

minimize

n

X

i=1

jd

i

j (5:1)

82



where jd

i

j is amount of displacement of polygon P

i

.

As discussed in Remark 2.1, jd

i

j is either measured in Euclidean distance in which

jd

i

j =

q

d

2

ix

+ d

2

iy

:

or in the L

1

metric in which

jd

i

j = jd

ix

j+ jd

iy

j

where d

ix

and d

iy

are x and y components of d

i

.

In order to formulate the problem as a linear programing problem, we must have a linear

objective function. Therefore, we use L

1

distance in the objective function 5.1. Hence, the

objective function becomes

minimize

n

X

i=1

jd

ix

j+ jd

iy

j (5:2)

We use a standard technique to eliminate the absolute values in the objective function.

In this technique, every variable whose absolute value appears in the objective function is

replaced by two new variables. For example, the variable d

ix

which appears in the objective

function 5.2 is replaced by d

+

ix

and d

�

ix

. The new variables must have positive values. That

is, the following bounds are added into the linear program:

d

+

ix

> 0

d

�

ix

> 0 (5.3)

The variable d

+

ix

represents the \positive part" of d

ix

whereas d

�

ix

represents the \negative

part". All the occurrences of d

ix

in the constraints are replaced by

d

+

ix

� d

�

ix

The occurrence of jd

ix

j in the objective function is replaced by

d

+

ix

+ d

�

ix

This technique works when the absolute values only appear in the objective function.

The objective function together with condition (5.3) enforce that only one of d

+

ix

and d

�

ix

has non-zero value. If in the optimal solution of the linear program d

ix

is positive, then we

have d

�

ix

= 0 and d

ix

= d

+

ix

. Otherwise, we have d

+

ix

= 0 and d

ix

= �d

+

ix

. In both cases,

d

+

ix

+ d

�

ix

correctly reects the absolute value of d

ix

.

Now we have set up the complete linear program for the separation problem. The

solution of the linear program gives a non-overlapping con�guration for the polygons which

83



also minimizes the total displacement of the polygons measured in L

1

distance. Notice that

unlike the compaction algorithms in which multiple iterations of linear program solving are

needed, this separation algorithm needs only one iteration.

Remark 5.3 Preferably, we would like to minimize the total amount of displacement mea-

sured in Euclidean distance in our separation algorithm. However, we notice that in the

applications of our algorithm, the primary requirement is to �nd a non-overlapping con�g-

uration. The consideration to minimize the total amount of displacement comes secondary.

Nevertheless, the L

1

distance serves as a good approximation of the Euclidean distance in

our application.

5.3 Layout Made Easy

5.3.1 Database Driven Automated Marker Making

The separation algorithm of the previous section solves an open problem in database

driven systems for automatedmarker making. Such systems, developed by several CAD/CAM

�rms, are based on a database of high quality human generated markers.

Some human marker makers with 20 to 30 years of experience can generate extremely

high quality markers. The markers generated by marker makers with only two or three years

of experience are often 1% lower in e�ciency than the markers made by the most experienced

marker makers. Commercially available systems automatically generate markers at least

5% below the e�ciency of the best human generated markers. It is thought that if these

systems could somehow start with the top quality human generated markers as an a initial

con�guration, then they could generate much more e�cient markers. This is the idea behind

a database marker making system.

Given a set of polygons to be placed, the typical database matching system applies a set

of shape similarity criteria to �nd the marker in the database that has the closest size and

shape combinations. Each polygon to be placed in the new marker is matched to a polygon

in the human generated marker. Once such a match is found, it uses a \one polygon at a

time" technique to place each polygon in the new marker at the position of its matching

polygon in the human marker. If the polygon overlaps previously placed polygons in the

new marker, its position must be \corrected" so that it does not overlap these polygons.

Once a polygon is correctly placed, its position is frozen. Without a coordinated overlap

correction method, this form of \one polygon at a time" correction can grossly alter the

84



layout of the marker and make it harder or even impossible to place the rest of the polygons

anywhere near the position of their matching pieces. In some cases the correction algorithm

fails to �nd a non-overlapping position for the polygon.

With our separation algorithm, we can give a simpler and more reliable automatic layout

scheme. To distinguish our scheme from the scheme described above, we call our scheme

substitution based automated marker making . In our scheme, we �rst lay out each polygon

at the corresponding position of its matching polygon in the human generated layout. This

layout is created regardless of whether the polygons overlap each other. Next, we apply the

separation algorithm to �nd a nearby feasible non-overlapping placement if one exists. If

no such placement exists, we can increase the length of marker to allow such a placement

and apply the leftward compaction algorithm to shorten the length.

If we have no limitation in both dimensions of the marker, we can always �nd a nearby

non-overlapping placement (see the \scaling" argument in the previous section). However,

if the width is �xed, our separation algorithm can fail to �nd a feasible placement. We can

not expect to do better because the general problem is NP-complete.

5.3.2 Shape Matching Criteria

Recent studies in computational geometry o�er some general techniques on matching

polygon shapes [ABB91] [AG92]. However, these techniques do not take advantage of

the properties of the polygons in a speci�c application area possess and thus runs slowly.

One the other hand, domain speci�c knowledge sometimes can provide much more direct

and e�ective heuristics for matching and substituting polygons. Take pants markers as an

example, there are certain characteristics about the shape of a basic component such as a

panel piece. In addition, the dimensions of the pieces are governed by the size speci�cation,

i.e. the panel pieces for pants of size 32� 36 have basically the same dimension. Therefore,

ever though the exact shape of the panel pieces di�er from marker to marker, the shape

similarity measure for the same-sized panel pieces is presumably very high. Hence, in

practice, the size factor alone could decide underlying matching rule in a database driven

marker making system.

Currently, the separation algorithm works as the engine of our proposed database driven

marker making system. It does not mandate any speci�c shape similarity matching rule.

The user of our algorithm, a CAD company in textile industry, will be instrumental in

designing e�ective matching rules for their customers.

85



5.3.3 An Example

We have combined our algorithms into one separation/compaction algorithm with mul-

tiple user-selected options. This section describes an example of substitution based marker

making.

Using a naive polygon matching algorithm, we match a new set of polygons to the set

of polygons in a human generated marker. Figure 5.3 shows the marker generated by sub-

stituting matching polygons. Using our separation/compaction algorithm, we eliminate the

overlaps in the marker and then compact leftward. The resulting marker has an e�ciency

of 88.89%, which is comparable to human marker makers with two or three years of ex-

perience. By moving three small polygons manually to the gap on the lower right corner

of the marker and running leftward compaction again, the e�ciency increases to 89.49%,

only 0.65% lower than the marker generated by an expert human (Figure 5.6) for the same

set of polygons. This shows that starting from a good initial con�guration can greatly re-

duce the complexity of marker making and demonstrates the applicability of our separation

algorithm for database-driven marker making.

5.3.4 Cut Planning

The database driven marker making could be the only automatic marking scheme in

the next couple of years that can come very close to human performance. Its impact can

be well beyond our original purpose of increasing a few fractions of a percent in material

utilization. A fully automatic marker scheme that is able to produce production quality

marker in real time will change the whole apparel manufacturing process. We take the cut

planning in apparel manufacturing as an example to illustrate the inuence of the database

driven marker making.

An order that comes to an apparel manufacturer consists of the demand for di�erent

quantities of garments for several di�erent sizes. Let there be n di�erent sizes S

1

; S

2

; : : : ; S

n

in the order. For each size S

j

(1 � j � n), let demand for this size in the order be D

j

. The

apparel manufacturer must �rst calculate the materials needed to ful�ll the order and then

purchase the materials. The cut planning problem refers to the calculation of the materials

needed.

The current industrial practice uses a set of generic markers M

1

;M

2

; : : : ;M

m

to rep-

resent the markers to be made. Each marker M

i

contains a combination of sizes and has

an e�ciency e

i

based on statistics on the past human performance on the particular size

86



combination in M

i

. Let a

ij

be the number of size S

j

garments that can be cut from one M

i

marker.

S

1

S

2

: : : S

n

M

1

a

11

a

12

: : : a

1n

M

2

a

21

a

22

: : : a

2n

: : : : : : : : : : : : : : :

M

m

a

m1

a

m2

: : : a

mn

Demand D

1

D

2

: : : D

n

Assume that x

i

number of markers M

i

need to be cut to ful�ll the order. Then the cut

planning problem can be formulated as an integer programming problem.

maximize x

i

e

i

s:t:

m

X

i=1

a

ij

x

i

� D

j

for j = 1; : : : ; n

x

i

� 0 are integers

The marker M

i

is actually made by a human marker maker if x

i

> 0. The integer program

is usually solved by a greedy algorithm that limits the number of markers need to the made.

The problem with the current approach is that the real e�ciency of marker M

i

cannot

be taken into account when solving the integer program because the marker has not been

generated yet. The real e�ciency might di�er signi�cantly from historical data. Thus, cut

planning process may not �nd the real optimal solution. On the other hand, it is often too

expensive and takes to lone time to have humans generate all the markers beforehand.

With a database driven marker making system that is able to generate high quality

markers in real time, we can a�ord to generate all the markers and obtain the real e�ciency

data before we solve the cut planning problem. That will enable us to have a more accurate

prediction of the materials needed. This capability should reduce the inventory problem

when ordering more than what is needed and avoid missed shipments because of insu�cient

materials for manufacturing.

87



Figure 5.3: Marker generated by matching and substitution.

Figure 5.4: Marker after elimination of overlaps and leftward compaction. Length = 312.64

in, e�ciency = 88.98%

Figure 5.5: Marker after adjustment on 3 small polygons. Length = 310.87 in, e�ciency =

89.48%

Figure 5.6: The corresponding marker generated by a human. Length = 308.61, e�ciency

= 90.14%

88



Chapter 6

Compaction with Small Rotations

In this chapter, we extend our position-based model to allow polygons to rotate by a

small amount during compaction. As discussed in Chapter 1, allowing the polygons to

rotate several degrees (i.e. tilting) can result in increased e�ciency for a layout.

We present two di�erent methods for compaction with small rotations in this chapter.

The �rst method is based on relaxation of a polygon: �nding the position and the tilt of

the polygon that gives it the most freedom to move in various directions. In the second

method, we consider the non-linear optimization model for the entire set of polygons in-

volving both translations and rotations. Instead of solving this model directly, we solve

a linearized version. Translation-only separation then eliminates small overlaps resulting

from the linearization.

6.1 Rotational Compaction by Relaxation

6.1.1 Translational Relaxation of a Single Polygon

In this section, we focus on planning the translation of a single polygon Q in an envi-

ronment consisting of k static polygonal obstacles P

1

, P

2

, : : :, P

k

that surround Q. The

purpose of the motion planning is to �nd a point q

�

and a maximal value l

�

such that the

center of Q can be placed at any point within a square centered at q

�

and has size 2l � 2l.

without colliding with the surrounding obstacles.

In other words, once Q's center is placed at (q

�

x

; q

�

y

), it will be free from collision when

displaced by (�l; �l) for parameters � and � whose values are in the range [�1; 1]. What

this means for a boundary point u of Q when Q is placed at q

�

is that if we place the center

89



of a 2l� 2l square at u then the square can not contain any points from the obstacles. If

we move the center of the 2l � 2l square along the boundary of Q, the square generates a

\band" of obstacle-free region about the boundary of Q. We refer to this band as the slack

region of Q. Hence, another way to look at the relaxation of Q is that if we place the center

of Q at (q

�

x

; q

�

y

) then Q has the largest area slack region.

We call the above mentioned motion planning problem the relaxation problem for Q. We

show next that by applying the position-based optimization model described in Chapter 4,

we can �nd a locally optimal solution to the relaxation problem.

Recall that, using the con�guration space approach, we can convert the obstacles P

i

(1 � i � k) into enlarged obstacles P

i

� (�Q) (1 � i � k) and reduce the problem of

planning the motion for Q to the problem of planning the motion for a single point q, which

represents the center of Q, in the presence of the enlarged obstacles. The free space F

Q

for

the motion planning of Q is the complement of the union of these enlarged obstacles.

F

Q

= (P

1

� (�Q))[ (P

2

� (�Q))[ : : :[ (P

k

� (�Q)):

Let us denote the square corresponding to the range [q

x

� l; q

x

+ l]� [q

y

� l; q

y

+ l] by R.

Clearly, solving the relaxation problem for Q is equivalent to �nding largest sized square R

contained in F

Q

1

. Using De Morgen's law, we can express F

Q

alternatively as

F

Q

= P

1

� (�Q) \ P

2

� (�Q) \ : : :\ P

k

� (�Q):

Hence, �nding the largest R in F

Q

is equivalent to �nding the largest R that belongs to all

of the enlarged obstacles P

i

� (�Q) (i = 1; : : : ; k) simultaneously.

Let us represent R by its four corners: (q

x

+ l; q

y

+ l), (q

x

� l; q

y

+ l), (q

x

� l; q

y

� l) and

(q

x

+ l; q

y

� l). Since R has to be contained in P

i

� (�Q) (for 1 � i � k), its four corners

must also be contained in P

i

� (�Q). We use the same locality heuristic described the last

chapter to construct a large convex subset C

i

of P

i

� (�Q) that contains c

Q

, the current

position of the center of Q. The locality heuristic is applicable here since in tightly packed

layouts, such as in marker making applications, the freedom of Q to move around is very

limited. This implies that R is usually very small and that q

�

must be close c

Q

. Hence, for

the purpose of �nding the largest R, the convex subset C

i

obtained by the locality heuristic

gives a good approximation of P

i

� (�Q).

1

More precisely, it is equivalent to �nding the largest sized square in the connected component of F

Q

which contains the current position of Q.

90



It follows from the convexity of C

i

that if C

i

contains all four corners of a square, then C

i

contains the entire rectangle. Thus, to ensure that C

i

contains R, it is su�cient to constrain

the four corners of R to remain in C

i

.

