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Abstract

In this paper, we introduce the concept of �-sub-derivative on time scales to define

ε-equivalent impulsive functional dynamic equations on almost periodic time scales.

To obtain the existence of solutions for this type of dynamic equation, we establish

some new theorems to characterize the compact sets in regulated function space on

noncompact intervals of time scales. Also, by introducing and studying a square

bracket function [x(·), y(·)] : T →R on time scales, we establish some new sufficient

conditions for the existence of almost periodic solutions for ε-equivalent impulsive

functional dynamic equations on almost periodic time scales. The final section

presents our conclusion and further discussion of this topic.
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1 Introduction

The theory of calculus on time scales (see [, ] and references cited therein) was initiated

by Stefan Hilger in  (see []) to unify continuous and discrete analysis. In particular

time the theory of scales unifies the study of differential and difference equations, and the

qualitative analysis of dynamic equations on time scales is of particular importance (see

[–]).

Time scales can be used to describe different natural phenomena in our real world and

most changes in nature are inundated with periodic and almost periodic natural phenom-

ena, so almost periodic problems of functional dynamic equations are important (see [–

]) (typical examples are time intervals around a celestial bodymotion, the climate change

during a year, the frequency of a tidal flood or an earthquake, etc.). We always study pe-

riodic or almost periodic problems assuming that the time scale T is periodic, that is, we

always suppose the functions that describe the status of the object are periodic or almost

periodic on periodic time scales (i.e., the status of the object is the same or almost the

same after an accurately chosen interval; see [] and its references). However, this is not

always the case. Since the status of the object is frequently disturbed by its immediate

state, the object’s status is not always the same or almost the same after a precisely equal

time interval. In fact frequently the object’s status with periodicity or almost periodicity

will be always the same or almost the same after ‘an almost equivalent time interval’, and

we say the object has ‘double almost periodicity’. To describe such a situation, recently, the
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authors introduced a type of time scales called ‘almost periodic time scales’ which can be

adopted to accurately describe the status of the assigned object which is almost the same

after an almost equivalent time interval (see [–]), and the authors studied the almost

periodic dynamical behavior of impulsive delay dynamic models on almost periodic time

scales.

Although the authors have this effective way to describe ‘double almost periodicity’, the

models proposed in [, ]) can be generalized with delays. In this paper, we investigate

a new general type of impulsive functional dynamic equation and obtain some sufficient

conditions for the existence of solutions.We now recall some ideas in [] that will be used

and improved in this paper. Using measure theory on time scales, the authors obtained

some properties of almost periodic time scales, and they established a new class of delay

dynamic equationswhich includes all almost periodic dynamic equations on periodic time

scales if we assume that almost periodic time scales are equal to periodic time scales (see

[], Section ). Let �ε = E{T, ε},T�ε = {T–τ : –τ ∈ E{T, ε}}, where E{T, ε} is ε-translation

number set of T. Consider two types of delay dynamic equations.

Type I. For t ∈ T∩ (∪–τT
�ε ),

x�(t) = g
(

t,x
(

t ± τ (t)
))

, τ : T → �ε . (.)

Type II. For t ∈ T∩ (∪–τT
�ε ),

x�(t) = g

(

t,

∫ b

a

x(t ± θ )��εθ

)

, θ ∈ [a,b]�ε . (.)

Observe that ifT is a periodic time scale,�ε will turn into the periodicity set ofT, and then

the dynamic equations (.) and (.) will include all delay dynamic equations in Section 

from []. As a result the above two types of dynamic equations are more general than

in the literature. Moreover, (.) and (.) are ‘shaky slightly’ since ε is arbitrary, which is

motivated by almost periodic time scales, and such a ‘shake’ occurs in the time variable.

As a result this type of delay dynamic equation can describe the ‘double periodicity’ of the

status of the object. Therefore, the existence of solutions for such a new type of dynamic

equations with ‘sight vibration’ is significant not only for the theory of dynamic equations

on time scales but also for practical applications.

Motivated by the above theoretical and practical significance, in this paper, we propose a

general type of ε-equivalent impulsive functional dynamic equations with ‘sight vibration’

on almost periodic time scales as follows:

⎧

⎨

⎩

x�(t) = F(t,x(t),xt), t �= tk , t ∈ T∩ (∪T�ε ),

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,

and obtain the existence of solutions (including almost periodic solutions) on almost pe-

riodic time scales.

