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COMPACTNESS AND THE PALAIS–SMALE PROPERTY
FOR CRITICAL KIRCHHOFF EQUATIONS

IN CLOSED MANIFOLDS

EMMANUEL HEBEY

We prove the Palais–Smale property and the compactness of solutions for
critical Kirchhoff equations using solely energy arguments in the situation
where no sign assumption is made on the solutions. We then prove the exis-
tence of a mountain-pass solution to the equation, discuss its ground-states
structure, and, in extreme cases, prove uniqueness of this solution.

The Kirchhoff equation [1883] was proposed as an extension of the classical
wave equation of D’Alembert for the vibration of elastic strings. The model takes
into account the small vertical vibrations of a stretched elastic string when the
tension is variable but the ends of the string are fixed. The equation in [loc. cit.]
was written as

ρ
∂2u
∂t2
−

(
P0
h
+

E
2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx
)
∂2u
∂x2
= 0,

where L is the length of the string, h is the area of the cross-section, E is the young
modulus of the material (also referred to as the elastic modulus — it measures the
string’s resistance to being deformed elastically), ρ is the mass density, and P0 is
the initial tension. Almost one century later, Jacques-Louis Lions [1978] returned
to the equation and proposed a general Kirchhoff equation in arbitrary dimension
with external force term which was written as

∂2u
∂t2
+

(
a+ b

∫
�

|∇u|2 dx
)
1u = f (x, u),

where
1=−

∑
∂2

∂x2
i

is the Laplace–Beltrami Euclidean Laplacian. We investigate in this paper the
stationary version of this equation, in the case of closed manifolds, and when f is
the critical pure power nonlinearity. We prove the surprising result that the equation
satisfies the Palais–Smale property when a and b are large (in a sense to be made
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precised in Theorem 1 below). As usual, solutions of the stationary equation (with
the square of the phase added as a potential) correspond to standing wave solutions
of the evolution equation.

In what follows, we let (M, g) be a closed n-dimensional Riemannian manifold
of dimension n ≥ 4, a, b > 0 be positive real numbers, and h ∈ C1(M,R). The
Kirchhoff equation we investigate is written as

(1)
(

a+ b
∫

M
|∇u|2 dvg

)
1gu+ hu = |u|2

?
−2u,

where 2? = 2n/(n− 2) is the critical Sobolev exponent. It is an appealing mathe-
matical model because of its nonlocal nature and its integrodifferential structure. It
has been paid much attention over the past years. Among other possible references
(the following list is far from being exhaustive), we mention Figueiredo [2013],
Figueiredo, Ikoma, and Santos [Figueiredo et al. 2014], Figueiredo and Santos
[2012], He and Zou [2012], and the references in these papers. The case of
positive solutions in the curved setting of closed manifolds has been investigated in
Hebey and Thizy [2015a; 2015b]. We treat here the case where absolutely no sign
assumption is made on the solutions. As a remark, the equation always has a pair
of constant solutions if h > 0 is constant.

In what follows, we let H 1 be the Sobolev space of functions in L2 with one
derivative in L2. We let also I : H 1

→ R be the functional

(2) I (u)= a
2

∫
M
|∇u|2 dvg +

b
4

(∫
M
|∇u|2 dvg

)2

+
1
2

∫
M

hu2 dvg −
1
2?

∫
M
|u|2

?

dvg.

As is easily checked, critical points of I are solutions of (1). In particular, (1) has a
variational structure. A sequence (uα)α in H 1 is said to be a Palais–Smale sequence
for I if the sequence (I (uα))α is bounded with respect to α, and I ′(uα)→0 in (H 1)′

as α→+∞. Following standard terminology, we say that I satisfies the Palais–
Smale property if Palais–Smale sequences for I converge, up to a subsequence, in
H 1. Let Sn be the sharp Euclidean Sobolev constant given by Sn =

1
4 n(n− 2)ω2/n

n ,
where ωn is the volume of the unity n-sphere. We define the dimensional constant
C(n) by

(3) C(n)=
2(n− 4)(n−4)/2

(n− 2)(n−2)/2Sn/2
n
.