We use the same method as described in Section 4.1.1 to derive a set of linear constraints

for each of the four corners of R. Consider the upper right corner (q

x

+ l; q

y

+ l) as an

example. The linear constraint generated for this point with respect to an edge AB of C

i

is

the following.

(B

y

� A

y

)q

x

� (B

x

�A

x

)q

y

+ (B

y

�A

y

�B

x

+A

x

)l +A

x

B

y

+ A

y

B

x

� 0 (6:1)

which is a linear constraint on q

x

; q

y

and l. The constraints for other three corners with

respect to edge AB are built similarly.

Next, for each obstacle P

i

(i = 1 : : : ; k), we calculate the convex set C

i

from P � (�Q)

using the locality heuristic and built a set of linear constraints for the corners of R with C

i

.

Let S be the collection of such linear constraints. We set up the following linear program

of three variables q

x

, q

y

and l.

maximize l

subject to : S

The solution (q

�

x

; q

�

y

; l

�

) of the linear program gives a locally optimal solution for the relax-

ation of Q. That is, if the center of Q is placed at (q

�

x

; q

�

y

), then Q can move (�; �)l

�

in

various directions (�; �), where j�j; j�j < 1, without colliding into the surrounding polygons.

Figure 6.1 shows an example of the relaxation for piece 12.

6.1.2 Rotational Compaction of a Single Polygon

From the previous section, we see that the larger the size of R, the larger the slack

region of Q. Conceivably, the size of R calculated for Q with di�erent tilts can be di�erent.

The idea behind rotational compaction using relaxation is the following: By sequentially

placing each of the polygons in a position and proper tilt such that it has the largest slack

region, we transform the layout into a \looser" con�guration. Hence, we can subsequently

apply our translational compaction algorithm to \tighten" the loosened layout.

Our �rst task is to �nd the tilt � of Q that yields the largest R. That is, when Q is

tilted by �, R as calculated by the algorithm in the previous section has the largest size.

We will call this rotational relaxation of Q.

91



0

12

3

4

5

6

7
8

9

10

11

12

0

12

3

4

5

6

7
8

9

10

11

12

Figure 6.1: An example of translational relaxation for polygon 12.

92



Let the range of tilt allowed for Q be [��;�]. Ideally, we would like to calculate the size

of R for every angle within the tilt range and choose the largest one. However, that would

require a complicated non-linear algorithm which would be di�cult to make numerically

stable. Therefore, we only take K equally-spaced discrete values within the range and

calculate R for Q tilted by the rotation corresponding to a discrete value. We then set � to

the angle that yields the largest R.

An example of rotational relaxation is depicted in Figure 6.2. Piece 12 has the position

and the tilt that allow it to have the largest slack region.

6.1.3 Algorithm for Rotational Compaction Using Relaxation

The complete algorithm for rotational compaction using relaxation method is as follows.

Step 1 Do a rotational relaxation for each polygon in the layout.

Step 2 Do a translational compaction.

Step 3 Iterate Step 1 and 2 until no progress can be made.

For Step 2, we can specify the same objective function used in the various compaction

functions described in Chapter 4. The relaxation of Step 1 helps to \loosen" the layout

and hence the translational compaction done in Step 2 usually achieves better results than

without the relaxation.

Figure 6.3 through Figure 6.4 present an example of rotational compaction using relax-

ation on a human generated marker. Figure 6.3 shows the original marker and the result

of rotational compaction using relaxation. Figure 6.4 compares the results of applying left-

ward translational compaction alone on the marker and applying rotational compaction

using relaxation.

The best result we have achieved is 2.41% improvement in e�ciency on a human gener-

ated production marker versus 0.79% improvement with translational compaction alone.

6.2 Rotational Compaction Using Linearization

The second method we present here for devising a practically e�cient rotational com-

paction algorithm is linearization. As we have mentioned, the boundary of the con�guration

space of two polygons that are allowed to simultaneously translate and rotate is a nonlin-

ear algebraic surface. To express the relation of a point to the nonlinear surface by linear

93



0

12

3

4

5

6

7
8

9

10

11

12

(a)

0

12

3

4

5

6

7
8

9

10

11

12

(b)

Figure 6.2: An example of rotational relaxation for polygon 12.

94



0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415
1617

18

19
20

21
22

Name:
Width:
Length:
Pieces:
Efficiency:

1311−5as
61.00 in
81.83 in
23

80.85%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16
17

18

19
20

21

22

Name:
Width:
Length:
Pieces:
Efficiency:

1311−5as−rl
61.00 in
80.25 in
23

82.44%

Figure 6.3: An example of rotational compaction using relaxation: a human generated

marker and the result rotational compaction using relaxation.

95



0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415
1617

18

19
20

21

22

Name:
Width:
Length:
Pieces:
Efficiency:

1311−5as−cl
61.00 in
81.62 in
23

81.06%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16
17

18

19
20

21

22

Name:
Width:
Length:
Pieces:
Efficiency:

1311−5as−rl
61.00 in
80.25 in
23

82.44%

Figure 6.4: An example of rotational compaction using relaxation (continued): the com-

parison with translational only compaction on the same marker.

96



constraints, we cut a thin slice from the surface and try to �t it with a set of hyper-planes

by linearization.

Let us consider an edge UV of the Minkowski sum P � (�Q) for polygons P and �Q,

where �Q is a copy of Q rotated by 180 degrees. Recall from Chapter 3 that every edge

of a Minkowski sum is formed by a vertex-edge supporting pair. Let UV be formed by a

supporting pair consisting of vertex A of P and edge BC of �Q.

Assume P is rotated around its local origin by �

1

and �Q by �

2

, where �

1

and �

2

are

measured relative to the current tilts of the polygons. Let j�

1

j � � and j�

2

j � � for a constant

�. Assume that � is small enough such that the corresponding vertex A

0

of the rotated P

together with the edge B

0

C

0

of the rotated �Q are still an edge-vertex supporting pair

which forms the corresponding edge U

0

V

0

of the Minkowski sum of the rotated polygons.

Let the coordinates ofA, B and C in their respective local coordinate system be (A

x

; A

y

),

(B

x

; B

y

) and (C

x

; C

y

). The new local coordinates of these three vertices after rotation are

A

0

x

= A

x

cos �

1

�A

y

sin �

1

A

0

y

= A

x

sin �

1

+A

y

cos �

1

B

0

x

= B

x

cos �

2

�B

y

sin �

2

B

0

y

= B

x

sin �

2

+B

y

cos �

2

C

0

x

= C

x

cos �

2

� C

y

sin �

2

C

0

y

= C

x

sin �

2

+ C

y

cos �

2

The edge U

0

V

0

on the Minkowski sum of the rotated polygons has the following coordi-

nates (U

0

V

0

is ordered counterclockwise).

U

0

x

= A

0

x

+ B

0

x

= A

x

cos �

1

� A

y

sin �

1

+B

x

cos �

2

�B

y

sin �

2

U

0

y

= A

0

y

+ B

0

y

= A

x

sin �

1

+A

y

cos �

1

+B

x

sin �

2

+B

y

cos �

2

V

0

x

= A

0

x

+ C

0

x

= A

x

cos �

1

�A

y

sin �

1

+ C

x

cos �

2

� C

y

sin �

2

97



V

0

y

= A

0

y

+ C

0

y

= A

x

sin �

1

+A

y

cos �

1

+ C

x

sin �

2

+ C

y

cos �

2

In this section, we will use p and q to denote the relative displacements of P and Q with

respective to their current position c

P

and c

Q

. Note that we change the usual meaning of

p and q here for notational simplicity. The new global positions for P and Q are therefore

p + c

P

and q + c

Q

respectively. We now derive the non-overlapping constraint for point

F = (q + c

Q

)� (p+ c

P

) with respect to edge U

0

V

0

. Let us denote c

Q

� c

P

by G. Using the

same method as in Section 4.1.1, we start the derivation with

U

0

F � U

0

V

0

� 0:

This expands to

(F � U

0

)� (V

0

� U

0

) � 0

and further to

(F

x

� F

x

)(V

0

y

� U

0

y

)� (R

0

y

� U

0

y

)(V

0

x

� U

0

x

) � 0:

Substituting variables yields

(G

x

+ q

x

� p

x

� (A

x

cos �

1

�A

y

sin �

1

+ B

x

cos �

2

� B

y

sin �

2

)) �

(C

x

sin �

2

+ C

y

cos �

2

� (B

x

sin �

2

+ B

y

cos �

2

))

� (G

y

+ q

y

� p

y

� (A

x

sin �

1

+A

y

cos �

1

+ B

x

sin �

2

+ B

y

cos �

2

)) �

(C

x

cos �

2

� C

y

sin �

2

� (B

x

cos �

2

�B

y

sin �

2

)) � 0:

This further expands to:

(�B

y

cos �

2

+ C

y

cos �

2

� B

x

sin �

2

+ C

x

sin �

2

)q

x

+

(B

y

cos �

2

� C

y

cos �

2

+ B

x

sin �

2

� C

x

sin �

2

)p

x

+

(B

x

cos �

2

� C

x

cos �

2

�B

y

sin �

2

+ C

y

sin �

2

)q

y

+

(�B

x

cos �

2

+ C

x

cos �

2

+ B

y

sin �

2

� C

y

sin �

2

)p

y

+

(�B

y

G

x

cos �

2

+ C

y

G

x

cos �

2

+B

x

G

y

cos �

2

� C

x

G

y

cos �

2

�A

y

B

x

cos �

1

cos �

2

+A

x

B

y

cos �

1

cos �

2

+ A

y

C

x

cos �

1

cos �

2

�A

x

C

y

cos �

1

cos �

2

+B

y

C

x

cos

2

�

2

� B

x

C

y

cos

2

�

2

�A

x

B

x

cos �

2

sin �

1

�A

y

B

y

cos �

2

sin �

1

+ A

x

C

x

cos �

2

sin �

1

+A

y

C

y

cos �

2

sin �

1

� B

x

G

x

sin �

2

+ C

x

G

x

sin �

2

� B

y

G

y

sin �

2

98



+C

y

G

y

sin �

2

+A

x

B

x

cos �

1

sin �

2

+A

y

B

y

cos �

1

sin �

2

�A

x

C

x

cos �

1

sin �

2

�A

y

C

y

cos �

1

sin �

2

� A

y

B

x

sin �

1

sin �

2

+A

x

B

y

sin �

1

sin �

2

+A

y

C

x

sin �

1

sin �

2

� A

x

C

y

sin �

1

sin �

2

+B

y

C

x

sin

2

�

2

�B

x

C

y

sin

2

�

2

) � 0

which simpli�es to:

(�B

y

cos �

2

+ C

y

cos �

2

� B

x

sin �

2

+ C

x

sin �

2

)q

x

+

(B

y

cos �

2

� C

y

cos �

2

+ B

x

sin �

2

� C

x

sin �

2

)p

x

+

(B

x

cos �

2

� C

x

cos �

2

�B

y

sin �

2

+ C

y

sin �

2

)q

y

+

(�B

x

cos �

2

+ C

x

cos �

2

+ B

y

sin �

2

� C

y

sin �

2

)p

y

+

(�B

y

G

x

+ C

y

G

x

+ B

x

G

y

� C

x

G

y

) cos �

2

+

(�B

x

G

x

+ C

x

G

x

� B

y

G

y

+ C

y

G

y

) sin �

2

+

(A

x

B

y

� A

y

B

x

� A

x

C

y

+A

y

C

x

) cos(�

2

� �

1

) +

(A

x

B

x

+ A

y

B

y

�A

x

C

x

�A

y

C

y

) sin(�

2

� �

1

) +

B

y

C

x

� B

x

C

y

� 0 (6.2)

6.2.1 Formulation for Translation Only Compaction

As a way of verifying our derivation of the non-penetration constraint, we show that

non-penetration constraint for translational compaction is a special case. Let us set the

relative rotation angles �

1

and �

2

all to zero. We have

(�B

y

+ C

y

)q

x

+

(B

y

� C

y

)p

x

+

(B

x

� C

x

)q

y

+

(�B

x

+ C

x

)p

y

+

(�B

y

G

x

+ C

y

G

x

+B

x

G

y

� C

x

G

y

) +

(A

x

B

y

� A

y

B

x

�A

x

C

y

+A

y

C

x

) +

B

y

C

x

� B

x

C

y

� 0

which is exactly the translation-only constraint we derived in Section 4.1.1.

99



6.2.2 Other Vertex-Edge Supporting Pair

If the vertex-edge supporting pair that forms UV came is composed of a vertex A from

polygon �Q and an edge BC from polygon P , then the formulation is slightly di�erent.

Let the tilts for polygon P

1

and P

2

be denoted (as above) by �

1

and �

2

. Repeating the same

derivation above, we obtain the non-penetration constraint for F against U

0

V

0

.