This paper is organized as follows. In Section , we recall some necessary definitions

of almost periodic time scales and introduce the concept of a �-sub-derivative on time

scales to define ε-equivalent impulsive functional dynamic equations on almost periodic

time scales. In Section , we establish some new theorems to characterize the compact
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sets in regulated function space on noncompact intervals of time scales, which play an

important role in establishing the existence of solutions for ε-equivalent impulsive func-

tional dynamic equations with such a ‘sight vibration’. In Section , we propose a type of

function [x(·), y(·)] (see Definition .) on time scales and obtain some basic properties of

it. Using this function [x(·), y(·)], we establish some sufficient conditions for the existence

of almost periodic solutions for such a class of ε-equivalent impulsive functional dynamic

equations on almost periodic time scales. In Section , we present conclusions and further

discussion of this topic.

2 Preliminaries

In this section, we first recall some basic definitions and lemmas, which will be used.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump

operators σ ,ρ : T→ T and the graininess μ : T →R+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-

dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered maxi-

mumM, then T
k = T\{M}; otherwise Tk = T. If T has a right-scattered minimumm, then

Tk = T\{m}; otherwise Tk = T.

Definition . A function f : T → R is right-dense continuous provided it is continuous

at right-dense point inT and its left-side limits exist at left-dense points inT. If f is contin-

uous at each right-dense point and each left-dense point, then f is said to be a continuous

function on T.

Definition . For y : T→R and t ∈ T
k , we define the delta derivative of y(t), y�(t), to be

the number (if it exists) with the property that, for a given ε > , there exists a neighbor-

hood U of t such that

∣

∣

[

y
(

σ (t)
)

– y(s)
]

– y�(t)
[

σ (t) – s
]
∣

∣ < ε
∣

∣σ (t) – s
∣

∣

for all s ∈ U . Let y be right-dense continuous, and if Y�(t) = y(t), then we define the delta

integral by

∫ t

a

y(s)�s = Y (t) – Y (a).

Definition . A function p : T → R is called regressive provided  + μ(t)p(t) �=  for all

t ∈ T
k . The set of all regressive and rd-continuous functions p : T→ R will be denoted by

R =R(T) =R(T,R). We define the setR+ =R+(T,R) = {p ∈R :  +μ(t)p(t) > ,∀t ∈ T}.
An n× n-matrix-valued function A on a time scale T is called regressive provided

I +μ(t)A(t) is invertible for all t ∈ T,

and the class of all such regressive and rd-continuous functions is denoted, similar to the

above scalar case, byR =R(T) =R(T,Rn×n).
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Definition . If r is a regressive function, then the generalized exponential function er

is defined by

er(t, s) = exp

{∫ t

s

ξμ(τ )

(

r(τ )
)

�τ

}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{

Log(+hz)
h

, if h �= ,

z, if h = .

For more details as regards dynamic equations on time scales, we refer the reader to

[–].

In the following, we give some basic definitions and results of almost periodic time

scales. For more details, one may consult [–].

Let τ be a number, and we set the time scales:

T :=

+∞
⋃

i=–∞
[αi,βi], T

τ := T + τ = {t + τ : ∀t ∈ T} :=
+∞
⋃

i=–∞

[

ατ
i ,β

τ
i

]

.

Define the distance between two time scales, T and Tτ by

d
(

T,Tτ
)

= max
{

sup
i∈Z

∣

∣αi – ατ
i

∣

∣, sup
i∈Z

∣

∣βi – βτ
i

∣

∣

}

, (.)

where

ατ
i := inf

{

α ∈ T
τ : |αi – α|

}

and βτ
i := inf

{

β ∈ T
τ : |βi – β|

}

.

Let

� :=
{

τ ∈R : T∩T
τ �= ∅

}

�= {}.

Next, for an arbitrary time scale T, we can introduce the following new definition.

Definition . Let S = {s̃ ∈ T : s̃ is a right- or left-scattered point in T}. For any s ∈ � and

any right-scattered point t inT∩Ts, define dt = infs̃∈S |t– s̃|. Let the forward jump operator

σs(t) = inf{ŝ ∈ T ∩ T
s : ŝ > t}, t ∈ T ∩ T

s. We introduce a piecewise graininess function μs :

T∩T
s →R

+ as follows:

μs(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

, t is a right-dense point in T∩T
s,

μ(t) + dσ (t), t is a right-scattered point in both T∩T
s and T,

and dt = ,dσ (t) > ,

μ(t + dt), t is a right-scattered point in T∩T
s and a right-dense

point in T, and dt > ,dσ (t) = ,

μ(t + dt) + dσ (t), t is a right-scattered point in T∩T
s and a right-dense

point in T and dt ,dσ (t) > ,

μ(t), t is a right-scattered point in both T∩Ts and T,

and dt ,dσ (t) = .
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Figure 1 t is a right-scattered point in both T∩T
s and T.