The main result of this paper provides very simple criteria on a and b for the
equation to be compact and I to satisfy the Palais–Smale property. Our main result
is stated as follows.

Theorem 1. Suppose that (M, g) is a closed n-dimensional Riemannian manifold
of dimension n ≥ 4, that a, b > 0 are positive real numbers, and that h ∈ C1(M,R)

makes1g+h/a positive. Assume that b� 1 when n= 4, and that a(n−4)/2b>C(n)
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when n ≥ 5, where C(n) is as in (3). Then, I satisfies the Palais–Smale property
and the set of solutions of (1) is compact in the C2-topology.

It is very surprising that such a compactness result, in strong topologies, for an
equation with critical nonlinearity, can be obtained without the whole machinery of
strong pointwise estimates (see Hebey [2014] for a reference in book form on this
machinery). Moreover, no assumption of positiveness is made on the solutions in
Theorem 1.

Proof of Theorem 1. (i) We prove that Palais–Smale sequences for I are bounded in
H 1, assuming that b� 1 when n = 4. Let (uα)α be a Palais–Smale sequence for I .
Then, we get that I (uα) = O(1) and I ′(uα) . (uα) = o(‖uα‖H1), where ‖ · ‖H1 is
the H 1-norm given for u ∈ H 1 by

‖u‖2H1 = ‖∇u‖2L2 +‖u‖2L2 .

In particular,

(4) a
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg + b

(∫
M
|∇uα|2 dvg

)2

=

∫
M
|uα|2

?

dvg + o(‖uα‖H1)

and that

(5) a
2

∫
M

(
|∇uα|2+

h
a

u2
α

)
dvg +

b
4

(∫
M
|∇uα|2dvg

)2

=
1
2?

∫
M
|uα|2

?

dvg + O(1).

By the Sobolev–Poincaré inequality, there exist C1,C2 > 0 such that

(6) ‖uα‖2
?

L2?≤ C1‖∇uα‖2
?

L2 +C2 |uα|2
?

for all α, where

uα =
1

Vg

∫
M

uα dvg

is the average of uα, and by the Poincaré inequality,

(7) ‖uα − uα‖2L2 ≤
1
λ1
‖∇uα‖2L2

for all α, where λ1 = λ1(M, g) > 0 is the first nonzero eigenvalue of 1g. It clearly
follows from the positivity of 1g+h/a, (5), and (6) that if either n = 4 and b>C1

or n ≥ 5 and if uα = O(1), then ‖uα‖H1 = O(1). We may therefore assume that
uα→+∞ as α→+∞. Then, still by the positivity of 1g + h/a, (5), and (6),

(8)
∫

M
|∇uα|2 dvg =

{ 1
b O(u2

α) if n = 4,
o(u2

α) if n ≥ 5,

where we assume that b > C1 when n = 4. Now, we write that

(9) uα = uα(1+ϕα).
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Then,
∫

M
ϕα dvg = 0 and

(10) u2
α

∫
M
|∇ϕα|

2 dvg =

∫
M
|∇uα|2 dvg.

It follows from (8), (10), the Poincaré inequality, (7), and (10) that

(11) ‖ϕα‖
2
H1 =

{
O
( 1

b

)
if n = 4,

o(1) if n ≥ 5.

In particular, by (9) and (11),

(12)
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg = u2

α(1+ Aα) and
∫

M
|uα|2

?

dvg = u2?
α (1+ Bα),

where Aα = O
( 1

b

)
and Bα = O

( 1
b

)
if n = 4, and Aα = o(1) and Bα = o(1) if n ≥ 5.

Subtracting 1
4 of (4) from (5) yields

(13) a
4

∫
M

(
|∇uα|2+

h
a

u2
α

)
dvg =

( 1
2?
−

1
4

)∫
M
|uα|2

?

dvg + O(1)+ O(‖uα‖H1).

Picking b� 1 when n = 4, the contradiction follows by combining (12) and (13).
This proves that (uα)α is bounded in H 1.

