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Abstract Conservation laws that describe the behavior of partially molten mantle rock have been

established for several decades, but the associated rheology remains poorly understood. Constraints on

the rheology may be obtained from recently published experiments involving deformation of partially

molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt

segregation that exhibit the competing effects of pressure shadows and melt-rich bands. Such patterns

provide an opportunity to infer rheological parameters through comparison with models based on the

conservation laws and constitutive relations that hypothetically govern the system. To this end, we have

developed software tools to simulate finite strain, two-phase flow around a circular inclusion in a

configuration that mirrors the experiments. Simulations indicate that the evolution of porosity is

predominantly controlled by the porosity-weakening exponent of the shear viscosity and the poorly known

bulk viscosity. In two-dimensional simulations presented here, we find that the balance of pressure

shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less

than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds

physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity

variations. Processes that limit or balance porosity localization should be incorporated in the formulation of

the model to produce results that are consistent with the porosity evolution in experiments.

1. Introduction

Segregation and extraction of melt from the mantle control the chemical evolution of the mantle and crust

over geological time. Observations of petrological and isotopic disequilibrium suggest that melt extraction

to produce oceanic crust is rapid and potentially localized into channels [Kelemen et al., 1997]. The mechan-

ics of such melt extraction processes are still somewhat mysterious. Equations that are thought to describe

melt extraction are well established [McKenzie, 1984], but these require refinement and validation. In partic-

ular, although the relevant conservation principles are known, the constitutive laws and closure conditions

remain poorly constrained.

New experiments on melt migration by Qi et al. [2013] provide an opportunity to improve our under-

standing of the rheology of partially molten rocks. In these experiments, a fine-grained, partially molten

aggregate of olivine and basalt is deformed around a nearly rigid, olivine sphere. The experimental samples

start with an approximately uniform porosity; after they are deformed, quenched, and sectioned to reveal

the resulting distribution of olivine and basaltic melt, samples show clear evidence for melt migration. Mea-

surements of the resulting patterns show that the spherical inclusion induces a perturbation to the pressure

field around it, driving flow of magma from the high-pressure sectors to the low-pressure sectors. These

sectors are known as pressure shadows.

The experimental results by Qi et al. [2013] indicate that the pressure shadows can interact with emergent

bands of high melt fraction, as shown in Figure 1a. These bands are the result of a known instability in

deforming, partially molten aggregates. This instability has been investigated theoretically [Stevenson, 1989;

Spiegelman, 2003; Katz et al., 2006; Butler, 2009, 2010; Takei and Katz, 2013; Katz and Takei, 2013] and exper-

imentally [Holtzman et al., 2003; King et al., 2010] and has been shown to produce melt-enriched bands at a

low angle to the shear plane. In the experiments by Qi et al. [2013], such melt bands nucleate at or near the

pressure shadows and grow at the expense of the shadows.
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(a)

(b)

Figure 1. (a) Melt distribution map resulting from a torsion experiment

on partially molten rock with an olivine inclusion (white area) at a local

strain of 2.1. The top has moved to the right, and the bottom to the

left. The dotted black lines on top of the map indicate two low-porosity

pressure shadows and one high-porosity pressure shadow around the

inclusion and a melt-rich band adjacent to the inclusion. Modified from

Qi et al. [2013]. (b) Schematic of the domain and boundary conditions

used for the simulations presented in section 4. The side boundaries

indicated by P are periodic; the top and bottom boundaries have a

prescribed horizontal velocity. The height of the domain is indicated by

H, and the radius of the inclusion around the origin is given by a.

The present work aims to derive con-

straints on the rheology of the partially

molten mantle from the aforementioned

experiments. We hypothesize that the

theory developed to model partially

molten aggregates [McKenzie, 1984] can

be used to describe the results obtained

by Qi et al. [2013] if the correct constitu-

tive laws are included. In particular, we

seek to quantify the form and magnitude

of the viscous resistance to compaction

based on comparisons between numer-

ical simulations, analytical solutions,

and laboratory experiments. Moreover,

our goal is to establish a framework for

the interpretation of current and future

laboratory experiments that is based

on the two-phase dynamics of partially

molten aggregates.

Previous analysis by McKenzie and

Holness [2000] addressed melt segre-

gation into pressure shadows around a

rigid inclusion based on the theory of

McKenzie [1984]. The authors show that

the pattern of compaction and decom-

paction is sensitive to the ratio of the

bulk-to-shear viscosity. They develop

analytical solutions for an extremal case

where the compaction length, the intrin-

sic length scale associated with the

two-phase dynamics, is much larger

than the size of the rigid inclusion and

is hence approximated as being infi-

nite. In this context, they solved only for

the instantaneous pattern of pressure

and (de)compaction associated with the

onset of flow. In contrast to their anal-

ysis, experiments by Qi et al. [2013] are

performed with a compaction length

that is on the order of the size of the

spherical inclusion. Furthermore, pat-

terns in experiments develop over finite

strain, during which segregation of melt and solid modifies the viscosity structure, and the inclusion under-

goes finite rotation. This is further complicated by the emergence of melt bands in the experiments and

the associated interaction and competition between the two modes of melt segregation. Hence, the mod-

els of McKenzie and Holness [2000], while instructive, cannot be used to quantify constitutive parameters.