(�B

y

cos �

1

+ C

y

cos �

1

� B

x

sin �

1

+ C

x

sin �

1

)q

x

+

(B

y

cos �

1

� C

y

cos �

1

+ B

x

sin �

1

� C

x

sin �

1

)p

x

+

(B

x

cos �

1

� C

x

cos �

1

�B

y

sin �

1

+ C

y

sin �

1

)q

y

+

(�B

x

cos �

1

+ C

x

cos �

1

+ B

y

sin �

1

� C

y

sin �

1

)p

y

+

(�B

y

G

x

+ C

y

G

x

+ B

x

G

y

� C

x

G

y

) cos �

1

+

(�B

x

G

x

+ C

x

G

x

� B

y

G

y

+ C

y

G

y

) sin �

1

+

(A

x

B

y

� A

y

B

x

� A

x

C

y

+A

y

C

x

) cos(�

1

� �

2

) +

(A

x

B

x

+ A

y

B

y

�A

x

C

x

�A

y

C

y

) sin(�

1

� �

2

) +

B

y

C

x

� B

x

C

y

� 0 (6.3)

6.2.3 Linearization

To linearize 6.2 and 6.3, we use the dominant terms in the Taylor expansion of sin x and

cosx for small x

sin x = x+O(x

3

)

cosx = 1� x

2

+O(x

4

):

We substitute these approximations of sin x and cosx into the inequalities. Then, we

eliminate the quadratic and higher degree terms and obtain the linearized form of the

inequalities. The linearized form for 6.2 is

(�B

y

+ C

y

)q

x

+

(B

y

� C

y

)p

x

+

(B

x

� C

x

)q

y

+

(�B

x

+ C

x

)p

y

+

(�B

y

G

x

+ C

y

G

x

+B

x

G

y

� C

x

G

y

) +

(�B

x

G

x

+ C

x

G

x

�B

y

G

y

+ C

y

G

y

)�

2

+

100



(A

x

B

y

� A

y

B

x

�A

x

C

y

+A

y

C

x

) +

(A

x

B

x

+A

y

B

y

� A

x

C

x

� A

y

C

y

)(�

2

� �

1

) +

B

y

C

x

� B

x

C

y

� 0

and for 6.3

(�B

y

+ C

y

)q

x

+

(B

y

� C

y

)p

x

+

(B

x

� C

x

)q

y

+

(�B

x

+ C

x

)p

y

+

(�B

y

G

x

+ C

y

G

x

+B

x

G

y

� C

x

G

y

) +

(�B

x

G

x

+ C

x

G

x

�B

y

G

y

+ C

y

G

y

)�

1

+

(A

x

B

y

� A

y

B

x

�A

x

C

y

+A

y

C

x

) +

(A

x

B

x

+A

y

B

y

� A

x

C

x

� A

y

C

y

)(�

1

� �

2

) +

B

y

C

x

� B

x

C

y

� 0

6.2.4 The Algorithm

The algorithm proceeds similar as the algorithm in Section 4.1.4. We �rst generate the

pairs of adjacent polygons using a sweepline algorithm. For each adjacent pair of polygons

P and Q, we compute the Minkowski P �(�Q) and identify a convex subset C in P � (�Q)

using the locality heuristic. For each edge of P � (�Q) that is included in C, we identify

the vertex-edge supporting pairs that formed this edge.

2

The non-overlapping constraints

are generated using these vertex-edge supporting pairs according to the formulation in

Section 6.2.3. The algorithm then solves the resulting linear program.

What is left to specify are the bounds on the rotation angles. For each polygon, we

allow its tilt to change continuously within a small range. To limit the approximation error,

we choose the range to be [�

0

� 0:5; �

0

+ 0:5] degrees. This range must be contained in the

tilt limits. Hence, the �nal range we use is

[�

0

� 0:5; �

0

+ 0:5]\ [��;�]

It is conceivable that due to the approximation of sin x and cosx, overlap among the

pieces may occur after each linearized rotational compaction. However, the overlaps are

2

An edge in the Minkowski sum can be formed by more than one vertex-edge supporting pairs.

101



very small, and we can e�ectively eliminate them using the algorithm in Chapter 5. We

run a overlap resolution between every two linearized rotational compaction steps to avoid

accumulation of error. The complete algorithm is therefore to iterate a linearized rotational

compaction step and an overlap resolution step until no further improvement to the e�ciency

can be made.

6.2.5 Examples

Figure 6.5 illustrates one iteration of linearized rotational compaction on a simple layout

with only two polygons. The �gure on the top shows the initial layout. The �gure in the

middle depicts the position of the polygons immediately after linearization. One overlap,

which occurs between the two polygons, is magni�ed in the large circle. The bottom �gure

shows the result after the elimination of the overlaps in the middle �gure. Figure 6.6 shows

the �nal result of rotational compaction on the layout in Figure 6.5 after several iterations

which bring the tilts of polygons to their limits.

Figure 6.7 shows the result of rotational compaction using linearization on a human gen-

erated marker. Figure 6.8 compares the results of rotational compaction using linearization

with translational only compaction.

6.3 Comparison of the Two Rotational Compaction Meth-

ods

One would expect the linearization method to perform better than the relaxation method

(i.e. reach a lower \energy" status for the same layout using the same objective function)

based on the following two reasons. First, in the relaxation method, the rotation angle of

a polygon can only be taken from several discrete values equally spaced within a range.

In the linearization method, however, the rotation angle of the polygon can change con-

tinuously within the same range (through successive linearized compaction steps). Hence,

the linearization method can reach the same set of position/rotation values that results in

a local minimum for the relaxation method. Second, a layout can be \locked" if only a

one-piece-at-a-time motion is permitted as in the relaxation method. However, the same

layout may not be \locked" if simultaneous motion of all the polygons is permitted.

In practice, however, the linearization method does not outperform the relaxation method

on every marker. There exist markers that give better compaction result using the relax-

102



19.00 in
20.00 in

Width:
Length:

19.00 in
19.64 in

Width:
Length:

19.00 in
19.72 in

Width:
Length:

Figure 6.5: A single iteration of rotational compaction using linearization.

103



19.00 in
18.12 in

46.91%
2

Width:
Length:
Pieces:
Efficiency:

(b)

19.00 in
20.00 in
2

42.50%

Width:
Length:
Pieces:
Efficiency:

(a)

Figure 6.6: The �nal result of rotational compaction using linearization after successive

iterations.

104



0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Name:
Width:
Length:
Pieces:
Efficiency:

24412−7
59.00 in
101.74 in
22

74.22%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

Name:
Width:
Length:
Pieces:
Efficiency:

24412−7−rot
59.00 in
98.42 in
22

76.72%

Figure 6.7: An example of rotational compaction using linearization: a human generated

marker and the result of rotational compaction using linearization.

105



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Name:
Width:
Length:
Pieces:
Efficiency:

24412−7−cl
59.00 in
101.35 in
22

74.51%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

Name:
Width:
Length:
Pieces:
Efficiency:

24412−7−rot
59.00 in
98.42 in
22

76.72%

Figure 6.8: An example of rotational compaction using linearization (continued): the com-

parison with translational only compaction on the same marker.

106



ation method. This fact illustrates that locked markers for rotational compaction are very

rare, so relaxation works most of the time. It also illustrates that the relaxation method

can jump to more global optimum because it considers the entire valid tilt interval whereas

the linearization method falls to the nearest optimum.

On the \unlocked" markers, the linearization method runs much faster than the re-

laxation method. This is because the relaxation method takes a relaxation step for every

polygon and each relaxation step involves several iterations of setting up and solving a linear

program. On the other hand, the linearization method is much slower than translation-only

compaction since the small interval required by linearization makes many more iterations of

linearized rotational compaction in order to converge to a local optimum. Our experiments

shows that linearization method usually is about four times slower than translation-only

compaction.

107



Chapter 7

Floating

In this chapter, we present another extension to the position-based optimization model

of Chapter 4. The extended model solves the oating problem { the problem of distributing

free space in a layout evenly among the polygons. Another way to describe oating is that

it tries to increase distances between neighboring polygons as a electric �eld does to a set of

mutually repulsive charged objects in a container. Figure 7.1 shows an example of oating.

The motivation for oating is that, in the cutting process, the cutting tool needs a certain

amount of clearance in order to avoid cutting into adjacent polygons. One way of creating

the clearance is to add bu�ering area along the boundary of a polygon. However, adding

bu�ering area decreases the e�ciency of the layout. In marker making, the primary goal is

always to get maximal e�ciency. Separating pieces that are touching is a secondary goal. In

achieving this secondary goal, it is never allowed to decrease the e�ciency. Hence, adding

bu�ering is not viable alternative. In this chapter, we show that by using oating, however,

one is able to utilize the existing free spaces inside the layout to create the bu�ering areas.

In this chapter, we will �rst de�ne the distance between polygons. Then we will intro-

duce a set of variables that represent the distance between polygons to the position-based

optimization model. We then present several oating formulations each o�ers a di�erent

way of distributing the free space. Lastly, we discuss the application of the extension to

overlap resolution in a overlapped layout. We show that with the added capability of con-

trolling the distance between polygons, we can partially eliminate overlaps when it is not

possible to completely resolve them.

108



Figure 7.1: An example of oating

109



7.1 Distance Between Polygons

We begin by giving a formal de�nition of the distance between two polygons. This

notation is a generalization of the \depth of overlap" concept introduced in Chapter 1.

We shall see that depth of overlap corresponds to the negative distance between the two

polygons. We �rst de�ne the distance between polygons using the polygons themselves.

Then we illustrate how it is reected in the Minkowski sum of two polygons.

Before we give the de�nition, we review briey the incidence relation between two poly-

gons. We say that polygon P overlaps polygon Q if there exist some points of P that

are contained in the interior of Q (reciprocally, there must also exist some points of Q

that are in the interior of P ). Otherwise, P and Q are non-overlapping . When P and Q

are non-overlapping, they can still be in contact , that is P and Q are incident on their

boundaries.

Again, we use P (c

P

) to denote a polygon P whose center is placed at c

P

.

De�nition 7.1 Given polygons P (c

P

) and Q(c

Q

), let v be the minimum length vector such

that Q(c

Q

+ v) is in contact with P . The distance between P (c

P

) and Q(c

Q

), denoted by

D(P (c

P

); Q(c

Q

)), is de�ned as follows:

If P (c

P

) and Q(c

Q

) do not overlap, then

D(P (c

P

); Q(c

Q

)) = kvk

If P (c

P

) and Q(c

Q

) overlap, then

D(P (c

P

); Q(c

Q

)) = �kvk

where kvk is the length of v.

From the de�nition, we immediately have the following facts.

Fact 7.1 D(P (c

P

); Q(c

Q

)) = D(Q(c

Q

); P (c

P

))

Fact 7.2 D(P (c

P

); Q(c

Q

)) = 0 if and only if P (c

P

) and Q(c

Q

) are in contact.

Next, we try to obtain characterization of D(P (c

P

); Q(c

Q

)) from the Minkowski sum

P � (�Q). For notational simplicity, let us denote P � (�Q) by M . Let �(c

Q

� c

P

;M) be

the minimal distance between c

Q

� c

P

and �M { the boundary points of M . That is

�(c

Q

� c

P

;M) = min fk(c

Q

� c

P

)� rk j r 2 �Mg

110



De�ne �(P (c

P

); Q(c

Q

)) as

�(P (c

P

); Q(c

Q

)) = �(c

Q

� c

P

;M))

if c

Q

� c

P

is not contained in M . Otherwise

�(P (c

P

); Q(c

Q

)) = ��(c

Q

� c

P

;M)

Claim 7.3 D(P (c

P

); Q(c

Q

)) = �(P (c

P

); Q(c

Q

))

Proof: Without loss of generality, we only prove for the case where P (c

P

) and Q(c

Q

)

do not overlap. The proof for the case where they overlap is similar, only the signs of

�(P (c

P

); Q(c

Q

)) and D(P (c

P

); Q(c

Q

)) are changed.

Let b be the boundary point of M that is closest to c

Q

� c

P

. Let w be the vector

connecting c

Q

� c

P

to b. Translating c

Q

� c

P

by w brings c

Q

� c

P

to b. By Corollary 3.11,

that means that Q(c

Q

+w) is in contact with P (c

P

). Since, by de�nition, D(P (c

P

); Q(c

Q

))

is the minimum distance needed to bring Q(c

Q

) into contact with P (c

P

), we must have

D(P (c

P

); Q(c

Q

)) � kwk = �(P (c

P

); Q(c

Q

))

.

On the other hand, suppose Q(c

Q

) is translated by a distance of D(P (c

P

); Q(c

Q

)) to a

position Q(c

0

Q

) to be contact with P (c

P

). Again, by Corollary 3.11 , c

0

Q

must be on the

boundary of M . Thus, the distance between c

Q

and c

0

Q

, which is D(P (c

P

); Q(c

Q

)), must

be less than or equal to �(P (c

P

); Q(c

Q

)) by de�nition. Hence, we must have

D(P (c

P

); Q(c

Q

)) = �(P (c

P

); Q(c

Q

))

2

In the rest of this chapter, we use D(P (c

P

); Q(c

Q

) and �(P (c

P

); Q(c

Q

)) interchangeably

to denote the distance between P (c

P

) and Q(c

Q

).

7.2 Controlling the Distance Between Polygons

Let p and q denote the new positions of P and Q. In Chapter 4, we showed that by �nding

a large convex subset C in P � (�Q) and constraining q � p to lie in C, we can guarantee

that there is no overlap between P (p) and Q(q), or equivalently D(P (p); Q(q))� 0. In this

111



section, we show that by transforming C into other convex sets and building similar linear

constraints on the transformed sets, we are able to force the distance D(P (p); Q(q)) to be

at least d, where d can be either a constant or a variable.

Let C be the convex subset identi�ed by the locality heuristic of Chapter 4. Let A

i

A

i+1

,

i = 1; : : : ; k be the list of edges of P � (�Q) output by the locality heuristic. By our

convention, A

i

A

i+1

is ordered counterclockwise. That is, when walking from A

i

to A

i+1

,

the interior of P � (�Q) is on the left-hand side of A

i

A

i+1

and the outward normal of

A

i

A

i+1

points to the right-hand side of A

i

A

i+1

.

Associate each edge A

i

A

i+1

with a line L(A

i

A

i+1

) that contains A

i

A

i+1

. Let half-plane

H(A

i

A

i+1

) be delimited by L(A

i

A

i+1

) and contain the outward normal of A

i

A

i+1

. Then C

is the intersection of H(A

i

A

i+1

) (for i = 1; : : : ; I) and is bounded by L(A

i

A

i+1

).

Let L(A

i

A

i+1

; d) be obtained by translating the line L(A

i

A

i+1

) by a distance d along

the outward normal of A

i

A

i+1

and H(A

i

A

i+1

; d) be the corresponding half-plane obtained

by translating H(A

i

A

i+1

) the same amount. It is clear that L(A

i

A

i+1

; d) is to the right of

A

i

A

i+1

for d > 0 and to the left of A

i

A

i+1

for d < 0.

We now construct a new convex set C(d) by taking the intersection of H(A

i

A

i+1

; d)

for i = 1; : : : ; I . It follows immediately that C(d) is delimited by the lines L(A

i

A

i+1

; d),

i = 1; : : : ; I .

