

Compaction of hierarchical cells with minimum and maximum
constraints
Citation for published version (APA):
Woude, van der, M., & Timmermans, X. (1983). Compaction of hierarchical cells with minimum and maximum
constraints. (Computing centre note; Vol. 16). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1983

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/c095e9d2-dc3f-4f67-a110-12f719d2788e

THE-RC 52167

Bibliotheek

r-------,--
8ialiOTHF;,~K1>------_.._,----""'

s ~ 04080'
,M:cm: ...,s_...

T.H,EINDHOVEN

Technische Hogeschool r

April 1983

" qitp,rlijk terugbezorgen op laatst gestempelde datum

CC~pUl~'~ Centre Note ib

COMPACTION OF HIERARCHICAL CELLS WITH MINIMUM

AND MAXIMUM CONSTRAINTS

ir. M. van der Woude and X. Tlmmermans

This note is an internal publication of a paper to

be presented at IEEE SYMPOSIUM on Circuits and

Systems, Hay 2-4, 1983.

THE-RC 52167 - 2 -

We will discuss in this paper the compaction program COMPAC which

is being implemented as part of the hierarchical symbolic layout

design system IDS (4).

In most cases the layout design can be done at a symbolic level.

The building bricks in the symbolic design environment are:

- compound cells

built up of elements that are instances of compound cells and/or

of leave cells

- leave cells

leave cells or sticks may be line pieces, vias, pins,

transistors, etc. They are at a graphics terminal represented by

an appropriate symbol.

Besides simplicity of draWing the adv.ntages of a symbolic design

are:

- easy use of CAD tools such as compactor and router

- increase in design speed, in (5) Black aDd Hardage report a

reduction in design time of about a factor 10.

It is important that symbolic pictures look like the geometric

ones. The designer must be able to predict from the symbolic layout

how the ultimate mask layout will look like. Various ways of

symbolic drawing with topological or virtual grids have been

proposed (6), (7), (8).

However as in (3) and (9) we prefer a geometric grid for

representing layouts, to meet the requirement of predictability of

the geometric drawing and to make possible that compaction results

can be re-edited. One grid unit (lambda) will be the characteristic

minimal distance, e.g. a half minimal line spacing.

To ensure flexibility and to overcome some of the disadvantages of

symbolic layout design, we will allow that both sticks and compound

cells are defined geometrically and that they are in the symbolic

environment represented by their domain and pins (2).

THE-RC 52167

2. COMPACTION.

- 3 -

Compaction is expected to be very useful in combination with a

symbolic layout editor. though there seem to be few applications of

compaction in industry. Compaction enables the designer to input a

layout with approximate placement and afterwards shift building

bricks together in x and or y direction as far as design rules

allow. We will restrict oursel.es to discuss compaction in x

direction. since compaction in y-direction is completely similar.

Various methods for compaction exist. the methods depend heavily on

the symbolic grid-representation. E.g. in the virtual grid

compaction method. which is used in the MULGA system (8). the

minimum distance between two adjacent virtual grid lines is

converted to a geometric layout. A similar method has been used by

Williams (6). Other methods are shear line compaction (7) and the

constraint graph method (9). (10).

The constraint graph method is very promising but seems to have

been applied only to layout modules consisting of stieks, without

hierarchical structure.

1n the case of hierarchically structured compound cells the

constraints are often two-sided or of min-max type. For example if

a vertical 1inepiece contacts a pin area (also called terminal) of

an instance of a compound cell,that line piece is allowed to shift

left or right, provided the terminal area is big enough so that the

contact area does not decrease. So we have two types of

constraints:

- min-constraints

stating that the distance between two elements may not decrease

beyond some minimum

- min·max constraints

stating that the distance between two elements has to be between

some minimum and some maximum.

The compaction algorithm of COMPAC can handle both types of

.constraints.

THE-RC 52167 - 4 -

Definitions

Before discussing the compaction algorithm we introduce some

definitions.

The input of the algorithm is a compound cell from the hierarchical

design database of InS. Such a cell is built up of instances of

other compound cells and of leave cells. For the compaction we Will

consider as elements:

- the domain of each cell instance

- the terminals at which contacts are made. either by abutment or

by overlap.

A domain is a set of rectangles (at least one) which may occupy

more then one layer (mask) and which covers the region occupied by

a cell instance.

A terminal is the only region where a cell may have contact with

the outside world it consists of at least one rectangle in at least

one layer. The position of a terminal is fixed with respect to the

domain of its cell.

Cells may overlap or abut only at terminals of the same layer

otherwise domains of cells are separated by some minimal distance

that follows from the design rules. It is a assumed that line

pieces always end at terminals. in order to obtain as many degrees

of freedom as possible.

An element is characterized by a local origin. the global position

of which indicates the position of the element.

A feature is a subset of elements which have a fixed position with

respect to each other. The elements of a compound to be compacted

can be partitioned into a set of features and a set of horizontal

lines. By combining the constraints of the elements of two features

one can get the constraint of two features.