The present work addresses these deficiencies by computing time-dependent solutions of the governing

equations for a partially molten aggregate with finite compaction length.

To compute solutions, we use a finite element discretization and implement the simulation code in the

FEniCS software framework [Logg et al., 2012; Logg and Wells, 2010]. FEniCS is an advanced library of tools for

finite element modeling. Our numerical solutions extend a recently published set of analytical solutions for

the instantaneous compaction rate surrounding a spherical inclusion at arbitrary compaction length [Rudge,

2014]. The simulation code is benchmarked against analytical theory, and our results are compared with

patterns observed in experiments by Qi et al. [2013].
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The manuscript is organized as follows. We first describe the governing equations of two-phase mantle flow

and discuss the numerical methods used to model them. We then explore the role of rheological parameters

in three different two-dimensional model configurations of increasing complexity. The first suite of simu-

lations addresses the formation of melt bands in a medium with randomly distributed melt, but without a

rigid inclusion. The second suite focuses on the evolution of pressure shadows around a circular inclusion

for an initially uniform porosity field. The final set of simulations incorporates both the random initial poros-

ity and the rigid, circular inclusion. We examine the competition between melt bands and pressure shadows

and compare these simulations with previous experimental results. The computed solutions are followed by

a discussion and conclusions.

2. Governing Equations

Mass and linear momentum balances for a two-phase (partially molten) system in a domain Ω ⊂ R
d , 1 ≤

d ≤ 3, can be written as follows [McKenzie, 1984]:

��

�t
− ∇ ⋅ (1 − �)us = 0 , (1)

∇ ⋅ ū = 0 , (2)

�(uf − us) = −
K�

�f

∇pf , (3)

∇ ⋅ �̄ = 0 , (4)

where � is the porosity, us is the solid velocity, uf is the fluid velocity, and ū = �uf + (1 − �)us. The fluid

pressure is given by pf , and �f is the fluid viscosity. K� is the permeability, with the subscript � denoting a

dependence on the porosity. Furthermore, �̄ = ��f +(1−�)�s with �f the fluid stress and �s the solid stress.

Equation (1) describes mass conservation for the solid phase, and equation (2) describes conservation of

mass for the two-phase mixture. Equations (3) and (4) are linear momentum balances for the fluid phase

and the two-phase mixture, respectively. It is assumed here that there is no mass transfer between the two

phases, i.e., no melting or recrystallization takes place, that the densities of the two phases are constant and

that gravitational forces are negligible.

We assume a Newtonian constitutive model for �̄

�̄ = −pf I + ��(∇ ⋅ us)I + �̄ , (5)

where �� is the effective bulk viscosity of the two-phase mixture

�̄ = ��

(
∇us + ∇uT

s
−

2

3
(∇ ⋅ us)I

)
(6)

is the deviatoric stress and �� is the effective shear viscosity.

Inserting equation (3) into (2), under the preceding constitutive assumptions, equations (1)–(4) reduce to

��

�t
− ∇ ⋅ (1 − �)us = 0, (7)

∇ ⋅

(
−
K�

�f

∇pf + us

)
= 0, (8)

− ∇pf + ∇(��∇ ⋅ us) + ∇ ⋅ �̄ = 0, (9)

where the primal unknowns are �, pf , and us.

To complete the problem, the following boundary conditions are applied as follows:

−
K�

�f

∇pf ⋅ n = 0 on �Ω , (10)

us = w on �Ω , (11)
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where impermeability at the boundaries is represented by equation (10), and the solid velocity is prescribed

according to equation (11).

To nondimensionalize the equations above, we use the following scalings:

K� = K0K
′
�
, x = Hx′, us = H
̇us

′, t = 
̇−1t′,

�� = �0�
′
�
, �� = �0�

′
�
, pf = �0
̇p

′
f
,

(12)

where �0 is the reference porosity, K0 the permeability at the reference porosity, �0 and �0 the shear viscosity

and bulk viscosity at the reference porosity, H is a length measure, and 
̇ the imposed shear strain rate. The

nondimensional forms of equations (7)–(9) are as follows:

��

�t′
+ ∇′

⋅ (1 − �)u′
s
= 0 , (13)

∇′
⋅

(
−

D2

R + 4∕3
K ′
�
∇′p′

f
+ u′

s

)
= 0 , (14)

∇′
⋅

(
2�′

�
�̄(u′

s
)
)
+ ∇′

((
R� ′

�
−

2

3
�′
�

)
∇′

⋅ u′
s

)
− ∇′p′

f
= 0 , (15)

where �̄(u′
s
) = (∇us + ∇uT

s
)∕2 is the strain rate tensor, the bulk-to-shear viscosity ratio R = �0∕�0, and the

length scale D = �∕H, in which

� =

√
(R + 4∕3)�0K0

�f

(16)

is the compaction length at reference porosity �0.

In this study, we choose the nondimensional permeability K ′
�
, bulk viscosity � ′

�
, and shear viscosity �′

�
to be

K ′
�
=

(
�

�0

)n

, � ′
�
= �′

�

(
�

�0

)−m

, �′
�
= e−�(�−�0), (17)

with n = 2 andm = 1; the porosity-weakening exponent � and the bulk-to-shear viscosity ratio R are varied

between simulations. The boundary conditions in nondimensional form become

−
D2

R + 4∕3
K ′
�
∇′p′

f
⋅ n′ = 0 on �Ω , (18)

u′
s
= w′ on �Ω. (19)

We dispense with the prime notation from this point and work at all times with the nondimensional form.