Clearly, if d > 0, then C(d) is completely contained in C (see Figure 7.2). In this case, the

distance of a point in C(d) to the boundary of C is at least d. Since the points of P � (�Q)

are either on or outside C, which means the distance of a point in C(d) to P � (�Q) is at

least d because each point is at least d distant from each line containing an edge of the

convex polygon. Hence we have,

Lemma 7.4 Let d > 0. If q � p 2 C(d), then D(P (p); Q(q))� d.

7.3 Linear Constraints for Floating

Let L(A

i

A

i+1

; d) be a bounding line of C(d) with associated half-plane H(A

i

A

i+1

; d).

We now consider the linear constraint for q � p 2 H(A

i

A

i+1

; d). Again, let us denote q � p

by R. From Appendix A, we know that the cross product A

i

R�A

i

A

i+1

equals twice the

signed area of the triangle 4RA

i+1

A

i

. The signed area is positive when R, A

i+1

and A

i

are

ordered counterclockwise, or, equivalently, when R 2 H(A

i+1

A

i

). On the other hand, the

area of4RA

i+1

A

i

equals

1

2

hkA

i

A

i+1

k, where h is the signed distance from R to L(A

i

A

i+1

).

112



We have

h = 2

A

i

R�A

i

A

i+1

kA

i

A

i+1

k

:

Hence, R 2 H(A

i

A

i+1

; d) can be expressed as

2

A

i

R� A

i

A

i+1

kA

i

A

i+1

k

� d (7:1)

Since A

i

R� A

i

A

i+1

is a linear constraint on R, the inequality 7.1 is a linear constraint in

the variables p, q and d. It is important that d is a variable in the linear constraint. It

enables us to have exible control over the distance between polygons.

7.4 Maximize the Minimum Distance Between Polygons

With the linear constraint 7.1 built in the previous section, we immediately have an

algorithm for maximizing the minimum distance between the polygons. We obtain this

algorithm by modifying the position-based optimization model (see Chapter 4).

In the modi�ed model, we replace the original linear constraints with the linear con-

straints of the form 7.1. The objective function is simply to maximize d. If we assume that

there is no overlap in the layout, then the current positions of the polygons and the value

d = 0 always form a feasible solution of the model. If the model has an optimal solution

d

�

> 0, then by Lemma7.4, the distance between a pair of neighboring polygons is at least

d

�

when the polygons are placed at their new positions.

7.5 Separating Polygons by a Speci�c Distance

Here, by \separating polygons by a distance d" we mean to �nd a set of new position

of the polygons in a layout in which the distance between every pair of polygons is at least

d. If we are only interested in detecting whether the polygons in a layout can be separated

by a speci�c distance

�

d, we can add a constraint d =

�

d to the model in the previous section

and use a constant objective function. With the constant objective function, the linear

program solver will return a set of feasible solutions immediately after it �nds one. That is,

the linear program solver will stop once it reaches the boundary or the interior the feasible

region without marching to the optimal point. Hence, it is faster to solve.

Moreover, we can combine the above formulation with the one in Section5.2 to achieve

the result of separating the polygons by a distance of

�

d while minimizing the total transla-

tions of the polygons. To do so, we replace the constant objective function in the previous

113



paragraph with the following objective function.

minimize

n

X

i=1

jq

i

j

We use the same technique as in Section 5.2 to eliminate the absolute values.

7.6 Maximizing the Overall Distance between Polygons

If the model in Section7.4 does not have a non-zero optimal solution, it is a good in-

dication that there is a critical set in the layout. We say a list of polygons P

1

; P

2

; : : : ; P

l

forms a critical set in a layout if P

i

is in contact with P

i�1

and P

i+1

(2 � il � 1) and it

is impossible to make the distance between P

i

and P

i+1

(1 � i � l � 1) greater than zero

without increasing the length of the layout.

For layouts with critical sets, although the polygons that are included in some critical

set can not be moved, there can still be some free areas that can be \distributed" among

the polygon not in the critical sets. Hence, we need a formulation that achieves partial

results. To do so, we revise the model in Section 7.4 by assigning a separate variable d

j

for

the jth pair of neighboring polygons for j = 1; : : : ; J , where J is the number of neighboring

polygons found by the sweepline algorithm. We call these variables distance variables and

they are subject to the bounds d

j

� 0 (j = 1; : : : ; J). When building the constraints for the

j'th pair, we replace the d in inequality 7.1 by d

j

. The objective function is to maximize

the overall distance between neighboring pairs of polygons:

maximize

J

X

j=1

d

j

With the above formulation, the distance variables corresponding to the pairs of neigh-

boring polygons that are in some critical set will be zero in the optimal solution. However,

other distance variables can now have non-zero values and hence those polygons will be

separated by various distances.

7.7 \Uniform" Distribution of Free Areas

We see that the formulations in Section 7.4 and Section 7.6 each have their own ad-

vantages and drawbacks. For the formulation in Section 7.4, free space in the layout are

distributed among polygons uniformly in the sense that every pair of adjacent polygon is

114



separate by at least a distance d

�

for an optimal solution d

�

> 0. But, it may fail to increase

the distance among polygons if there exist critical sets in the layout. The formulation in

Section 7.6, on the other hand, is usually able to �nd the optimal solution which has non-

zero value for some of the distance variables. However, since the objective function is to

maximize the sum of all the distance variables, it may increase the distance between some

pairs of polygons at the expense of decreasing the distance between some other pairs of

polygons or keep those distances very small. This behavior may not be desirable for certain

applications.

In this section, we �nd a compromise between the two formulations. We adopt the linear

constraints from Section 7.6 and achieve our goal by modifying the objective function.

Let us create a new variable m to represent the mean of all the distance variables.

m =

1

J

J

X

j=1

d

j

Our �rst goal is the same as the one in the formulation of Section 7.6 which is to maximize

the overall distances between the neighboring polygons. Hence, we would include

maximize Jm

or, equivalently,

minimize � Jm

in our new objective function.

Our second goal is to distribute the free spaces as uniformly among the polygons as

possible. That is, we want to minimize the deviation between a distance variable and m.

We express this goal using the following objective

minimize jd

1

�mj+ jd

2

�mj+ : : :+ jd

c

�mj

Combining the two goals together, we obtain our new objective function

1

:

minimize � Jm +

J

X

j=1

jd

j

�mj (7:2)

1

Note that our ability to express and combine our objectives is limited by the linear program model,

which only allows a single linear objective function. Hence, we have to express each of our individual goal

as a linear function and combine them using a linear combination. The single objective function we have

devised does not necessarily accomplish the multiple objectives exactly the ways we intended it to. However,

we can inuence the behavior of the model by assigning proper weights in the linear combination.

115



We now use the same technique as in Section 5.2 to eliminate the absolute value in the

objective function. We �rst introduce 2J new variables l

+

i

and l

�

i

for 1 � j � J . Next,

we replace the term jd

j

� mj in the objective function by l

+

i

+ l

�

i

and add the following

constraints

l

+

i

� l

�

i

= d

i

�m

and bounds:

l

+

i

� 0

l

�

i

� 0

into the linear program.

Remark 7.1 We can have an alternative technique to eliminate the absolute value in the

objective function 7.2. In this technique, we introduce J new variables l

j

for 1 � j � J and

replace jd

j

�mj in the objective function by l

j

. Then, we add the following constraints:

d

j

�m � l

j

d

j

�m � �l

j

and bounds

l

j

� 0

to the linear program.

The di�erence with the previous technique is that we introduce J fewer variables but

J more constraints. Empirical studies show that the simplex method for solving a linear

program runs approximately in time linear in max(m;n), where m is the number of vari-

ables and n the number of constraints. Since we usually have many more constraints than

variables, we do not expect signi�cant di�erence in the performance of the two techniques.

7.8 Maximize the Minimum Distance Between Polygons:

An Alternative Method

The formulations in previous sections try to achieve their goals in a single step by \de-

signing" a suitable objective function. The linear objective function itself o�ers limited

exibility. Sometime, when the goal cannot be achieved by specifying a single objective

116



function, we may try to set up linear program with di�erent objective functions as subrou-

tines and use an algorithm to control these subroutines. For example, when there exists

critical sets in a layout, the formulation in Section 7.4 fails to increase the distance between

any pairs of polygons because d

�

is zero.

We can actually solve the problem in two steps. In the �rst step, we set up the objective

function to maximize the sum of d

i

's. Then we identify the polygons in the critical sets by

checking whether the corresponding distances in the solution are zeros. In the second step,

we can just maximize the minimum separation among the non-critical polygons.

7.9 Floating For Overlapped Layouts

Since the linear constraint we formulated in Section 7.3 is an extension to the one in

Section 4.1.1, all of the formulations presented in previous sections can be applied to a

layout that contains overlaps. In particular, with d set to 0, the formulation in Section 7.5

exactly the same as the original formulation for separation presented in Section 5.2.

Moreover, with the distance variables, we have more exible control over elimination

of overlaps. In contrast to the model in Section 5.2 which fails to make any improvement

when it cannot eliminate all the overlaps in a layout, we can now eliminate the overlaps

partially, that is eliminate the overlaps for some of the overlapped pairs of polygons but not

all of them. We can also make improvements by reducing the negative distance between

two overlapped polygons.

However, to make the formulations work well on layouts that contain overlaps, we need

to make the following modi�cation to the formulations. The modi�cation is to replace the

bounds

d

j

� 0 (j = 1; : : : ; J)

in the previous linear program models with

d

j

� �

�

d

j

(j = 1; : : : ; J)

for some proper constants

�

d

j

> 0 (j = 1; : : : ; J) to be speci�ed next.

There are two conicting requirements for

�

d

j

(j = 1; : : : ; J). First,

�

d

j

should be small

in order to prevent d

j

from having large negative value, which means deep overlap between

the two polygons in the jth pair. However, if

�

d

j

is too small, we might not be able to �nd

any feasible solutions. Therefore, we want

�

d

j

to be big. In particular, for partial resolution

of overlaps, it is important for the

�

d

j

to have big enough values such that the current

117



positions of the polygons (plus any value of d

j

that satis�es d

j

�

�

d

j

for 1 � j � J) can

be a feasible solution of the linear program model. The reason is that we want to make

possible any in�nitesimal motion of polygons that could result in an improvement in the

objective function. If the current positions of the polygons cannot form a feasible solution,

those in�nitesimal movements may not be possible.

We now present a method for choosing the bounds

�

d

j

(j = 1; : : : ; J) that satisfy the

aforementioned requirements. Let us assume that the jth pair of polygons P (c

P

) and Q(c

Q

)

are overlapping each other. Let C be the convex subset of P � (�Q) found by the locality

heuristic. Since P (c

P

) and Q(c

Q

) are overlapping, the point c

Q

� c

P

is not contained in

C. Intuitively, we want to \expand" C, that is, move the bounding lines of C towards the

exterior of C in equal speed, until one of the lines hits c

Q

� c

P

. Let

�

d

j

be the distance

traveled by the bounding lines (see Figure 7.3). More precisely, we want to �nd the convex

set C(�h) for h > 0 such that c

Q

� c

P

is on the boundary of C(�h) and assign h to

�

d

j

. Such

an h can be found by calculating the signed distance of c

Q

� c

P

to the bounding lines of C.

The distance of c

Q

� c

P

to a bounding L(A

i

A

i+1

) of C is positive if c

Q

� c

P

is contained

in the half-plane H(A

i

A

i+1

), otherwise it is negative. Then, �h is chosen as the smallest

(negative) value of the signed distances. Clearly, with �h and

�

d

j

so chosen, c

P

and c

Q

satisfy the constraints built for P (c

P

) and Q(c

Q

). Therefore, if all

�

d

j

(1 � j � J) are chose

this way, the current positions of the polygons form a feasible solution of the linear program

model.

We next argue that the

�

d

j

(j = 1; : : : ; J) chosen as described above is in some sense

the set of smallest possible values to guarantee that the current positions form a feasible

solution. The reason is simply that if

�

d

j

is smaller than the h of the previous paragraph,

then we need to move c

Q

� c

P

by a non-zero distance to satisfy the constraints built for

P (c

P

) and Q(c

Q

) which corresponds to C(

�

d

j

). But that motion may not be possible. Hence,

the current positions cannot form a feasible solution. In this event, the infeasibility imposed

by a small d

j

prevents possible improvements in the other part of the layout.

118



P (−Q)

O(0,0)

C(d) C

d

c   − c
Q P

Figure 7.2: C(d) | the convex set obtained by translating the boundary lines of C by a

distance of d

P (−Q)

O(0,0)

C

c   − c
Q P

d 0

C(d  )0

Figure 7.3: The translated convex set for slightly overlapped polygons

119



Chapter 8

Mixed Integer Programming

Model for Compaction and

Two-Dimensional Packing

In this chapter, we extend the linear programming formulation used in our position-

based optimization model to a mixed integer programing (MIP) formulation. The MIP

formulation o�ers a reduction of the two-dimensional strip packing problem (see Chapter 1)

to the MIP problem.

1

Hence, the optimal solution of a two-dimensional strip packing

problem can be found by solving a mixed integer program. The reduction also serves as a

direct proof that optimal 2D strip packing problem is in NP.

The MIP formulation is then further extended to solve the multiple containment prob-

lem: the problem of �nding a non-overlapping placement of a set of non-convex polygons

in a non-convex container. In automated marker making applications, this problem corre-

sponds to placing several trim pieces in a gap. Using the MINTO optimization package, we

have sometimes been able to place up to nine polygons in a gap in a few minutes.

8.1 Limitation of the Locality Heuristic

In our position-based compaction algorithm, the locality heuristic is used to restrict the

relative motion of polygon Q with respect to polygon P to a convex subset of P � (�Q).

On the one hand, such a restriction is essential in reducing the motion planning problem

1

Flips and discrete rotations can be added to the MIP model, but we have not attempted to implement

this.