(ii) We prove that I satisfies the Palais–Smale property assuming that b� 1 when
n = 4, and that a(n−4)/2b > C(n) when n ≥ 5. We let

(14) Kα = a+ b
∫

M
|∇uα|2 dvg,

hα = K−1
α h, and

(15) vα =
( 1

Kα

) 1
2?−2 uα.

We define Iα : H 1
→ R by

(16) Iα(u)=
1
2

∫
M

(
|∇u|2+ hαu2) dvg −

1
2?

∫
M
|u|2

?

dvg.

According to (i), and up to passing to a subsequence, Kα→ K∞ as α→+∞ for
some K∞ ≥ a. In particular, (hα)α converges in Ck for all k, and (vα)α is bounded
in H 1. This implies that Iα(vα)= O(1), and, as one can check,

I ′α(vα) . (ϕ)=
( 1

Kα

)2?−1
2?−2 I ′(uα) . (ϕ)

for all ϕ ∈ H 1. Then (vα)α is a Palais–Smale sequence for the family (Iα)α (in the
sense of Hebey [2014]). In particular the H 1-decomposition as in Struwe [1984]
applies (see Druet, Hebey, and Robert [Druet et al. 2004], Hebey [2014], and Vétois
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[2007] for the closed setting with varying potentials), and we get that there exists
v∞ ∈ H 1, k ∈N, and k+1 sequences (B1,α)α, . . . , (Bk,α)α, (Rα)α in H 1 such that

(17) vα = v∞+

k∑
i=1

Bi,α + Rαin M

and

(18)
∫

M
|∇vα|

2 dvg =

∫
M
|∇v∞|

2 dvg +

k∑
i=1

∫
M
|∇Bi,α|

2 dvg + o(1)

for all α, Rα→ 0 in H 1 as α→+∞ and the “bubbles” (Bi,α)α satisfy the following
properties for any i = 1, . . . , k:

(a) Bi,α→ 0 in L2 as α→+∞,

(b) ‖Bi,α‖ = O(1), and

(c)
∫

M |∇Bi,α|
2 dvg ≥ Sn/2

n + o(1) for all α,

where Sn is the sharp Euclidean constant as in (3). In (c), there is equality if each
Bi,α is positive. Then, since (uα)α is bounded in H 1, and by (17)–(18), we get that,
up to passing to a subsequence,

(19) Kα = a+ b
∫

M
|∇uα|2 dvg

= a+ bK 2/(2?−2)
α

∫
M
|∇vα|

2 dvg

= a+ bK 2/(2?−2)
α

∫
M
|∇v∞|

2 dvg + bK 2/(2?−2)
α

k∑
i=1

∫
M
|∇Bi,α|

2 dvg + o(1)

= a+ bK 2/(2?−2)
∞

∫
M
|∇v∞|

2 dvg + bCK 2/(2?−2)
∞

+ o(1),

where C ≥ kSn/2
n . In particular, by (19),

(20) K∞ = a+ bK 2/(2?−2)
∞

∫
M
|∇v∞|

2 dvg + bCK 2/(2?−2)
∞

.

When n = 4, we have 2/(2?−2)= 1, and (20) implies that k = 0 in (17) as soon as
b� 1. In particular, the sequence (uα)α converges strongly in H 1, and I satisfies
the Palais–Smale property. When n ≥ 5, we define

f (x)= bkSn/2
n x(n−2)/2

− x + a.
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By (20), and since C ≥ kSn/2
n , we have that f (K∞) ≤ 0. Assuming that k ≥ 1,

noting that f is minimum at x0, where

x0 =

(
2

(n− 2)bkSn/2
n

)2/(n−4)

,

we compute that

(21) f (x0)=−
n−4
n−2

(
bkSn/2

n
)−2/(n−4)

( 2
n−2

)2/(n−4)
+ a.

If f (K∞)≤ 0, then f (x0)≤ 0, and by (21), bka(n−4)/2
≤ C(n). Since by assump-

tion a(n−4)/2b > C(n), it must be the case that k = 0 in (17). In particular, the
sequence (uα)α converges strongly in H 1, and I satisfies the Palais–Smale property
also when n ≥ 5.