3. Model Setup

The governing equations in the previous section are solved using the finite element method. The finite

element method is chosen for the ease with which arbitrarily shaped inclusions can be modeled and to per-

mit localized spatial refinement. The software implementation builds on the open-source FEniCS Project

libraries [Logg et al., 2012; Logg and Wells, 2010]. The complete code for reproducing all examples in this

work is freely available at http://www.repository.cam.ac.uk/handle/1810/245252. We summarize in this

section some important aspects of the method that we use.

3.1. Discretization

To solve the dimensionless governing equations (13)–(15), together with the boundary conditions in

equations (18) and (19), using the finite element method, we cast the equations in a weak form. Taylor-Hood

elements on triangles (P2–P1) are used for fields in equations (14) and (15). A Crank-Nicolson scheme is used

to discretize the time derivative in the porosity evolution equation (13). The weak forms and finite element

scheme are detailed in Appendix A.
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3.2. Boundary and Initial Conditions

Figure 1b shows a schematic of the domain and boundary conditions used for the simulations presented in

section 4. In all simulations, the top and bottom boundary are impermeable. The velocity is prescribed on

these boundaries to create simple shear with the top moving to the right

utop
s

(x,H∕2) =
(
H

2

̇ , 0

)
, ubottom

s
(x,−H∕2) =

(
−
H

2

̇ , 0

)
, (20)

where 
̇ is the shear strain rate. The domain is periodic in the x direction. In simulations with an inclusion,

we additionally enforce zero net torque on the inclusion boundary using a Lagrange multiplier and make

the inclusion rotate as a rigid body using Nitsche’s method (see Appendix B). The model is validated against

published analytic and computational results described in Appendix C.

The simulations that are presented in section 4 either have a uniform initial background porosity �0 = 0.05

or a randomly perturbed initial field with mean �0 = 0.05 and a maximum perturbation amplitude A = 0.03.

This is within the range of initial porosities used in experiments [for example, Holtzman and Kohlstedt, 2007;

Qi et al., 2013]. The random field is created once and then reused for all simulations to ensure reproducibil-

ity. The random initial perturbations in the porosity field are coarser than the grid scale, so that porosity

variations are sufficiently resolved.

3.3. Rheology

The porosity-weakening exponent � (see equation (17)) has been experimentally determined to be around

26 for diffusion creep and 31 for dislocation creep [Kelemen et al., 1997;Mei et al., 2002]; � = 28 has previ-

ously been used in simulations [e.g., Katz et al., 2006]. In this study, we vary � between 0 and 50 so that we

can establish, in detail, the effects of this porosity-weakening exponent on model dynamics.

The bulk-to-shear viscosity ratio R, however, is significantly less well constrained. Simpson et al. [2010]

used homogenization theory on two interpenetrating, viscously deformable fluids to deduce that the

bulk-to-shear viscosity ratio R is proportional to the porosity as �−1 and consider R ∼ 20 for a background

porosity �0 = 0.05. In contrast, Takei and Holtzman [2009] find, through a microscale model of diffusion

creep of a grain partly wetted by melt, that R ∼ 5∕3, independent of porosity except when the porosity is

vanishingly small (or when it is above the disaggregation fraction). In the simulations presented in section 4,

we use bulk-to-shear viscosities between 5/3 and 100 to encompass the values advocated in the above

referenced studies.

With increasing strain, the amplitude of porosity variations is expected to grow. Given that there is no

porosity-limiting term in the model, the porosity perturbations will grow to values beyond the mathemat-

ical bounds of zero and one. Therefore, we terminate simulations when the porosity anywhere within the

domain becomes less than zero or greater than one.

4. Results

We now present three model problems of increasing complexity. First, we consider melt bands in a partially

molten medium without an inclusion but with a randomly perturbed initial porosity field. Then we inves-

tigate the compaction pattern around a circular inclusion in an initially uniform porosity field. Finally, we

combine a randomly perturbed initial porosity field with a circular inclusion.

The simulations presented in section 4 with no inclusion are solved on a uniform square mesh of height 1

with approximately 300 × 300 triangles, such that the cell size is approximately 5 × 10−3. Simulations with

an inclusion have a mesh that is linearly refined toward the inclusion boundary, with cell sizes ranging from

1 × 10−2 near the outer boundaries to 2 × 10−3 near the inclusion.

4.1. Melt Bands in a RandomMediumWithout an Inclusion

For a partially molten medium without any inclusions, we consider a random initial porosity field with a

perturbation amplitude of 0.03 with a background value of 0.05 (Figure 2a). We study a suite of simulations

with a wide range of values for the porosity-weakening exponent (� ∈ [15, 50]) and bulk-to-shear viscosity

ratio (R ∈ [1.7, 100]) in order to establish the parameter regime for which melt-rich bands readily develop.

For this case, we do not consider simulations with � = 0, since a positive porosity-weakening exponent is

required for a positive growth rate of melt bands (see equation (C10)).