The min-constraint graph is an a-cyclic graph. with a source and a

sink. the nodes of which correspond with the features and the edges

of which are formed by the min-constraints. Min-max constraints may

be indicated by bidirectional edges in the min-constraint graph

thus forming the min-max constraint graph which may have cycles. A

cycle of constraints is called a cyclic constraint If there is no

placement of the corresponding features that satisfies all

constraints.

THE-RC 52167 - 5 -

3. PROGRAMMING STEPS FOR COMPACTION

The programming steps in COMPAC are:

3.1. Input of N layout elements.

3.2. Search for overlap.

For this search we use the algorithm for finding rectangular

intersections as described in (12)t which is linear "in the

average" with N.

3.3. Partition elements into horizontal lines and features.

The partitioning can be performed linear in time with N by

applying a breadth first search.

All features left from or on a line X • LEFTB are combined to one

feature and all features right from or on a line X • RIGHTB are

combined to one feature.

3.4. Determine the constraint graph.

During this step in principle each feature has to be compared

with each other feature. By applying windowing techniques in

combination with bin search techniques (11) the number of

comparisons may be reduced dramatically (9)t so that it may be

performed in the average almost linear in time with the number of

elements Nt depending on the number of constraints.

3.5. Determine an ST ordering of the nodes of the constraint graph

(12). In an ST ordening the nodes are numbered so that the edges

point from lower to higher numbers.

The min max constraint may be considered bi-directiona1 so

consider first only min-constraints.

Various linear methods are known to find an ST ordering linear in

time with Nt e.g. the one based on depth first search. Afterwards

nodes with only min-max constraints may be inserted more or less

arbitrarily.

3.6. Apply the compaction algorithmt as described in the following

section.

3.7. Construct from the results of the compaction a compacted compound

cell.

THE-RC 52167 - 6 -

I
I
I,
J-,
I
I
I
I

These steps may be repeated several times for different directions

(x or y) of compaction. The user can influence the results by

changing the boundaries LEFTS, RIGHTS. More influence of the user

may be added by allowing the user to insert user constraints, this

could be programmed between step 3.2 and 3.3.

Figure t: Original Compound Cell.

THE-RC 52167 - 7 -

-..L..
t

I
t
I,
I

,
I
I
I
••,
I,
• ••

••
•I

Figur~ 2: After X-Compaction.

THE-RC 52167 - 8 -

I I

r :1 ! I I ! I
I I t

,, ,, ~
I I : II

I
I
I
I

: I m
E

,
I

1--1-
I
I
I
I

I : I

Figure 3: After X-Y Compaction.

THE-RC 52167 - 9 -

I I

I :, : I r : 1
I !

I I
I ,
f I
I I ~ IIr •I

i I m
E

I

I-,-
!

! I

Figure 4: After Y-X Compaction.

THE-R.C 52167

COMPACTION ALGOR.ITHM

- 10 -

The features are ST-numbered IF .. 1,2, """, NF
% Initialize

!2! IF :- 1(l) NF !.2. FIXED [IF] :- READY [IF) :
false; X[IF] :- 0 .2!;

IF :- 1;

while IF (NF

do-
% skip IF if it is ready

!!. READY [IF]~ IF :- IF + 1 !!.!..!
begin

CF :- IF; % CF is current feature

!!. FIXED [IF)~ % max constraints are satisfied

else % check max constraints-!2! each max constrained predecessor PF of CF

~!!. X[CF] - X[PF) > MAXCON(CF, PF) !!!!!
begin %pull PF

X[PF] :- X[CF] - MAXCON(CF, PF);

READY[PF] :- false; % max cons of % PF have to be

% checked

IF :- min(IF, PF);

end-
od-
% 1f IF < CF start back tracking

!!. IF < CF~ FIXED [eF) :-!!.2!.
!!!! % push successors of CF if necessary

begin !2! each min cORstrained successor SF of CF

~.!!. X[SF) < X[CF] + MINCON(CF, SF)

!!!!!
begin.!!. FIXED [SF]~ exit;

% cyclic constraint found, stop

X[SF] :- X[CF) + MINCON(CF, SF); % push

READY[SF] :- false;

THE-RC 52167

end-

- 11 -

end

.2.2.;
READY [CF] :- true; FIXED [CF] :. false;

IF :- IF + 1

end-
od;

% end of compaction algorithm

Explanation of the compaction algorithm.

Each min-max constraint (IF,KF), IF < KF is considered as split into a

min constraint characterized by the minimum X-coordinate MINCON(IF,KF)

of the origin of KF relative to that of IF and a max constraint

characterized by the maximum x-coordinate MAXCON(KF,IF) of tbe Qrigin

of KF relative to that of IF.

When min constraints and max constraints are considered as directed

edges, tben a min constraint MINCON(IF,KF) is directed from IF to KF

and a max constraint MAXCON(KF,IF) is directed from KF to IF and a max

constraint MAXCON(KF,IF) Is directed from KF to IF. Note tbat in both

cases IF < KF.