(iii) We prove the compactness of (1) assuming that b� 1 when n = 4 and that
a(n−4)/2b > C(n) when n ≥ 5. Noting that a bounded sequence in H 1 of solutions
of (1) is a Palais–Smale sequence for I, according to what we proved above, it
suffices to prove that if (uα)α is a sequence of solutions of (1), then (uα)α is bounded
in H 1 when n ≥ 5 and when n = 4 and b� 1. By the Palais–Smale property we
would indeed get that, up to passing to a subsequence, (uα)α converges in H 1, and
by standard elliptic theory, this actually implies that the sequence converges in C2.
Now, we multiply the equation by uα and integrate over M, yielding

(22) a
∫

M

(
|∇uα|2+

h
a

u2
α

)
dvg + b

(∫
M
|∇uα|2 dvg

)2

=

∫
M
|uα|2

?

dvg

for all α. We clearly get from (6) and (22) that (uα)α is bounded in H 1 if the
sequence (uα)α is bounded (and b� 1 when n = 4). We may thus assume that
uα→+∞ as α→+∞. By (6) and (22), we get that (8) holds. Writing (9), we
then get that (12) holds and also that

(23)
∫

M
|uα| dvg = |uα|(1+Cα),

where Cα = O
( 1

b

)
if n = 4, and Cα = o(1) if n ≥ 5. Integrating the equation,

(24)
∫

M
huα dvg =

∫
M
|uα|2

?
−2uα dvg.

The contradiction follows from (12), (23), and (24). This proves the above claim
that (uα)α is bounded in H 1. This also proves that the set of solutions of (1) is
compact in the C2-topology. �

At this point we define a mountain-pass solution of (1) as a solution which
we obtain from I by the use of the mountain-pass lemma. We easily get from
Theorem 1 that the following existence result holds true.
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Proposition 2. Suppose that (M, g) is a closed Riemannian manifold of dimension
n ≥ 4, that a and b are positive real numbers, and that h ∈ C1(M,R) is such that
1g + h/a is positive. Assume that b� 1 when n = 4, and that a(n−4)/2b > C(n)
when n ≥ 5, where C(n) is as in (3). Then, (1) possesses a nontrivial mountain-pass
solution.

Proof of Proposition 2. Let u0 ≡ 1. Then, I is C1, I (0) = 0, I (T u0) < 0 for
T � 1, and by the coercivity of 1g + h/a, there exist C1,C2 > 0 such that
I (u) ≥ C1‖u‖2H1 − C2‖u‖2

?

H1 for all u. Then, we can apply the mountain-pass
lemma of Ambrosetti and Rabinowitz [1973] and we get that there exists a sequence
(uα)α in H 1 such that I (uα)= c+o(1) and I ′(uα).(ψ)= o(‖ψ‖H1) for all ψ ∈ H 1,
where

c = inf
γ∈0

sup
u∈γ

I (u),

and 0 is the set of continuous paths from 0 to T u0. Obviously, c> 0. By Theorem 1,
up to passing to a subsequence, (uα)α converges in H 1. Let u∞ be the limit in H 1

of the sequence uα. Then I (u∞) = c, u∞ 6≡ 0, and by passing to the limit in the
equation I ′(uα) . (ϕ)= o(1) for all ϕ ∈ H 1, we get that u∞ solves (1). �

It is easily seen that the mountain-pass solution u∞ obtained in Proposition 2
has a nice ground-state structure when n = 4. We define the Nehari manifold N

attached to I by

(25) N= {u ∈ H 1
\ {0} | I ′(u) . (u)= 0}.

The following 4-dimensional ground-state characterization of the solution obtained
in Proposition 2 holds true.

Proposition 3. Suppose that (M, g) is a closed 4-dimensional Riemannian mani-
fold, that a and b are positive real numbers, and that h ∈ C1(M,R) is such that
1g + h/a is positive. Assume that b� 1. Then, the mountain-pass solution u∞
obtained in Proposition 2 has a ground-state structure given by

(26) I (u∞)= inf
u∈N

I (u),

where N is the Nehari manifold attached to I given by (25).