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5907
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(a) (b)

(c) (d)

(e) (f)

Figure 2. (a) Porosity and (b) compaction rate in a partially molten medium with random initial porosity under simple

shear without inclusion, � = 28 and R = 1.7, at its initial state. (c) Porosity and (d) compaction rate for the same simula-

tion at a strain of 0.1. (e) Porosity and (f ) compaction rate for a simulation with R = 20 at a strain of 0.5. In all cases, the

top boundary moves to the right and the bottom boundary to the left.

Figures 2c and 2d show that for � = 28 and a small bulk-to-shear viscosity ratio R of 1.7, high-porosity bands

form rapidly and are well developed at a strain of 0.1. The bands rotate clockwise in the simple shear velocity

field but continue to form at 45◦. The bands with positive compaction rate and high porosity dominate over

the negative compaction rate and low-porosity features due to the porosity-weakening rheology.

For R = 20, melt bands have not fully formed yet at a strain of 0.5, as shown in Figures 2e and 2f. Even

though bands are not widely present in the porosity field, high-compaction rates are concentrated in nar-

row bands at 45◦ to the plane of shear. Melt bands growmore slowly for higher bulk-to-shear viscosity ratios

(see equation (C10)), and therefore, band reforming at a 45◦ angle occurs more slowly relative to advection.

Under these conditions, a fraction of the bands in the compaction rate field have a higher angle than for the

R = 1.7 case.

A small bulk-to-shear viscosity ratio (R ≤ 10) and a large porosity-weakening exponent are required to form

persistent melt bands. However, both factors enhance melt band growth rates and thus cause the porosity

to exceed the physical range of [0, 1]more rapidly. We therefore conclude from these simulations that it is

challenging to obtain simulations with well-developedmelt bands at high strains while keeping the porosity

within physical bounds.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5908
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Figure 3. Porosity and compaction rate for a simulation with uniform initial porosity, R = 50 and � = 0, at strains (a, b)

0.1 and (c, d) 4.0. (e) Porosity and (f ) compaction rate integrated between a and 2a for different angles at various strains.

4.2. Compaction Around an Inclusion With Uniform Initial Porosity

In this section we introduce a circular inclusion into the domain. With a uniform initial porosity, the instan-

taneous compaction rate at zero strain is identical to the pattern shown in Figure C1a (Benchmark 1,

section C1.). When a medium with � = 0 and R = 50 is deformed by simple shear, the porosity field initially

develops according to this instantaneous compaction rate pattern as indicated in Figures 3a and 3b. As the

strain increases, the porosity lobes rotate around the inclusion according to the simple shear velocity field.

Figures 3c and 3e show that the high-porosity lobes become stretched and grow faster and into sharper fea-

tures than the low-porosity lobes. Even though the porosity exponent in the shear viscosity is zero in the

case shown here, the permeability and bulk viscosity still depend on porosity (see equation (17)).

The compaction rate evolves in a different manner than the porosity. The divergence of the velocity field is

mainly governed by the prescribed constant simple shear. Hence, the nonrotating instantaneous pattern

generally dominates, as illustrated in Figure 3b. At high strains, the compaction rate is affected by the large

porosity variations that have developed. Figures 3d and 3f show that the areas with highest porosity and

therefore lowest bulk viscosity are most easily deformed, partially overprinting the instantaneous pattern,

which results in deformed compaction rate lobes.

To further analyze the evolution of porosity and compaction rate, we compute integrals of � and∇ ⋅ us from

the boundary of the inclusion at radius r = a outward to a radius of r = 2a, for a series of azimuths between

0 and 2

1

a ∫
2a

a

� dr,
1

a ∫
2a

a

(∇ ⋅ us) dr. (21)
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Figure 4. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity, R = 1.7 and � = 0, at a strain

of 0.3. (c) Porosity and (d) compaction rate integrals at various strains.

These integrals show the rotation and evolution of the asymmetry of the high- and low-porosity lobes in

Figure 3e and the deformation of features in the compaction rate field in Figure 3f.

Both the bulk-to-shear viscosity ratio R and the porosity-weakening exponent � in the shear viscosity have

a profound effect on the porosity evolution and compaction rate. A smaller bulk-to-shear viscosity ratio

results in faster and more asymmetric growth of features in the porosity field and causes the porosity to go

out of bounds more quickly. For example, the simulation with R = 1.7 and � = 0 in Figures 4a and 4c shows

a similar porosity pattern as the case with R = 50 but with larger amplitude variation. The compaction

rate field is more strongly affected by the porosity for smaller R because the porosity differences in space

are larger. A low porosity acts to decrease the compaction rate. As the porosity lobes rotate with shear and

become misaligned with the nonrotating compaction rate lobes, they decrease the magnitude of negative

Figure 5. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity, R = 1.7 and � = 28, at a

strain of 0.1. (c) Porosity and (d) compaction rate integrals for various strains.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5910
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(a)

(c)

(b)

(d)

Figure 6. (a) Porosity and (b) compaction rate integrals for simulations with uniform initial porosity, � = 0 at 
 = 0.3, for

various values of R. (c) Porosity and (d) compaction rate for simulations with � = 28 at 
 = 0.1 for various values of R.

compaction rate lobes in an asymmetric manner (Figures 4b and 4d). This simulation goes out of physical

bounds for a strain of ∼ 0.32.