120



embodied in compaction to a more manageable linear programming problem. On the other

hand, it may exclude other solutions to a compaction problem that may result in a shorter

length. A simple example is depicted in Figure 8.1. Figure 8.1 (a) shows the initial con-

�guration of a layout to be compacted. Figure 8.1(b) shows the result of applying our

position-based compaction algorithm.

Obviously, for the layout in Figure 8.1(a), the best result that can be achieved by a

compaction algorithm is a layout of length l in which polygon Q and polygon P are stacked

vertically. The actual result achieve by our position-based compaction algorithm has length

2l� 1.

In this example, our position-based compaction algorithm failed to �nd the optimal

compaction result of length l because the convex subset selected by the locality heuristic

prevents P and Q from moving to the relative position that yields the optimal solution. The

starting edge selected by the locality heuristic is the edge b of P � (�Q). The convex subset

C of P � (�Q) built from b is actually the half-plane delimited by b and on the right-hand

side of b. The linear constraint built from C constrains Q to stay on the right of P . Thus,

the length 2l � 1 of the layout shown in Figure 8.1(b) is the best length achievable given

the constraint.

Clearly, if the edge a of P � (�Q) (see Figure 8.1(c)) is selected as the starting edge for

building a convex subset C

1

of P � (�Q), then C

1

is the half-plane delimited by and above

a. The linear constraint built from C

1

states that Q must lie on top of P . Hence, using

C

1

instead of C to build the non-overlapping constraints would enable our position-based

compaction algorithm �nd the optimal compaction of length l.

An immediate idea to improve our position-based compaction algorithm is therefore to

try several convex subsets of P � (�Q) for each pair of polygons P and Q and choose the

ones that collectively yield the best compaction result. However, the following theorem

shows that making such a choice is NP-hard.

Theorem 8.1 Given a layout consisting of N polygons P

1

, P

2

, : : : ; P

N

. Assume that for

each pair of polygons P

i

and P

j

(1 �; i; j � N , i 6= j), we can choose one from two di�erent

convex subsets of P

i

� (�P

j

) to build non-overlapping constraints for P

i

and P

j

in our

position-based compaction algorithm. Then, �nding a combination of the convex subsets

that achieves the optimal solution for compaction is NP-hard.

Proof: We again reduce the now familiar PARTITION problem to our problem. The

reduction is shown in Figure 8.2. For an instance fa

1

; a

2

; : : : ; a

N

g of PARTITION, we

121



h

 l

h

a

b

P (−Q)

c 
Q

c
P

2 l − 1

(a)

(b)

(c)

Q

c 
Q

P

c
P

 l 

P

c
P

P

c
P

Q

c 
Q

Q

2h

Figure 8.1: (a) The initial layout. (b) The compaction result using the position-based

compaction algorithm. (c) Illustration of the locality heuristic: the dotted lines illustrates

the boundary of the convex subset identi�ed by the locality heuristic.

122



P

P PPPP
11

PP

0

2 3 4 5 6 7

Figure 8.2: Reduction of PARTITION to selecting the right combination of convex subsets.

P P

PP

P

P
11

P

P

0 2

3

4 5

6 7

Figure 8.3: Successful selection of the right combination of convex subsets solves PARTI-

TION.

build rectangles P

i

of height 1 and length a

i

, (i = 1; : : : ; N). We then add two additional

rectangles P

0

and P

N+1

each of height 1 and length B =

1

2

P

N

i=1

a

i

. Initially, these polygons

are placed in the con�guration shown in Figure 8.2.

For rectangles P

i

and P

j

(i 6= j), the Minkowski sum P

i

� (�P

j

) is also a rectangle. Let

t, b, l and r represent the top, bottom, left and right edges of P

i

� (�P

j

) respectively. Let

convex sets H

t

, H

b

, H

l

and H

r

be the half-planes in P

i

� (�P

j

) that are delimited by edge

t, b, l and r respectively. The non-overlapping constraint built using H

t

constrains P

j

to

stay above P

i

. The other three cases can be deduced similarly.

The choices of convex sets for pairs of polygons are as follows. First, for building non-

overlapping constraints of P

i

(1 � i � n) with P

0

, we o�er two choices of convex subsets:

123



the one that constrains P

i

to stay on top of P

0

and the one that constrains P

i

to stay to

the right of P

0

. Second, for building non-overlapping constraints between P

i

(1 � i � n)

and P

n+1

, we o�er the convex subset that constrains P

i

to stay to the left P

n+1

and the

one that constrains P

i

to stay below P

n+1

. Third, for building non-overlapping constraints

between P

i

and P

j

(1 � i; j � n, i < j), we o�er the convex subset that constrains P

i

to

stay to the left P

j

and the one that constrains P

i

to stay below P

j

.

Figure 8.3 shows the minimal length compaction of the layout in Figure 8.2. It is clear

that PARTITION has a solution if and only if the layout in Figure 8.2 has a length 2B

compaction. 2

In the next section, we will use a set of Boolean variables (each has value 0 or 1) to

represent each of the convex subsets to be chosen. The problem of choosing the combination

of convex subsets that yields the minimal length compaction is then reduced to a MIP

problem. Theorem 8.1 illustrates that using the full power of MIP is justi�ed since the

problem is at least as hard as MIP (that is, NP-hard) in the worst case. More importantly,

reducing the problem to MIP enables us to take the advantage of the powerful techniques

developed recently for solving mixed integer programs, especially the techniques deployed

by the MINTO package [Nem93] which we are currently using.

Remark 8.1 Note that in Figure 8.1(a), if the upper right vertex of P and the lower left

vertex of Q are incident, then the point c

Q

� c

P

is incident on the vertex at the upper right

corner of P � (�Q). In this case, we are forced to make an arbitrary choice between using

edge a or edge b to build a non-overlapping constraint. We can use the same idea as in the

proof of Theorem 8.1 to show that making a consistent choice that leads to minimal length

compaction for layouts that have vertex-vertex incidences is NP-hard.

8.2 MIP Formulation for Optimal Two-Dimensional Pack-

ing/Compaction

From the previous section, we see that in the optimal solution of compaction, the relative

position of Q with respect to P does not necessarily lie in the convex subset of P � (�Q)

identi�ed by the locality heuristic. In that case, our position-based compaction algorithm

fails to �nd the optimal solution since it restricts the relative motion of Q with respect to

P to stay in the convex subset found by the locality heuristic.

124



Thus, in order to �nd the optimal solution of compaction, we need to consider the whole

free space P � (�Q) for each pair of polygons P and Q. To this end, we �rst give the

following de�nitions.

De�nition 8.1 Let S be a set and let c

1

; c

2

; : : : ; c

k

be subsets of S. We call c

1

; c

2

; : : : ; c

k

a

covering of S if

S =

k

[

i=1

c

i

We call c

1

; c

2

; : : : ; c

k

a convex covering of S if c

1

; c

2

; : : : ; c

k

is a covering of S and c

i

is a convex set for 1 � i � k. We call c

1

; c

2

; : : : ; c

k

a convex decomposition of S if

c

1

; c

2

; : : : ; c

k

is a convex covering of S and c

i

\ c

j

= ; for 1 � i � k.

We now extend our position-based model to include multiple convex subsets that cover

the free space for the motion planning of a pair of polygons. Let C

1

; C

2

; : : : ; C

k

be a convex

covering of P � (�Q) for polygons P and Q. For each subset C

i

, we can induce a set of

linear constraints on q � p, the new relative position of Q with respect to P , based on the

boundaries of C

i

(see Section 4.1.2). Each of the linear constraint has the following form.

�q

x

+ �q

y

+ p

x

+ �p

y

� � (8:1)

where �; �; ; � and � are constants.

Let us assign a Boolean variable B

i

to each of the convex subsets C

i

(1 � i � k). These

Boolean variables satisfy

k

X

i=1

B

i

= 1:

That is, at any moment only one of the Boolean variables can be true. If B

i

is 1, we say

that C

i

is selected . Otherwise, C

i

is not selected .

Assume 8.1 is a linear constraint built from convex subset C

i

. We expand the linear

constraint to include the Boolean variable B

i

.

�q

x

+ �q

y

+ p

x

+ �p

y

� (B

i

� 1)�+ � (8:2)

where � is a su�ciently large constant such that when B

i

is 0, constraint 8.2 is satis�ed

automatically.

Thus, among all the constraints built from the convex subsets only the constraints built

from the selected convex subset are e�ective in constraining q� p. All the other constraints

become redundant. By selecting a proper convex subset, we are able to place q�p anywhere

in the free space P � (�Q).

125



We now perform the above steps for every pair of polygons in a layout. The result is an

extension of the position-based compaction algorithm that is capable of �nding the global

optimal of compaction. The following is the modi�ed algorithm.

126



A position-based compaction algorithm using MIP formulation.

Input \force" f

i

for polygon i (i = 1; : : : ; N); /* f

i

's are constants */

Assign a positional variable p

i

for polygon i (i = 1; : : : ; N);

do

L := the list of all pairs of polygons;

S := ;; /* S is the set of linear constraints generated so far */

foreach pair of polygons (P;Q) in L do

Compute P � (�Q);

Find a convex covering C

1

, C

2

, : : :, C

k

of P � (�Q);

Assign a Boolean variable B

i

for C

i

(1 � i � k);

S

0

:= the MIP constraints generated from C

i

(1 � i � k) according to (8.2);

S := S [ S

0

;

Add the constraint

P

k

i=1

B

i

= 1;

end

foreach polygon P do

S

1

:= the non-overlapping constraints between P the boundaries of the container;

S := S [ S

1

;

end

Set up a mixed integer program

maximize

P

N

i=1

f

i

� p

i

subject to S;

Get the set of new positions p

i

(i = 1; : : : ; N) by solving the mixed integer program;

Place polygon i at p

i

(i = 1; : : : ; N);

until the objective function

P

N

i=1

f

i

� p

i

stops increasing.

It follows from the algorithm that the following theorem holds.

Theorem 8.2 A feasible solution to the MIP model built in the above algorithm gives a non-

overlapping placement of the polygons in the container. Conversely, from a non-overlapping

placement of the polygons, we can obtain a feasible solution to the MIP model.

The following theorem is the main result of this section.

Theorem 8.3 The position-based compaction algorithm using MIP formulation solves the

two-dimensional strip packing problem

2

for non-convex polygons.

2

Assume the polygons can not rotate or ip.

127



Figure 8.4: Length cannot be shortened without exchanging the positions of the polygons

Proof: As before, we view the right boundary of the container as the front-end of a

\piston" piece and assign a positional variable p

N+1

to it. The constraints of the polygons

with the container ensure that every polygon lies to the left of the piston piece. The

objective function of the MIP model becomes

minimize p

N+1

:

Let l

�

be the length of the optimal solution of a two-dimensional strip packing problem.

Since the optimal solution of the two-dimensional strip packing is also a non-overlapping

placement of the polygons, from the previous theorem it has a corresponding feasible so-

lution of the MIP model. Therefore, p

�

N+1

, the optimal solution of the MIP model for a

layout, is of equal or lesser length than l

�

. But p

�

N+1

cannot be smaller since it is already

optimal. Therefore p

�

N+1

equals l

�

. 2

We note here that in the solution of the MIP model two polygons can exchange positions,

attaining positions which might not be possible given only continuous motion of the two

polygons. Therefore the optimal solution of the MIP model is foremost the optimal solution

of the two-dimensional strip packing problem. Whether it is also an optimal solution to

the compaction problem depends on whether there is continuous motion that translates

the polygons from their initial positions to the positions given by the optimal solution of

the MIP. If such a continuous motion does not exist, then the optimal solution to the

compaction may have longer length than the optimal solution to the strip packing. As we

shall see in the next chapter, �nding the optimal solution to compaction is harder than

�nding the optimal solution to strip packing.

For example, for the layout shown in Figure 8.1(a), the optimal solution for strip packing

is also a solution for compaction because we can push polygon Q all the way to the left.

However, for the layout shown in Figure 8.4, exchanging the position of the two polygons,

128



Figure 8.5: Example of �nding optimal compaction using MIP formulation

which is the only way to improve the length of the layout, can not be achieve by continuous

coordinated motion of the two polygons.

Figure 8.5 shows an example of �nding the optimal compaction using the position-based

compaction with MIP formulation.

8.2.1 Algorithms for Finding Convex Covering

We now specify how to construct the convex subsets C

i

(1 � i � k) which cover the free

space P � (�Q). The general problem of decomposing of polygon into minimal number of

convex polygons has been studied in computational geometry. There exists a polynomial

time algorithm to decompose a simple polygon into minimal the number of convex poly-

gons [Kei85]. Note that a linear number of convex polygons is su�cient since triangulation

is a convex decomposition.

For simplicity, we assume that P � (�Q) does not have holes. To apply the existing

algorithms, we make a rectangle that contains P � (�Q). The rectangle is made su�ciently

large such that we will not encounter the need to place q�p outside the rectangle during the

Compaction/Packing algorithm. We then take out P �(�Q) from the rectangle. The result

is a polygon with a hole that approximates P � (�Q). We can use a simple transformation

to convert the polygon with a hole to a simple polygon and then decompose the converted

simple polygon. If P � (�Q) has multiple holes, the process is similar.

If P � (�Q) is starshaped, then we have a simple and more direct algorithm of �nding

129



a convex covering of the whole free space P � (�Q). The algorithm proceeds as follows.

Let us number the edges of P � (�Q) as e

1

; e

2

; : : : ; e

L

. We start from edge e

1

. We use e

1

as a starting edge in the locality heuristic to �nd a convex subset. Once a convex subset is

found, we output the subset and mark all the edges that appear in subset. Then, we start

from the next unmarked edge and use it as the starting edge of the next convex subset. We

stop when all the edges have been marked. In the worst case, such an algorithm runs in

O(n

2

) time as shown in Figure 8.7, where n is the total number of edge in the polygon.

Theorem 8.4 If P � (�Q) is starshaped, then the above algorithm generates a covering

for P � (�Q).