So if tbe min-max constraints are added in this way the ST numbering

remains valid for all min constraints, though it had originally been

constructed tor only those min constraints that were not part of a

min-max constraint.

We consider first the ease without max constraints. We can use in this

case the well-known critical path algorithm:

% initialize

for IF :- 1(1) NF do X[IF] :- 0;

IF :- 1

while IF < NF

~% push successors of IF if necessary

CF :- IF;

!2£ each min constrained successor SF of CF

do-
!!. X{SF J < X[CF] + MINCON(CF,SF) then

X[SF] :- X[CF] + MINCON(CF,SF)

2.2; IF :- IF + 1;

od-

THE-RC 52167 - 12 -

Such in algorithm has been applied in CABBAGE (10). It is linear in

the number of min constraints.

Now we return to the case with max constraints present. In this case

the algorithm is extended by a back tracking step, a feature CF not

only pushes its min constrained successors SF, but it also pulls its

max constrained predecessors PF to the right. As soon as this happens

the feature CF is fixed until the back tracking has been completed.

Further each pulled predecessor PF, of which all outgoing constraints

were satisfied (indicated by READY PF set), has to be reconsidered.

This is indicated by resetting READY PF • The same holds for features

that are pushed or pulled by PF. If during the back tracking it would

be necessary to push CF a cyclic constraint would have been detected.

When the input was a design error free compound this of course cannot

happen. If however user constraints are allowed it may occur. During

back tracking features that have not moved by push or pull keep there

READY value set, so they may be skipped.

The time complexity of the algorithm with back tracking becomes more

than linear with the number of constraints, it is expexted that this

time complexity will be almost linear when the number of max

constraints is low.

In figure 1, 2, 3, and 4 this algorithm is demonstrated by compacting

a set of rectangles, with minimum separation lambda.

5. CONCLUSION.

We have given the outlines of a hierarchical interactive design

system and more specifically the algorithm which enables compaction

of a hierarchical compound cell. Our first experiences with the

design system. show that the system is very flexible, due to the

fact that it is at the same time leaf cell design tool and

composition tool (9).

The compaction ~lgorithm presented is of order (n), where n is the

number of min constraints. If there are min-max constraints the

order will increase due to the back tracking.

THE-RC 52167 - 13 -

In (9) it is stated that there is a compaction algorithm allowing

min-max constraints which 1s of order (n), with n likely to be the

number of features, however since the algorithm 1s not presented it

is not clear 1f the order (n) 1s also maintained when there are a

lot of min-max constraints.

The compaction program COMPAC is presently under construction. As

soon as experiences are available we will consider the possibility

of extending the program with additional features such as

stretching (8), automatic or manual jog insertion (10) and

shrinking of diffusion, and poly wires by affinity (9). We expect

that due to the possibility of re-editing after compaction not all

these features are necessary.

6. REFERENCES.

(1) C. Biessen, "The Role of CAD Tools in VLSI Design Methodology",

ESSCIRC 1981 Digest of Teehnical Papers, Freiburg, 22-24 Sept.

1981, pp. 75-86.

(2) K.H. Keller, A.R. Newton and S. Ellis, "A Symbolic Design

System for Integrated Circuits", Proc. 19th Design Automation

Conference, pp. 460-466, 1982.

(3) D.F. Bracken and W.J. Mc Calla, "An Interactive Graphics System

for Structured Design of Integrated Circuits", Hewlett Packard

Journal, June 1981, pp. 18-25.

(4) M. van der Woude, "IDS: an Interactive Design System for

Integrated Circuits" THE Computing Centre Bote 11, Eindhoven

University of Technology, October 1982.

(S) K.M. Blaek and P.K. Hardage, "Advanced Symbolic Artwork

Preparation (ASAP)", Hewlett Packard Journal, June 1981,

pp. 8-10.

(6) J.D. Williams, "STICKS - A Graphical Compiler for High Level

LSI Design", AFIPS Conf. Proc., Vol. 47, 1978, pp. 289-295.

(7) A.E. Dunlop,

"SLIM - The Translation of Symbolic Layout into Mask Data",

Froc. 17th Design Automation Conference,

pp. 595-602, 1980.

THE-RC 52167 - 14 -

(8) N. Weste. "Virtual Grid Symbolic Layout". Proc. 19th Design

Automation Conference. pp. 225-233. 1981.

(9) R.C. Mosteller. "REST A Leaf Cell Design System". Silicon

Structures Project Report 4317. Cslifornia Institute of

Technology. Pasadena. California.

(l0) M.Y. Hsueh, "Symbolic Layout and Compaction of Integrated

Circuits", Ph. D. Thesis University of Cal. Berkely, UCB/ERL

M79/80 Memo 1979.

(11) J.L. Bentley, D. Raken and R.W. Hon, "Statistics on VLSI

Designs", Report CMV-CS- 80-111, Department of Computer

Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,

April 17, 1980.