In the small bulk-to-shear viscosity regime, the effect of the porosity exponent � is particularly discernible.

When � is chosen to be the experimentally determined value of 28, the porosity reaches the physical limits

at an even smaller strain of ∼ 0.11. The porosity and compaction rate features in Figure 5 develop similar to

the melt bands seen in the previous section, with an elongated shape toward 45◦ from the plane of shear.

The maximum value of the compaction rate grows with time when � > 0, and its peaks flatten with the

widening high-compaction rate lobes.

Figure 6 shows radial integrals as a function of azimuth for a suite of calculations at five values of R and

two values of �; it summarizes the controlling effect of these parameters. For � = 0 in Figures 6a and 6b,

Figure 7. (a) Porosity and (b) compaction rate for a simulation with random initial porosity, R = 1.7 and � = 28, at a

strain of 0.06. (c) Porosity and (d) compaction rate integrals for the same simulation at various strains. The solid lines are

fits with Fourier functions with the lowest nine coefficients included.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5911
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Figure 8. (a) Porosity and (b) compaction rate for a simulation with random initial porosity, R = 20 and � = 28, at a strain

of 0.15. (c) Porosity and (d) compaction rate integrals for the same simulation at various strains. The solid lines are fits

with Fourier functions with the lowest nine coefficients included.

increasing R causes compaction around the inclusion to have larger amplitudes, resulting in sharper positive

porosity lobes and deformed negative compaction rate lobes. Figures 6c and 6d show that when � = 28, a

higher R results in wider and flatter positive lobes in porosity and compaction rate. The behavior of pressure

shadows for � > 0 is similar to that of melt bands.

4.3. Melt Bands and Pressure Shadows Around an Inclusion

The final suite of tests involves a random initial porosity field around the inclusion. Generally, the porosity

goes out of bounds significantly faster than in the preceding tests, as the compaction around the inclusion

associated with pressure shadows compounds the growth of porosity in melt bands. Figure 7a shows that

this results in less extensive melt bands, even with high � and low R. At most, short, high-porosity bands

can be seen adjacent to the inclusion for a case with � = 28 and R = 1.7. The compaction rate shows both

the bands and the effect of the inclusion (Figure 7b). In the integrals, melt bands distinguish themselves

by peaks that flatten with strain, whereas pressure shadows around the inclusion manifest themselves as a

sinusoidal quadrupole shape. Figure 7c indicates that the porosity amplitudes increase as the positive lobes

grow faster with increasing strain. In the compaction rate field in Figure 7d, only the positive lobes grow.

Figures 8a and 8b show that an increase in R causes melt bands to grow more slowly and compaction

around the inclusion to be dominant over domain-wide melt bands. This is especially reflected in the poros-

ity and compaction rate integrals in Figures 8c and 8d compared to Figure 7. Figure 9 summarizes the

change of shape of the porosity and compaction rate integrals with increasing R: for large R, the integrals

closely resemble the uniform case with wide troughs and sharp peaks.

Figure 9. (a) Porosity and (b) compaction rate integrals for simulations with random initial porosity, � = 28 at 
 = 0.05,

for various values of R. The solid lines are fits with Fourier functions with the lowest nine coefficients included.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5912
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Figure 10. (a) Maximum strain 
max reached as function of � and R

(black contours) in simulations with uniform initial porosity and an

inclusion. The background color denotes the scaled average width of

high-porosity lobes W . The black circles indicate parameter combi-

nations used in simulations. (b) Maximum strains in simulations with

random initial porosity without an inclusion. The red circles indicate

simulations that do not display significant melt bands at the final

strain 
max, and the green circles indicate simulations that do. (c) Max-

imum strains reached in simulations with random initial porosity with

an inclusion.

4.4. Model Regimes

The results of the three sets of simula-

tions are summarized as a function of the

porosity exponent � and bulk-to-shear

viscosity ratio R in Figure 10. The maxi-

mum strain 
max reached in simulations

is an indicator for the effective growth

rate brought about by all melt segre-

gation processes together. Generally,


max increases with decreasing effective

growth rate, i.e., with increasing R and

decreasing �, indicated by the black con-

tours in Figure 10. Figure 10a shows that

simulations with uniform initial porosity

and with only linearly increasing com-

paction around an inclusion evolve to

the largest strains of the three suites. The

maximum strain is the lowest in simu-

lations where compaction around the

inclusion competes with the exponential

growth of melt bands originating in the

random initial porosity field, as indicated

in Figure 10c.

For the simulations with uniform ini-

tial porosity, we compute the average

widthW of the two high-porosity lobes

around the inclusion at the final strain

scaled by ∕2 (the width of a lobe in

its initial state), shown as the color

background in Figure 10a. A scaled

lobe width larger than one indicates

flattened high-porosity lobes and nar-

row low-porosity lobes and therefore

shearing, such as in Figure 5a. On the

other hand,W < 1 indicates that the

high-porosity lobes are narrow because

they are advected according to the sim-

ple shear velocity field, as for example in

Figure 3e. The lobe width increases with

� and decreases with R; it is inversely

proportional to the maximum strain,

demonstrated by the contours ofW

that parallel those of maximum strain.