Proof: Let U be an arbitrary point in P � (�Q). Let O be a kernel point of P � (�Q).

Since P � (�Q) is a simple Jordan curve and O is inside P � (�Q) and U is outside

P � (�Q), the edge segment UO either intersects the boundary of P � (�Q) at one point

or contains an edge of the boundary. Let us only consider the �rst case; the second case is

similar. Let I be the single intersection point of UO with the boundary of P � (�Q) (see

Figure 8.6). Then, the edge segment UI is completely contained in the convex subset C

that contains I . Assume otherwise, that is, C does not totally contain UI . Then there must

be an boundary edge of C that intersects UI at a point I

1

. Then I

1

is not visible from the

kernel point since it is hidden by I . This contradicts the fact that P � (�Q) is a starshaped

polygon. 2

The polynomial time decomposition and covering algorithms establish that the reduction of

two-dimensional strip packing to MIP via our position based algorithm can indeed be done

in polynomial time and the resulting MIP model has size polynomial in the input size of the

strip packing problem. Hence, this provides another proof that strip packing of non-convex

polygons is in NP. Another proof that strip packing of arbitrary shaped polygons is in NP

is given in [MDL91].

8.3 MIP Formulation for Multiple Containment Problem

Given a polygonal container Q and a set of polygons P

1

; P

2

; : : : ; P

k

, the multiple contain-

ment problem asks for a non-overlapping placement of P

1

; P

2

; : : : ; P

k

inside Q. We again

try to �nd a MIP formulation for this problem.

To solve the multiple containment problem, we must take into consideration two types

of non-overlapping constraints. The �rst type is the non-overlapping constraints between P

i

130



O

U

I

Figure 8.6: Correctness of the convex covering algorithm.

O(n)  edges
O(n)  edges

O(n)  edges

Figure 8.7: Quadratic running time of the convex covering algorithm.

131



and P

j

(i 6= j). The constrains are built from the Minkowski sum P

i

� (�P

j

). The second

type is the non-overlapping constraints between P

i

and the polygonal container Q. These

constraints are built from the Minkowski di�erences Q 	 (�P

i

). The MIP formulation for

the �rst type of non-overlapping constraints has been studied in the previous section. In

this section, we concentrate on the second type of non-overlapping constraint.

We apply the same basic idea as in the previous section. That is, since Q 	 (�P

i

) is

generally non-convex, we decompose Q	 (�P

i

) into several convex subsets and use a set of

Boolean variables to select one of them.

Let C

1

; C

2

; : : : ; C

k

be a convex decomposition (or covering) of Q	(�P

i

). We again assign

each of these convex subsets a Boolean variable B

i

. The Boolean variables are incorporated

into the linear constraints built from the convex subsets using the same method as in the

linear constraint 8.2.

3

By selecting a proper B

i

(1 � i � n), p

i

, the new position of P

i

can

be placed anywhere in Q	 (�P

i

).

The position-based multiple containment algorithm is the same as the position-based

compaction algorithm using MIP formulation in the previous section. The modi�cation we

need to make is to replace the simple linear constraints between P

i

and the rectangular

container with the mixed integer constraints between P

i

and a polygonal container Q.

Similar to Theorem 8.2, we have

Theorem 8.5 A feasible solution to the MIP model built in the position-based multiple

containment algorithm gives a non-overlapping placement of the polygons in the polygonal

container.

Since, in multiple containment problem, all we interested in is a feasible solution, we use

a dummy (constant) objective function to replace the \energy" function in our normal

formulation. With the constant objective function, the mixed integer program solver returns

immediately after it �nds the �rst feasible solution, without evaluating further feasible

solutions. We observed that the use of a constant objective function reduced the running

time signi�cantly.

We have applied the multiple containment algorithm to trim placement. Figure 8.8

shows an example of placing four polygons in a gap. In [DLM94], the authors compared

the MIP based algorithm for multiple containment problem with the more purely geometric

algorithms.

3

However, since Q is a static object here, we have q

x

= 0 and q

y

= 0.

132



Figure 8.8: Example of trim placement using multiple containment algorithm.

133



Chapter 9

The Complexity of the

Compaction Problem

9.1 Introduction

We de�ne the compaction problem as a coordinated motion planning problem for a set

of objects such that the area of the bounding convex hull or the bounding rectangle is

minimized.

Since we are only interested in establishing lower bounds, we concentrate on a special

case of compaction: all the objects are con�ned to move within a bounding rectangle whose

top, left and bottom sides are �xed and whose right side can only move inward. It is easy

to show that we can reduce this special case to the more general case of compaction by

introducing a properly shaped sleeve piece and a piston piece. Therefore the lower bound

of the special case is also a lower bound of the general case.

The coordinated motion planning problem for a collection of rectangles inside a �xed

rectangular box (the warehouseman problem) has been studied by Hopcroft, et. al. [HSS84].

They obtained a well-known PSPACE-hardness result for the problem by a reduction from

the PSPACE-hard symbol transposition problem. Spirakis and Yap [SY84] studied the

coordinated motion of a collection of discs in a polygonal container and proved the strong

NP-hardness of the problem. Since the possibility of PSPACE=P and NP=P has not been

ruled out, the hardness results do not imply that it requires exponential time to decide

the existence of a coordinated motion plan, even though the shortest plan might have an

exponential number of moves. Chazelle et. al. [COSSW84] showed that a special case of

134



A B

C D

E

F

H
G

8

8k

2x2k

3x2k

2x2

     2k

3x2

k bricks

3x2

3x2 free space

2x(2k−6)

4x(2k−4)

2x(2k+2)

1x(2k +2)

3x(4k+4)

1

2
2x (4k −    )

each row contains 2k fillers.

1

2
3 rows of 1x      fillers 

Figure 9.1: The reduction of warehouseman problem from the symbol transposition prob-

lem.

motion planning requires exponential number of moves. But in their case, only one object

is allowed to move at a time. There is no previously known explicit construction of a

coordinated motion planning that requires an exponential number of moves.

This chapter is organized as follows. In Section 9.2, we establish the PSPACE-hardness

of the compaction problem, and we prove the existence of sets of rectangles which require an

exponential number of moves to compact. In Section 9.3, we prove that if some simple non-

rectangular objects are allowed, one can explicitly construct warehouseman and compaction

problems which require a number of moves exponential in the number of edges in the input.

In the last section, we show that if more complicated shapes are allowed, even �nding a

locally optimal solution to compaction might require an exponential number of moves. This

result establishes that the position-based compaction algorithm presented in Chapter 4 has

an exponential-time worst case.

9.2 The PSPACE-Hardness of Compaction

Hopcroft et. al. [HSS84] proved the PSPACE-hardness of the warehouseman problem by

an ingenious reduction from the PSPACE-hard symbol transposition problem to the ware-

houseman problem. Here we follow their approach and reduce the transposition problem

to the compaction problem. Our reduction is built on top of their construction with some

additional construction to force the warehouseman problem to reach the �nal state when

compaction has a solution. In the next section, we review the reduction used in [HSS84],

135



with emphasis on the facts that are related to our modi�cation.

9.2.1 Review of the Warehouseman Problem

The layout of rectangular objects in the reduction in [HSS84] is shown in Figure 9.1.

The bounding rectangle has dimension 8 � 8k where k will be speci�ed later (we follow

the convention in [HSS84] to represent dimension as height � length). The large blocks A

through H are called sliders. Their dimensions are shown in the �gure. The 2� 2k space

between A and B is �lled with 2� 2 blocks called dominoes, which play the role of symbols

in the symbol transposition problem. The 3 � 2 blocks in the lower left corner are called

bricks. The small 1 �

1

2

blocks between D; E and F are called �llers. There are some

additional �llers between B, F and the right boundary. The 3� 2 free space to the left of

F is the only free space within the bounding box.

There are two meaningful motions allowed in this layout. First, C;D, E and the �llers

to right of D;E can move to the right to �ll the 3� 2 empty space. One brick below C can

move up and �ll the space opened by C. G can subsequently move to the left and 12 �llers

can drop down to �ll the space left by G. Such a circular motion can continue until all the

bricks move up to the middle row, or can be reversed to move in the opposite direction.

Second, during any step of the circular motion, free space can be opened up between C and

D to allow a domino to drop down. Then B can move to the left, the �llers to the right of

F can move up, and F can move next to the right wall. Eight �llers to the right of D and

E can take the space to the left of F . A new 3� 2 free space will be opened up to resume

the circular motion, which can shift the domino between C and D to the left or right and

reinsert it back into the row of dominoes. This latter motion simulates the transposition of

symbols.

To simulate the transformation rules in the symbol transposition problem, each domino

is further partitioned into smaller rectangles as shown in Figure 9.2. The partition of a

domino consists of a bottom rectangle, a thick vertical spine, and a left and right set of

rectangles. The spines all have the same dimension. The rectangles in the left and right set

have decreasing heights when counted from bottom to top. The lengths of the rectangles

are varied slightly around a nominal length to form various \dents" and \tabs" which can

be used to enforce symbol transformation rules that govern whether a pair of dominoes can

be neighbors.

In addition, there are objects called spacers between the dominoes. A spacer is much

136



ε

SPINE

PLUG

DOMINO

Figure 9.2: The construction of a domino.

longer than a domino so that it cannot be dropped down into the free space opened between

C and D during the sequence of motion. A spacer can \transmit" the �t between a pair of

dominoes on its two sides. The choices of the height of the rectangles in a domino together

with the existence of the spacers ensure that (1) any pair of dominoes cannot be directly

adjacent to each other; there must be at least one spacer between them (2) the rectangles of

a domino cannot be rearranged within a domino and (3) the rectangles cannot be exchanged

between two dominoes.

The amount k unspeci�ed at the beginning can now be determined as the total length

of all the symbols between block A and B (divided by 2).

Based on this construction, Hopcroft et. al. proved that the symbol transposition prob-

lem has a solution if and only if the dominoes in their initial con�guration can reach a �nal

con�guration through a continuous coordinated motion.

9.2.2 PSPACE-hardness Proof

To reduce the symbol transposition problem to the compaction problem, we need to

modify the construction so that the dominoes in their initial state, which represents an

initial string in the transposition problem, can reach the �nal state if and only if the sliding

wall in the compaction problem can move downward.

Let � be the minimum height of the top rectangles in the left or right set of the dominoes.

The height of the spine of a domino can be shortened by as much as � =

1

5

� and still make

the whole reduction work. This follows from the fact that the top rectangles in the left or

right set of a domino have the smallest height among all the rectangles comprising a domino.

Thus, the tiny free space on top of a spine cannot a�ect the two signi�cant motions in the

warehouseman problem, nor can it introduce new signi�cant motions.

137



A B

C
D

E

F

H
G

8

2x2k

3x2k

3x2

k bricks

3x2

A’ 4x2k
B’

4+ε
4x (4k −1    )

1

2

2x (2k−6)

4x (2k−4)

2x (2k+2)

1x (2k +2)

3x(4k+4)

1

3

1

6k

1

6k

1

2
2x (4k −     )

x24 k small blocks of size   

Figure 9.3: The reduction of compaction from the symbol transposition problem through

the reduction of the warehouseman problem.

Assume there are n di�erent types of dominoes. We shorten the height of the spine of a

type i domino by i�=n. We introduce n types of plug blocks whose length equals that of the

spine. A type i plug block has height 4+ i�=n. Thus, when a type i plug is put immediately

on top of the spine of a domino, the total height is 6 units.

Figure 9.3 shows the additional constructions we need for the reduction. Let R denote

the bounding box of the original construction. We will �rst delete the top edge of R and

extend the two side edges upwards. We arrange the plugs in such a way that a plug of type i

is put above where a type i domino would be in the �nal con�guration of the warehouseman

problem. Between the plugs, there are stu�er blocks of height 4 and length equal to the

nominal length of the rectangles in a left or right set. Once plugs and stu�ers are put into

place, it is not possible for them to exchange positions. Initially, the top edges of the plugs

and stu�ers are aligned along a horizontal line which is 4 + � above the top edge of block

A. The maximum height of free space between the plug row and the domino row is at most

2� (e.g. when a type 1 plug is put on top of a type n domino), which is less than half of

the smallest height among dominoes rectangles. Once again, the existence of these tiny free

spaces will not change the two signi�cant motions inside R.

In order to force the dominoes to the desired �nal state, we must also take away the 3�2

free space inside rectangle R when the desired �nal con�guration is reached. Otherwise, we

can push D to the right by 2 units and drop a type 1 domino to the free space left between

138



2n

1/n

1/n
2n - 2

4n+1

 n

 n

2n

2n  n

3n+1

1

Figure 9.4: Construction and the initial state of a block puzzle.

C and D. If that happens, there can be many possible arrangements for the rest of the

dominoes such that the sliding wall can drop down by �. The 12 additional 1�

1

2

�llers to

the right of B

0

can serve the purpose of �lling up the free space. We need an extra layer

of 24k small blocks of size

1

6k

�

1

3

to �ll the space left open by the 12 �llers to the right of

B

0

. If we put the sliding wall horizontally at the position 4 +

1

6k

+ � above the top edge of

block A, then the sliding wall can drop down by

1

6k

+ � if and only if the dominoes are in

their �nal con�guration. It is easy to see that this reduction, like the reduction in [HSS84],

takes polynomial time. Thus we have

Theorem 9.1 Compaction is PSPACE-hard even for a collection of rectangles.

9.3 Compaction in an Exponential Number of Moves

The PSPACE-hardness of the symbol transposition problem shows that it is possible to

simulate a binary counter by moving rectangular objects inside a rectangular container such

that reaching a goal state from an initial state requires an exponential number of moves.

But such a simulation may be complicated to construct and to describe. Here we show that

if we relax the restriction that all the objects must be rectangles, we can have an example

which is small in size and easy to understand. The example shows that even when the

compaction problem involves simple objects such as U-shaped objects, we still have to deal

with an exponential number of moves.