Proof of Proposition 3. We obviously have that u∞ ∈ N, and thus there holds that
I (u∞) ≥ infu∈N I (u). Given ũ ∈ H 1

\ {0}, we define the mountain-pass energy
level cũ by

cũ = inf
γ∈0ũ

sup
u∈γ

I (u),

where 0ũ is the set of continuous paths from 0 to ũ. Let u0 ≡ 1 be as in the proof of
Proposition 2. Let T0� 1 be such that I (T0u0) < 0. By construction (see the proof
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of Proposition 2), it holds that I (u∞)= cT0u0 . Let u ∈ N. Then I (u)= I (|u|),

a
∫

M

(
|∇u|2+ h

a
u2
)

dvg + b
(∫

M
|∇u|2 dvg

)2

=

∫
M

u4 dvg

and for t ≥ 0,

(27) I (t |u|)= at2

2

∫
M

(
|∇u|2+ h

a
u2
)

dvg +
bt4

4

(∫
M
|∇u|2 dvg

)2

−
t4

4

∫
M

u4 dvg

=
at2(2−t2)

4

∫
M

(
|∇u|2+ h

a
u2
)

dvg.

In particular, I (T1|u|) < 0 for T1 >
√

2. Let u1 = |u| and T1 � 1. It is easily
checked (since u0 is constant) that

I (tT1u1+ (1− t)T0u0)≤ t2 I (T1u1)−
(1− t)2T 2

0 u2
0Vg

4
< 0

for all 0≤ t ≤ 1, where Vg is the volume of (M, g). In particular, cT0u0 = cT1u1 since
T0u0 and T1u1 can be connected by a continuous path along which I is everywhere
negative. So,

(28) cT0u0 ≤ sup
0≤t≤T1

I (tu1).

By (27) we see that t→ I (tu1) is maximal at t = 1, and thus cT0u0 ≤ I (u) by (28).
This proves that I (u∞)≤ I (u) for all u ∈ N, and thus that (26) holds. �

Balancing Proposition 2 we prove that the following uniqueness result, in the
sense of Brézis and Li [2006], holds.

Proposition 4. Suppose that (M, g) is a closed Riemannian manifold of dimension
n ≥ 4 and that h is a positive constant. Let ε0 > 0 arbitrary. For a, b� 1 when
n = 4, and a� 1, b ≥ ε0 when n ≥ 5, the sole nontrivial pair of solutions of (1) is
the pair (−u, u) of constant solutions, where u = h(n−2)/4.

Proof of Proposition 4. Let ε0 > 0 be given arbitrarily small. We prove the result by
contradiction. We assume that there exist sequences (aα)α, (bα)α of positive real
numbers, and a sequence (uα)α of nonconstant solutions of

(29)
(

aα + bα

∫
M
|∇uα|2 dvg

)
1guα + huα = |uα|2

?
−2uα

for all α such that aα→+∞ and bα→+∞ as α→+∞ when n = 4, and such
that aα →+∞ as α→+∞ and bα ≥ ε0 for all α when n ≥ 5. As in the proof
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of Theorem 1, this implies that ‖uα‖H1 = O(1). Suppose that Kα is as in (14),
hα = K−1

α h, and vα is as in (15). Then,

(30) 1gvα + hαvα = |vα|2
?
−2vα,

and Kα→+∞ since aα→+∞ as α→+∞. Then, by elliptic regularity, vα→ 0
in C0. Multiplying (30) by vα − vα, and integrating over M,

(31) λ1

∫
M
(vα − vα)

2 dvg ≤

∫
M
(vα − vα)

(
|vα|

2?−2vα − |vα|
2?−2vα

)
dvg

≤ C‖vα‖2
?
−2

L∞

∫
M
(vα − vα)

2 dvg

for all α, where C > 0 is independent of α, and λ1 > 0 is the first nontrivial
eigenvalue of 1g. Since vα → 0 in C0, (31) implies that vα = vα, and we get a
contradiction. �
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