Therefore,W must be proportional to the

growth rate of porosity perturbations in

melt band mode.

A scaled lobe widthW > 1 is seen for R ≤ 10 when � > 15 and for R ≤ 5 when � = 15. This could be

viewed as the regime where melt-rich bands could develop. For small R and large �,W decreases again; this

indicates the underdevelopment of porosity lobes for small maximum strain.

Green circles in Figure 10b indicate that in simulations with random initial porosity without an inclusion,

melt bands are seen for R < 20 when � < 50 and for R ≤ 20 when � = 50. Figure 10c shows that in simu-

lations with random initial porosity and a circular inclusion, melt bands are more elusive and only develop

for R < 5 and � > 15. Outside this narrow regime, the porosity field is dominated by compaction around

the inclusion.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5913



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010906

5. Discussion

The numerical models of partially molten mantle material presented in this paper explore the evolution of

melt segregation as a function of the bulk-to-shear viscosity ratio R and the porosity-weakening exponent of

the shear viscosity �. These parameters control the balance between pressure shadows around an inclusion

and domain-wide melt bands. Generally, the pressure shadows around the inclusion dominate the porosity

field. There is a small portion of the parameter regime that allows for significant development of melt bands,

requiring a small bulk-to-shear viscosity ratio and therefore a material that is relatively easily compactable.

The porosity field that represents the melt distribution in the simulations does not bear close resemblance

to the experimental results obtained by Qi et al. [2013]. Most importantly, we are not able to reproduce

prominent melt bands adjacent to the inclusion that overprint the pressure shadows around the inclusion.

Second, the strains at which the porosity in the simulations exceeds the physical regime of [0, 1] are sig-

nificantly smaller than those at which the experiments fail. Qi et al. [2013] report maximum local strains

between 0.9 and 5.0, whereas in our numerical simulations with a random initial porosity around an inclu-

sion the maximum strains are between 0.03 and 0.8. Furthermore, when the porosity increases past ∼ 0.25

in partially molten rock, it disaggregates and the solid particles are in suspension. We do not consider

these processes in our numerical models since laboratory experiments are terminated before reaching the

disaggregation regime.

In our simulations, the presence of an inclusion causes the porosity to go out of bounds more quickly,

as the compaction in pressure shadows around the inclusion compounds the porosity growth in melt

bands directly adjacent to the inclusion. For the same total strain, simulations with and without a circular

inclusion show the same amount of melt band development, indicating that the lack of melt bands in sim-

ulations with the inclusion compared to the simulations without the inclusion is exclusively the result of

a smaller maximum strain. The exact maximum strain reached in a simulation is not necessarily relevant,

as it may depend on the placement of the initial random high-porosity perturbations directly adjacent to

the inclusion. Rather, the observed trends in maximum strains as a function of model parameters inform us

about the effective growth rates of porosity near the inclusion as a result of the two competing modes of

melt segregation.

The porosity going out of bounds is indicative of physics not captured by the set of governing equations and

constitutive relations presented in this paper. Several studies suggest possible modifications to constitutive

relations that would limit the growth of sharp porosity gradients. For example, Bercovici and Ricard [2003]

use surface tension terms, and Takei and Hier-Majumder [2009] consider a second melt segregation process

aside from decompaction and compaction of the solid that results from dissolution and precipitation in the

melt. Keller et al. [2013] implement a higher-order polynomial form for the porosity-dependent permeability

that results in a decrease in permeability for very high porosities. The most appropriate approach to this

question remains a debate; more theoretical work is likely needed to resolve it. Incorporation of mechanisms

that prevent the porosity going out of bounds at small strains could expand the parameter subspace in

which simulations develop melt bands and thus improve the agreement with experiments.

Melt-rich bands are observed to form at shallow angles of 15–20◦ [Holtzman et al., 2003; Holtzman and

Kohlstedt, 2007; King et al., 2010; Qi et al., 2013]. In the models presented here, melt bands form at a 45◦

angle to the simple shear plane. Previous work has shown that a non-Newtonian rheology with large stress

exponent (n > 3) [Katz et al., 2006] or an anisotropic viscosity [Takei and Katz, 2013; Katz and Takei, 2013]

can produce lower band angles. In this work, we are primarily concerned with understanding the model

behavior as function of the bulk-to-shear viscosity ratio and the porosity-weakening exponent. The incor-

poration of non-Newtonian and/or anisotropic viscosity is a topic of ongoing work and should improve the

agreement of our simulations with experimental results.

An important feature of laboratory experiments is their three-dimensional nature. Numerical simulations

should also be performed in three dimensions to advance a detailed quantitative comparison with exper-

imental results. The compaction rate around a circular inclusion in two dimensions decays as 1∕r2 and

around a spherical inclusion in three dimensions as 1∕r3. We therefore expect pressure shadows to be

spatially limited in three-dimensional models, which could allow planar melt bands to become more promi-

nent. However, such computations in three dimensions are computationally challenging as they involve

very large systems of equations. The key to tractable simulations in three dimensions is the development
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of effective preconditioners to accelerate the solution of linear systems. Research in this area is underway

[Rhebergen et al., 2013], and the implementation and use of recently developed preconditioners will enable

three-dimensional computations of two-phase flow at high resolution, which will be the core of future work.