Our construction is shown in Figure 9.4. We build a rectangular container of dimension

(6n+2)� (4n+ 2). Two vertical bars of width 1 and height 3n+ 1 divide the space within

the container into three equal sized slots. We call them slot 1, 2 and 3, from left to right.

The bottom half of each slot is taken by some rectangular blocks. There is one 2n � 2n

139



(a) (b)

Figure 9.5: (a) The �nal state. (b) A dead-end situation.

block in slot 1 and two n � 2n blocks on each of slots 2 and 3. Due to the vertical bars,

these rectangular blocks cannot be moved from one slot to another. On the upper half of

the third slot, there are some U-shaped objects: U

1

; U

2

; : : : ; U

n

stacked together vertically

(U

n

is the smallest one). The walls of these objects have width

1

n

. All of these objects have

height n. The bottom of wall of U

i

is

2n�2i

n

long.

The height of the vertical bars ensures that only one U-shaped object can pass through

the openings on top of the bars. Therefore, at any particular move, only the object on top

of a stack can be moved. There is a 2n � n block initially at the bottom of the left slot.

This block can slide between the bottom of the slots and is called a slider.

It is easy to see that the right wall of the container can be moved to position 4n + 2

if and only if all the U-shaped objects are moved to the upper half of the �rst slot (see

Figure 9.5 (a)).

It is easy to verify that to solve the compaction problem, a problem harder than the

n� 3 disc Tower of Hanoi problem has to be solved

1

. Thus the total motion required is at

least 
(2

n�3

), which is exponential in n.

Theorem 9.2 Coordinated motion planning requires a number of moves that is exponential

in the number of edges in the input.

Proof: Omitted. 2

1

Discs are restricted to move to neighboring posts. This is still solvable with O(3

n

) moves.

140



9.4 Finding a Local MinimumRequires an Exponential Num-

ber of Moves

In this section, we �rst give another construction that involves more complicated shapes

to show that compaction requires an exponential sized motion. Then, based on the con-

struction, we show that even �nding a local optimum, according to an algorithm presented

in Chapter 4, requires an exponential number of steps.

Consider the device shown in Figure 9.6. The device is composed of four movable pieces

and a static obstacle that also provides the top, left and bottom boundaries. The obstacle

is a single connected piece and has a row of k \teeth" on the top and a row of k \teeth" on

the bottom. A tooth is one unit wide and one unit high. The teeth on the top are displaced

a half unit to the right with respect to the teeth on the bottom. The four movable pieces

are labeled A, B, C and D as shown in Figure 9.6. The goal is to move piece A to the

left by k units. To this end, we need to move piece B through the two rows of teeth.

During the motion, a total of k up and down motions will occur for piece B. B moves one

unit vertically during each up or down motion. One unit of vertical motion of B will be

transferred through piece C to piece D. The two slanted edges in piece D have slope

1

k

.

Therefore, each up (down) motion of one unit in B will force D to move to the right (left)

by k units.

The construction is actually replicated n times and concatenated together as shown in

Figure9.7. The top part is connected to the bottom part ultimately at the far left. The

pieces are organized into n groups with each group containing four pieces. There are overlaps

among components in the groups since the piece D in one group also serves as piece A in

the next group. From left to right, the groups are ordered from 1 to n. By the analysis

in the previous paragraph, the k units of horizontal motion of piece A of group 1 force k

2

units of horizontal motion of piece D of group 1, which is the piece A of group 2. The k

2

units of horizontal motion of piece A of group 2 in turn force k

3

units of horizontal motion

of piece A of group 3. When the motion propagates to group n, piece A of group n has

to move a total of k

n

units horizontally. If we choose k as a small constant, then the total

number of edges in the construction is linear in n.

Hence, we have the following theorem.

Theorem 9.3 The compaction problem shown in Figure 9.7 requires an exponential number

of moves.

141



The motivation for the construction in Figure 9.7 is to show that the compaction algo-

rithm presented in Chapter 4 for �nding a local minimum of the compaction problem needs

an exponential number of iterations in the worst case. To make the construction applicable

to our problem, we must show that the description of the motion takes only polynomial

space. To show this, we observe that piece B of group n is the busiest piece. We divide

the motion into basic steps according to the motion of the piece. The motion between the

moment that piece B of group n moves from the highest vertical position to the lowest one

(or vise versa) is called a basic step. At each basic step, only piece B in group n can move

a full vertical and horizontal unit. The distance that can be moved by a piece in another

group declines exponentially with group number. For example, the piece B in group 1 can

only move O(k

�n

) horizontal or vertical units in each basic step. This shows that at each

basic step, a description of the state of the system requires only polynomial space. Hence,

polynomial space is su�cient to describe the complete motion which is composed of basic

steps.

Recall that the compaction algorithm in Chapter 4 uses a con�guration space approach

for �nding a local optimum. For each neighboring pair of objects (represented as polygons),

the Minkowski sum of the two objects is generated. A large convex subset of the exterior of

the Minkowski sum is determined according to a locality heuristic. A set of linear inequalities

are built using the boundary edges of the convex subset. The relative motion of the pair

of polygons is constrained to stay inside the convex subset by the set of linear inequalities.

A linear program is set up using the set of linear inequalities for every neighboring pair as

constraints. The objective function maximizes the motion of an imaginary \piston" piece

at the right boundary. The solution of the linear program will give the new positions for all

the objects. A new set of inequalities is set up if the convex subsets outside the Minkowski

sum of a pair of objects changes. The algorithm iterates until there is no improvement to

the objective function.

If we apply the algorithm to the compaction problem shown in Figure 9.7, it is easy to

show that each iteration of the algorithm �nds exactly the con�guration after each basic

step. The objective function can be improved until piece A of group 1 is moved to the

left by k units. Because there is a total of �(k

n

) basic steps, and each iteration of the

algorithm corresponds to exactly one basic step, there will be a total of �(k

n

) calls to the

linear program.

To show that the algorithm can only �nd a local minimum, we make two dents in piece

142



A of group 1. The two dents have the same height h but di�erent widths d

1

and d

2

.

Assume that the lower dent has width d

1

and d

1

< d

2

. We make a rectangular object with

dimension d

2

� h. The rectangular object is originally placed at the lower dent. According

to the heuristics used in the algorithm, the algorithm will never move the rectangular object

from the lower dent to the higher dent. Hence, the algorithm does not �nd a global optimum

when the algorithm terminates.

Theorem 9.4 The compaction algorithm described in Chapter 4 requires an exponential

number of iterations to �nd a local minimum.

We note that the example shown in Figure 9.7 demonstrates the worst case behavior

of the compaction algorithm presented in Chapter 4. In practice, the algorithm runs very

fast. For the application of compacting garment layouts consisting of up to 120 pieces, the

algorithm always terminates in less than 10 iterations.

143



ABD C

Figure 9.6: The construction of a motion propagation device.

Figure 9.7: The replication and concatenation of the motion propagation device.

144



Chapter 10

Conclusion

The position-based compaction algorithm presented in this thesis is the �rst fast and

practical algorithm for compacting a layout of convex and non-convex polygons. The algo-

rithm has been shown to be very e�ective in a real world application: marker making in

apparel manufacturing. The CAD company who licensed our software has been conducting

on site experiments on the markers of some of their client companies. Preliminary results

indicate that the software could save each client between a quarter of a million to a million

dollars per year. Potential saving to the entire textile industry amount to tens of millions

of dollars per year.

The algorithm is general and versatile. We can use the algorithm to perform di�erent

tasks in all stages of two-dimensional packing process, such as compaction, opening up gaps

and database driven automatic marker making, by simply tailoring the objective functions.

We have also shown that the algorithm can be extended to handle small degree rotations,

reduce the total amount of overlaps in a layout/perform oating and �nd optimal two-

dimensional layout of polygons.

The key to the position-based compaction algorithm is the idea of representing the

non-convex free space of motion planning locally by a large convex subset identi�ed by a

locality heuristic. The convex subsets make it possible to directly calculate the position

of the polygons by building and solving a linear program model. Even though in the

worst case compaction takes exponential number of moves of the polygons, in practice, the

algorithm always converges and �nd a local optimum that improves the existing layout in

a few iterations.

During its execution, the algorithm always keeps the layout in a non-overlapping con-

�guration. This characteristic is important in compacting tightly packed layout because

145



if not planned carefully, an overlap in the layout, once occurred, can be hard to eliminate

due to the tightness of the layout. The requirement of avoiding introducing overlaps makes

techniques such as simulated annealing less applicable to generating or compacting tightly

packed layouts since the some basic steps of simulated annealing such as swapping two

polygons or perturb the current position or orientation (ipping and rotation) of a polygon

are very likely to introduce overlaps.

The work presented in this thesis lies between the boundary of computational geometry

and operations research. The algorithms developed here combine the concepts and tech-

niques from both �elds. One reason of the e�ectiveness of our algorithms is that they utilize

the power of the mature linear programming techniques implemented in a state of the art

linear programming package. The linear program package performs the basic steps of our

algorithms fast and reliably. As exempli�ed in the position-based compaction algorithm,

the linear programming formulation can greatly improve the running time over the previous

non linear programing formulations.

The numerical instability of geometric computations is a major problem in implement-

ing geometric algorithms [Mil88]. An additional advantage of using a linear programming

package is to use its numerical stability to overcome the numerical di�culties of geometric

computations. Combined with robust computational geometry techniques, such as the ro-

bust computation of Minkowski sums, our position-based compaction algorithm proves to

be quite numerically stable in practice.

Perhaps the most important impact of our position-based compaction algorithm on two-

dimensional packing/polygon nesting problems arises from its ability to separate overlapping

polygons. This ability has great impact because it leads to a database driven automated

marker making scheme. This scheme provides a very viable approach for totally automating

layout generation process, which is our ultimate goal. The limitation of automatically

generating layouts using geometric algorithms alone is that in order to achieve e�ciencies

comparable to that of human generated layouts, one has to develop special techniques for

di�erent application domains. For example, e�cient techniques for making jacket markers

might be quite di�erent from those of making pants markers. The database driven marker

making scheme, on the other hand, can be thought as an implicit form of learning from

examples. The human marker makers' domain knowledge, their many years of experience,

and especially their understanding of the relationship among various shapes are \condensed"

into a set of examples { the collection of high quality markers in the database. With su�cient

146



examples in the database for the matching algorithm to �nd a close match, the database

drive marker making scheme can produce a layout that is close to human performance.

We conclude this thesis with a list of future research directions. First, we list the

problems related to extending the position-based compaction algorithm and improving its

performance.

Improving the Rotational Compaction Algorithm It is bene�cial to better under-

stand the discrepancies in compaction results produced by the two rotational com-

paction algorithm. We hope that our understanding can leads to improved rotational

compaction algorithms.

Compaction of Large Layouts Right now, the position-based compaction algorithm can

compact a layout of one hundred polygon in less than one minute (mostly between

10 to 20 seconds). For several large examples, we have observation long running

time. This might be caused by the large number of constraints. We are interested in

improving the running time. There are two reasons for study this. First, there exist

large layouts in practice. Second, we have observed that the material utilization can

further be improved by concatenating several markers into a single large one.

Second, we list problems related to database driven marker making.

Shape Matching Algorithms The key to producing a high quality layout in the database

driven marker making scheme is to �nd a close match between the polygons in the

layout to be made and those in an layout in the database. Therefore, improving the

shape matching algorithm directly improves the quality of a automatically generated

layout.

Improved Overlap Elimination Algorithms From Chapter 5, we see that if there are

no limitations on the width and the length of a layout, then the position-based al-

gorithm can always �nd a separation of the overlapped polygons. However, in strip

packing applications, the width of the layout is �xed. Therefore, the separation al-

gorithm can fail to eliminate all the overlaps. To overcome this di�culty, we can use

techniques from linear programming to analyze the slack variables associated with the

constraints. From these slack variables, we then �nd the constraints that are most

\tight" and further identify the polygons involved. We can then \pop out" these

polygons from the layout and eliminate the overlaps among the remaining polygons.

147



Next, we can shrink the polygons by certain amount and �nd the gaps that can ac-

commodate the shrunken polygons. To put the polygons back into the layout, we can

perform the following steps: (1) place the shrunken polygon, (2) restore it to its orig-

inal size and (3) eliminate the resulting overlaps using our algorithm. If overlaps still

cannot be eliminated, it would be necessary to repeat with a di�erent polygon. Based

on this idea, we can design more sophisticated algorithms for separating polygons.

Organization of the Database In database driven marker making, if the database con-

tains tens of thousands of markers, it becomes crucial to organize the database such

that a marker can be compared with and retrieved quickly. Despite some recent inter-

ests [Jag91], the area is wide open and o�ers great challenges as well as opportunities.

148



Appendix A

Vectors and Cross Products

Let A, B and C be three points in the plane with coordinates are (A

x

; A

y

), (B

x

; B

y

)

and (C

x

; C

y

) respectively in a coordinate system whose origin is at point O. We denote by

A the vector originated from O and ended at A. Vector A can be expressed as a linear

combination of i and j, the unit vectors in the x and y axis, as:

A = A

x

i+ A

y

j

We denote by AB the vector originated from A and ended at B. This vector represents the

relative displacement of point A with respect to point B. From Figure A.1, we can easily

see

AB = B�A = (B

x

�A

x

) i+ (B

y

� A

y

) j

Let AB

x

= B

x

� A

x

and AB

y

= B

y

� A

y

, AB can be written as:

AB = AB

x

i +AB

y

j

By standard de�nition, the cross product of vectors AB and BC is given by

AC�BC =

�

�

�

�

�

�

�

�

�

i j k

AC

x

AC

y

AC

z

BC

x

BC

y

BC

z

�

�

�

�

�

�

�

�

�

where AC

z

and BC

z

are the z components of AC and BC which are both zero in our case.