6. Conclusions

We computed two-dimensional models of partially molten mantle material under simple shear, with and

without inclusions that perturb the flow. The model configurations are based on recent laboratory experi-

ments that exhibit pressure shadows around an inclusion and associated melt bands as competing features

in the melt distribution. Previous theoretical studies of magma/mantle dynamics around an inclusion only

considered instantaneous solutions to the governing equations; we improve on this by computing the

evolution of the two-phase material with strain. The simulations display the pressure shadows around a

circular inclusion, as well as abundant melt band development in simulations without an inclusion. The

geometry and evolution of these features depend on the bulk-to-shear viscosity ratio as well as on the

porosity-weakening exponent in the shear viscosity. However, it has proven challenging to determine a

parameter regime for which melt bands develop in the presence of an inclusion. We find that a bulk-to-shear

viscosity ratio of less than five is required in our simulations. For such small bulk-to-shear viscosity ratios,

the porosity field reaches its physical bounds at unrealistically small strains. This indicates that an important

component of the physics is not captured in the governing equations and constitutive relations outlined in

this paper, and some form of limiter on porosity weakening would be required to obtain numerical results

that resemble the laboratory experiments more closely.

Appendix A:Weak Form

To solve equations (13)–(15), together with boundary conditions in equation (18)–(19), we cast them in a

weak form. Given �, the weak solutions us and pf satisfy

0 = ∫Ω

2���(us) ∶ �(vs)dx + ∫Ω

(
R�� −

2

3
��

)
(∇ ⋅ us)(∇ ⋅ vs)dx

− ∫Ω

pf∇ ⋅ vs dx − ∫Ω

qf∇ ⋅ us dx − ∫Ω

(
D2

R + 4∕3

)
K�∇pf ⋅ ∇qf dx, (A1)

where vs and qf are arbitrary test functions. To obtain the weak form of equation (13), it will be useful to first

discretize in time. We use a Crank-Nicolson time-stepping scheme:

� − �0 + Δt
(
us ⋅ ∇�

mid − (1 − �mid)∇ ⋅ us

)
= 0, (A2)

where Δt is the time step, �mid =
1

2
(� + �0) and �0 and � are, respectively, the known and unknown

porosities from the previous and current time step. Given us from the previous time step, the weak solution

� satisfies

0 = ∫Ω

w
(
� − �0 + Δt

(
us ⋅ ∇�

mid − (1 − �mid)∇ ⋅ us

))
dx, (A3)

where w is an arbitrary test function.

Additionally, we apply standard streamline upwind Petrov-Galerkin stabilization by adding a term rSUPG to

the porosity transport equation (A3) [Brooks and Hughes, 1982]

keff =
1

2

(
h|us|
2

− 1 +
||||
h|us|
2

− 1
||||

)
(A4)

rSUPG = ∫Ω

keff

|us|2
(us ⋅ ∇w) rCN dx, (A5)

where h is the cell size, |us| is the norm of the solid velocity field, and rCN is the residual of equation (A3).
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Appendix B: Boundary Conditions on the Inclusion

We impose a no-net torque boundary condition on the circular inclusion

∫Ωs

x × (�̄ ⋅ n) ds = 0 (B1)

which is applied by adding a term FL to the weak form in equation (A1)

FL = � ⋅ ∫Ωs

x × (�̄ ⋅ n) ds, (B2)

where � is the Lagrange multiplier, which reduces to (0, 0, �) in our two-dimensional model.

The second boundary condition on the inclusion is a rigid body rotation. Nitsche’s method is used to ensure

that us = � × x on the inclusion boundary. This is a variationally consistent method for the weak imposition

of Dirichlet boundary conditions, consisting of a term FN added to the weak form in equation (A1)

FN = ∫Ωs

10

h
(us − � × x) ⋅ vs − (us − � × x) ⋅ tv − vs ⋅ tu ds (B3)

where h is the cell size, � is the unknown rotation rate of the inclusion, and tu and tv are traction vectors

(�̄ ⋅ n) corresponding to velocities us and vs. For the simulations presented here, � = (0, 0, �).

Appendix C: Benchmarks

We present in this appendix benchmarking of the developed numerical tools.

C1. Instantaneous Compaction Around a Circle

The instantaneous compaction around a circular inclusion in a medium with a uniform initial porosity

has been described analytically by Rudge [2014] and therefore lends itself as a benchmark for numerical

simulations of compaction.

The far-field velocity consists of simple shear and can be written as u∞ = (
̇y, 0) in terms of a strain rate 
̇ .

The governing equations (13)–(15) are solved with us = 0 and ∇pf ⋅ n = 0 on the circle. This results in the

following analytical solutions for matrix velocity us and pressure pf [Rudge, 2014]:

us = u∞ +

(
−
4G

r4
+

2HK2(r)

r2

)
E ⋅ x +

(
−
2F

r4
+

8G

r6
−

HK3(r)

r3

)
(x ⋅ E ⋅ x)x , (C1)

pf =

(
−
4F
r4

+
HK2(r)

r2

)
x ⋅ E ⋅ x , (C2)

where Kn(r) is the modified Bessel function of the second kind,  = �∕(� + (4∕3)�), and

F = −
a4K ′

2
(a)

4K1(a) − a2K ′
2
(a)

, (C3)

G =
a4

4
+

4a3K2(a)
4K1(a) − a2K ′

2
(a)

, (C4)

H =
8a

4K1(a) − a2K ′
2
(a)

, (C5)

where r is the distance from the center of the inclusion and a the radius of the circle. This solution assumes a

finite compaction length �, and all lengths have been scaled with the compaction length.

The term E is the constant, trace-free, symmetric, second-rank, strain rate tensor of the far-field flow,

E =
1

2

(
∇u∞ + ∇uT

∞

)
, which can be written in components as

E =
1

2

(
0 
̇


̇ 0

)
. (C6)
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(a)

(b)

Figure C1. (a) Instantaneous compaction pattern around a circular inclusion under simple shear (only a part of the full

domain is shown). The top moves to the right, the bottom to the left. (b) L2 difference e between the analytical and

numerical velocity field, for various inclusion radii, with a mesh of 160 × 160 cells. The inclusion radius a is given as a

fraction of the height of the domain.

The compaction rate is

∇ ⋅ us =
FK2(r)

r2
x ⋅ E ⋅ x . (C7)

Figure C1a shows the antisymmetric pattern of the instantaneous compaction rate, with two positive and

two negative lobes around the circle in the shape of a quadrupole. The negative compaction rate lobes

form where overpressure causes melt to be expelled, leading to compaction and therefore low porosity. The

positive lobes have an underpressure and therefore attract melt and decompact, resulting in high porosity.

To validate the numerical results, we compute the L2 difference e between the numerical solid velocity field

uN
s
and the analytical solution uA

s
given in equation (C1)

e =
||uN

s
− uA

s
||2

||uA
s
||

, (C8)

for different radii of the inclusion a. The results are shown in Figure C1b. The analytical solution assumes an

infinite domain, whereas the numerical solution is affected by the boundaries at the top and bottom. These

boundary effects (and therefore e) are reduced if the size of the inclusion is decreased relative to the domain

size while still resolving the compaction around the inclusion.
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Figure C2. Plane wave porosity field at strains of (a) 0.0, (b) 1.5, and (c) 3.0. The top boundary moves to the right, the

bottom boundary to the left. The arrows show the perturbations in the solid velocity with respect to the simple shear

velocity field.

C2. Plane Wave Melt Bands

We will now look at the angle and growth of melt bands as they rotate under simple shear in a rectangular,

two-dimensional domain with aspect ratio 4. This benchmark aims to reproduce analytical solutions of initial

melt band growth rate [Spiegelman, 2003].

The initial condition for this benchmark is a plane wave in the porosity field described by the following:

�init(x, y) = 1.0 + A cos
(
k0x sin �0 + k0y cos �0

)
. (C9)

The wave number andmelt band angle at t = 0 are given by k0 = |k|t=0 and �0 = tan−1
[
k0
x
∕k0

y

]
, respectively.

The amplitude of the perturbation (A) must be small for the linear approximation in the analytical solution

to be valid. The analytical solution for melt band growth rates is [Spiegelman, 2003]

ṡA = −
�0

�0 + (4∕3)�0
�(1 − �0)2�̇xy sin 2� . (C10)

The strain rate �̇xy is equal to 1∕2 for simple shear. The numerical melt band growth rate is computed

as follows:

ṡN =
(1 − �0)

A�0

∇ ⋅ us . (C11)

Figure C2 shows the melt bands rotating with increasing shear, i.e., with progressing time [Spiegelman,

2003]. The band angle �(t) is given by Katz et al. [2006]

�(t) = tan−1
[

sin �0

cos �0 − t sin �0

]
. (C12)

We first validate the numerical results by comparing numerical and analytical growth rates for different ini-

tial melt band angles �0. Figure C3a displays a sinusoidal dependence on �0. Figure C3b shows that the

numerical error in the growth rate decreases with decreasing grid spacing h and with decreasing wave num-

ber k0. A higher wave number results in narrower melt bands and therefore requires smaller grid cells in

order to be sufficiently resolved. The rate of convergence is approximately of order(h2) in both cases.

The analytical solution is valid only when perturbations in the porosity field are small, which becomes appar-

ent when the perturbation amplitude is increased, as shown in Figure C3c. The difference between the

numerical and analytical growth rates becomes significant for amplitudes ≥ 10−2. Hence, the analytical

solution does not hold under experimental conditions where perturbations have magnitudes of (10−2)
to(10−1). This is unsurprising given that the analytical growth rate is obtained by linearizing the governing

equations about a uniform porosity state.
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(a)

(b)

(c)

Figure C3. (a) Initial melt band growth rate for various initial melt band angles, with porosity amplitude A = 10−4 ,

wave number k0 = 4, and number of grid points along the short side n = 80. (b) Relative error in initial melt band

growth rate as a function of grid spacing h = 1∕n for k0 = 8 and 16; �0 = 30◦ . The dotted line indicates an order

(h2) convergence. (c) Relative error in initial melt band growth rate for various porosity perturbation amplitudes, with

n = 80 and k0 = 4. For all simulations shown: porosity-weakening exponent � = 1, background porosity �0 = 0.05,

bulk-to-shear viscosity ratio R = 10, and the compaction length � = 1.
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