Expanding the determinant, we have

AC�BC = [(AC

x

�BC

y

�AC

y

�BC

x

)]k

= [(C

x

�A

x

) � (C

y

�B

y

)� (C

y

�A

y

) � (C

x

� B

x

)]k

149



O

Y

X

A

B
AB

A B

Figure A.1: De�nition of vectors

A

B

C

θ

Figure A.2: The geometric interpretation of cross product

Therefore, the cross product of two planar vectors is a vector parallel to the z-axis. The

direction of the cross product is the same as the positive z axis if and only if AC and BC

form a right hand system. The geometric interpretation of the AC�BC is that its value

is twice the signed area of the triangle 4(A;B;C) and the sign is positive if and only if A,

B and C are in clockwise order (see Figure A.2).

Since in our applications we are only interested in the scalar part of the cross product,

we de�ne the cross product of two planar vectors as a scalar directly.

De�nition A.1 Given three points A, B and C in the plane, the cross product of vectors

150



AC and BC is de�ned as:

AC�BC = (C

x

� A

x

) � (C

y

� B

y

)� (C

y

� A

y

) � (C

x

� B

x

)

The following fact follows immediately from the geometric interpretation of the standard

de�ntion of cross product.

Fact A.1

AC�BC = jACjjBCj sin �

where � is the angle traversed when we sweep AC counterclockwisely until it reaches BC.

By rewriting the right hand side of our de�nition of cross product into a determinant form,

we obtain the following fact.

Fact A.2

AC�BC =

�

�

�

�

�

�

�

�

�

A

x

A

y

1

B

x

B

y

1

C

x

C

y

1

�

�

�

�

�

�

�

�

�

It is shown in [GS85] that the well known CCW (CounterClockWise) predicate

1

for three

point A, B and C can be expressed by the condition

�

�

�

�

�

�

�

�

�

A

x

A

y

1

B

x

B

y

1

C

x

C

y

1

�

�

�

�

�

�

�

�

�

> 0

Fact A.2 shows that the CCW predicate is equivalent to AC�BC > 0.

Combining the above two facts, we obtain the following lemma which is extremely useful

in deriving non-penetration constraints.

Lemma A.3 Let A, B and C be three points in the plane,

A; B and Care

8

>

>

>

<

>

>

>

:

in counterclockwise order

co-linear

in clockwise order

9

>

>

>

=

>

>

>

;

i� AC�BC

8

>

>

>

<

>

>

>

:

>

=

<

9

>

>

>

=

>

>

>

;

0

For notational simplicity, we sometimes also use AC � BC to denote the cross product

AC�BC in this thesis.

1

For three points A(A

x

; A

y

), B(B

x

; B

y

) and C(C

x

; C

y

) in the plane, the predicate CCW (A;B;C) is true

if and only if A, B and C are in counterclockwise order.

151



Bibliography

[ABB91] H. Alt, B. Behrends, and J. Bl�omer. Approximate matching of polygonal

shapes. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 186{193,

1991.

[AG92] H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In

Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 102{109, 1992.

[AKS90] R. Anderson, S. Kahan, and M. Schlag. An o(n logn) algorithm for 1-d

tile compaction. In M. Nagl, editor, Graph-Theoretic Concepts in Computer

Science, volume 411 of Lecture Notes in Computer Science, pages 287{301.

Springer-Verlag, 1990.

[AST92] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching

in geometric optimization. In Proc. 3rd ACM-SIAM Sympos. Discrete Algo-

rithms, pages 72{82, 1992.

[Bar89] D. Bara�. Analytical methods for dynamic simulation of non-penetrating rigid

bodies. Computer Graphics (Proc. SIGGRAPH), 23(3):223{232, 1989.

[BB88] R. Barzel and A. H. Barr. A modeling system based on dynamics constraints.

Computer Graphics (Proc. SIGGRAPH), 22(4):179{187, 1988.

[BECR80] Brenda S. Baker, Jr. E.G. Co�man, and Ronald L. Rivest. Orthogonal packings

in two dimensions. SIAM Journal of Computing, 9(4):846{855, 1980.

[Can87] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,

MA, 1987.

[CE88] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line

segments in the plane. In Proc. 29th Annu. IEEE Sympos. Found. Comput.

Sci., pages 590{600, 1988.

152



[Cha90] B. Chazelle. Triangulating a simple polygon in linear time. In Proc. 31st Annu.

IEEE Sympos. Found. Comput. Sci., pages 220{230, 1990.

[CKSS81] Seth Chaiken, Daniel J. Kleitman, Michael Saks, and James Shearer. Covering

regions by rectangles. Siam. J. Alg. Disc. Meth., 2(4):394{410, 1981.

[CMD82] F.R.K. Chung, M.R.Garey, and D.S.Johnson. On packing two-dimensional

bins. SIAM Journal of Alg. Disc. Meth., 3(1):66{76, 1982.

[COSSW84] B. Chazelle, T. Ottmann, E. Soisalon-Soininen, and D. Wood. The complexity

and decidability of SEPARATION

TM

. In Proc. 11th Internat. Colloq. Au-

tomata Lang. Program., volume 172 of Lecture Notes in Computer Science,

pages 119{127. Springer-Verlag, 1984.

[DD92] Kathryn A. Dowsland and William B. Dowsland. Packing problems. European

Journal of Operational Research, 56:2 { 14, 1992.

[DLM93] K. Daniels, Z. Li, and V. Milenkovic. Multiple containment methods and

applications in cloth manufacture. In Joseph Mitchell, editor, Proceedings of

the Army Research O�ce and MSI Stony Brook Workshop on Computational

Geometry. SUNY Stony Brook, October 1993.

[DLM94] K. Daniels, Z. Li, and V. Milenkovic. Multiple containment methods. Tech-

nical Report TR-12-94, Center of Research in Computing Technology, Aiken

Computation Laboratory, Harvard University, 1994.

[DM94] K. Daniels and V. Milenkovic. Limited Gaps. In Mark Keil, editor, Submitted

to the Sixth Canadian Conference on Computational Geometry, Saskatoon,

Canada S7N 0W0, keil@cs.usask.ca, August 1994. University of Saskatchewan.

[Dyc89] Haralk Dyckho�. A typology of cutting and packing problems. European

Journal of Operations Research, 44:145{159, 1989.

[ECL91] Jr. E.G. Co�man and George S. Lueker. Probabilistic Analysis of Packing and

Partitioning Algorithms. Wiley and Sons, Inc., New York, 1991.

[ECS90] Jr. E.G. Co�man and P.W. Shor. Average-case analysis of cutting and packing

in two dimensions. European Journal of Operations Research, 44:134{144,

1990.

153



[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

Heidelberg, West Germany, 1987.

[G

�

79] F. G�obel. Geometrical packing and covering problems. In A. Schrijver, editor,

Packing and Covering in Combinatorics, pages 179{199. Mathematical Centre

Tracts, 1979.

[Gar79] Martin Gardner. Mathmatical games: some packing problems that cannot be

solved by sitting on the suitcase. Scienti�c American, 241(4):18{26, 1979.

[GG61] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting-stock problem. Operations Research, 9:849{859, 1961.

[GG63] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting-stock problem - Part II). Operations Research, 11:863{888, 1963.

[GJ79] Mickael R. Garey and Davis S. Johnshon. Computers and Intractability { A

guide to the Theory of NP-Completeness. W. H. Freeman and Company, San

Francisco, 1979.

[GJPj78] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tar jan. Triangulating

a simple polygon. Inform. Process. Lett., 7:175{179, 1978.

[GRS83] L. Guibas, L. Ramshaw, and J. Stol�. A Kinetic Framework for Computational

Geometry. In IEEE 24th Annual Symposium on Foundations of Computer

Science, 1983.

[GS85] L. J. Guibas and J. Stol�. Primitives for the manipulation of general sub-

divisions and the computation of Voronoi diagrams. ACM Trans. Graph.,

4:74{123, 1985.

[Her89] J. Hershberger. Finding the upper envelope of n line segments in o(n logn)

time. Inform. Process. Lett., 33:169{174, 1989.

[HM83] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proc.

4th Internat. Conf. Found. Comput. Theory, volume 158 of Lecture Notes in

Computer Science, pages 207{218. Springer-Verlag, 1983.

[HS86] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of

generalized path compression schemes. Combinatorica, 6:151{177, 1986.

154



[HSS84] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion

planning for multiple independent objects: PSPACE-hardness of the \Ware-

houseman's Problem". Internat. J. Robot. Res., 3(4):76{88, 1984.

[Jag91] H. V. Jagadish. A retrieval technique for similar shapes. In Proc. ACM SIG-

MOD Conf. on the Management of Data., pages 208{217, 1991.

[Kei85] J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Com-

put., 14:799{817, 1985.

[KOS91] A. Kaul, M.A. O'Connor, and V. Srinivasan. Computing Minkowski Sums

of Regular Polygons. In Proceedings of the Third Canadian Conference on

Computational Geometry, Vancouver, British Columbia, 1991.

[Len84] T. Lengauer. On the solution of inequality systems relevant to ic-layout. Jour-

nal of Algorithms, 5(5):408{421, 1984.

[LM90] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or

rounded arithmetic. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages

235{243, 1990.

[LM92] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or

rounded arithmetic. Algorithmica, 8:345{364, 1992.

[LM93a] Z. Li and V. Milenkovic. A compaction algorithm for non-convex polygons

and its application. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages

153{162, 1993.

[LM93b] Z. Li and V. Milenkovic. Compaction of a 2D layout of non-convex shapes and

applications. In SIAM Conference on Geometric Design. SIAM, November

1993.

[LM93c] Z. Li and V. Milenkovic. On the complexity of the compaction problem. In

Proc. 5th Canadian Conference on Computational Geometry, pages 153{162,

1993.

[LMar] Z. Li and V. Milenkovic. Compaction and seperation algorithms for non-convex

polygons and their applications. European Journal of Operations Research

(Special Issue on Cutting and Packing), To appear.

155



[LPW79] T. Lozano-P�erez and M. A. Wesley. An algorithm for planning collision-free

paths among polyhedral obstacles. Commun. ACM, 22:560{570, 1979.

[LZ] Z. Li and B. Zhu. On the monotonicity of polygons and polyhedra. To be

submitted.

[Mal90] F. Miller Maley. Single-layer Wire routing and compaction. The MIT Press,

1990.

[Map90] D. Maple. A hierarchy preserving hierarchical compaction. In Proc. 27th

Design Automation Conference, pages 375{381, 1990.

[MDL91] V. Milenkovic, K. Daniels, and Z. Li. Automatic Marker Making. In Proc. 3rd

Canadian Conference on Computational Geometry, 1991.

[MDL92] V. Milenkovic, K. Daniels, and Z. Li. Placement and Compaction of Nonconvex

Polygons for Clothing Manufacture. In Proc. 4th Canadian Conference on

Computational Geometry, 1992.

[Meg84] N. Megiddo. Linear programming in linear time when the dimension is �xed.

JACM, 31:114{127, 1984.

[MFS87] R. C. Mosteller, A. H. Frey, and R. Suaya. 2-d compaction a monte carlo

method. In P. Lasleber, editor, Advanced Research in VLSI, pages 173{197.

MIT Press, 1987.

[Mil88] V. Milenkovic. Veri�able implementation of geometric algorithms using �nite

Precision Arithmetic. PhD thesis, Carnegie Mellon University, 1988. CMU-

CS-88-168.

[Mur87] Frank D. Murgolo. An e�cient approximation scheme for variable-sized bin

packing. SIAM Journal of Computing, 16(1):149{161, 1987.

[MW88] M. Moore and J. Wilhelms. Collision detection and response for computer

animation. Computer Graphics (Proc. SIGGRAPH), 22(4):289{298, 1988.

[Nem93] G. Nemhauser. The age of optimization { solving large scale real world prob-

lems. Philip McCord Morse Lecture, ORSA/TIMS Annual Meeting, Chicago,

May 1993.

156



[PB88] J. C. Platt and A. H. Barr. Constraint methods for exible models. Computer

Graphics (Proc. SIGGRAPH), 22(4):279{287, 1988.

[PS81] F.P. Preparata and K. Supowit. Testing a simple polygon for monotonicity.

Inform. Process. Lett., 12(4):161{164, 1981.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction.

Springer-Verlag, New York, NY, 1985.

[Rei79] J. H. Reif. Complexity of the mover's problem and generalizations. In Proc.

20th Annu. IEEE Sympos. Found. Comput. Sci., pages 421{427, 1979.

[Rei87] J. H. Reif. Complexity of the generalized movers problem. In J. Hopcroft,

J. Schwartz, and M. Sharir, editors, Planning, Geometry and Complexity of

Robot Motion, pages 267{281. Ablex Pub. Corp., Norwood, NJ, 1987.

[Ser82] J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic

Press, New York, 1982.

[SP92a] P. E. Sweeney and E. R. Paternoster. Cutting and packing problems: A

categorized, application-orientated research bibliography. J. Opl Res. Soc.,

43(7):691{706, 1992.

[SP92b] Paul E. Sweeney and Elizabeth Ridenour Paternoster. Cutting and packing

problems: A categorized, application-oriented research bibliography. Journal

of the Operational Research Society, 43(7):691{706, 1992.

[SS90] J. T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In

J. van Leeuwen, editor, Algorithms and Complexity, volume A of Handbook of

Theoretical Computer Science, pages 391{430. Elsevier, Amsterdam, 1990.

[SSVS86] H. Shin, A. L. Sangiovanni-Vincentelli, and C. H. S�equin. Two dimensional

compaction by 'zone re�ning'. In Proc. 23rd Design Automation Conference,

pages 115{122, 1986.

[SY84] P. Spirakis and C. Yap. Strong NP-hardness of moving many discs. Inform.

Process. Lett., 19:55{59, 1984.

157



[TV88] R. E. Tarjan and C. J. Van Wyk. An O(n log logn)-time algorithm for trian-

gulating a simple polygon. SIAM J. Comput., 17:143{178, 1988. Erratum in

17(1988), 106.

[Won85] C. K. Wong. An optimal two-dimensional compaction scheme. In P. Bertolazzi

and F. Luccio, editors, VLSI: Algorithms and Architectures, pages 205{211.

Elsevier (North-Holland), 1985.

158