Figure 2 t is a right-scattered point in T∩Ts and a right-dense point in T.

(.)

We say ϕ : T → T has a sub-derivative ϕ�s (t̂) on T∩T
s if

ϕ�s (t̂) = lim
t→t̂

ϕ(σs(t)) – ϕ(t̂)

σs(t) – t̂

exists for t, t̂ ∈ T∩T
s (see Figures -).

In the following, we introduce some basic definitions of almost periodic time scales.

Definition . ([, ]) A subset S of � is called relatively dense if there exists a positive

number L ∈ � such that [a,a + L]� ∩ S �= ∅ for all a ∈ �. The number L is called the

inclusion length.
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Figure 3 t is a right-scattered point in T∩T
s and a right-dense point in T.

Figure 4 t is a right-scattered point in both T∩T
s and T.

Then we can introduce the concept of almost periodic time scales as follows.

Definition . ([, ]) We say T is an almost periodic time scale if for any give ε > ,

there exists a constant l(ε) >  such that each interval of length l(ε) contains a τ (ε) ∈ �

such that

d
(

T,Tτ
)

< ε,

i.e., for any ε > , the set

E{T, ε} =
{

τ ∈ � : d
(

T
τ ,T

)

< ε
}

is relatively dense in�. Now τ is called the ε-translation number of T and l(ε) is called the

inclusion length of E{T, ε}, E{T, ε} is called the ε-translation set of T, and for simplicity,

we use the notation E{T, ε} :=�ε . Note that supT = +∞, infT = –∞.
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According to Definition ., we obtain the following useful lemmas.

Lemma . Let T be an almost periodic time scale. If τ, τ ∈ �ε , then there exists ξ ∈
ˆ(τ, τ + τ] such that ξ ∈ �ε , where

ˆ(τ, τ + τ] =

⎧

⎨

⎩

(τ, τ + τ], τ < τ + τ,

[τ + τ, τ), τ > τ + τ.

Proof From the condition of the lemma, we obtain

d
(

T,Tτ+τ
)

< d
(

T,Tτ
)

+ d
(

T
τ ,Tτ+τ

)

< ε.

Case I. If d(T,Tτ+τ ) < ε, then ξ = τ + τ, and we get the desired result.

Case II. Let ε > d(T,Tτ+τ ) > ε. Note (.), let

f (x) = d
(

T,Tx
)

, x ∈ ˆ(τ, τ + τ],

and note f (x) is continuous on R. Now, let F(x) = f (x) – ε, and we obtain

F(τ) = f (τ) – ε < , F(τ + τ) = f (τ + τ) – ε > ,

so, there exists some ξ ∈ ˆ(τ, τ + τ) such that F(ξ ) = . From the continuity of F , we see

that there exists some ξ ∈ ˆ(τ, ξ ) such that F(ξ) < , i.e., f (ξ) < ε. This completes the

proof. �

Remark . From Lemma ., we can see that �ε is an infinite number set.

Lemma . For any ε >  and τ ∈ �ε , if t ∈ T∩T
τ , then there exists τ ∈ �ε with τ > τ

such that t ∈ T∩T
τ .

Proof From Lemma ., there exists ξ > τ such that d(T,Tξ ) < ε.

Case I. If for t ∈ T∩Tτ , we have t ∈ T∩Tξ , and then τ = ξ ∈ �ε .

Case II. If for t ∈ T∩T
τ , we have t /∈ T∩T

ξ , then t /∈ T
ξ and

d
(

T
τ ,Tξ

)

< d
(

T,Tτ
)

+ d
(

T,Tξ
)

< ε. (.)

Then we denote γ = inft∈Tξ |t – t| + ε, and we get

inf
t∈Tξ

|t – t| ≤ d
(

T
ξ ,T

)

< ε,

so we have γ < ε. Therefore, by (.), we obtain

inf
t∈Tτ

∣

∣α
ξ

i + γ – t
∣

∣ < ε and inf
t∈Tτ

∣

∣β
ξ

i + γ – t
∣

∣ < ε,

so

∣

∣α
ξ

i + γ – α
τ
i

∣

∣ < ε and
∣

∣β
ξ

i + γ – β
τ
i

∣

∣ < ε,
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and so we obtain

α
ξ

i + γ > α
τ
i – ε and β

ξ

i + γ > β
τ
i – ε.

Hence,

d
(

T,Tξ+γ
)

= max
{

sup
i∈Z

∣

∣αi –
(

α
ξ

i + γ
)∣

∣, sup
i∈Z

∣

∣βi –
(

β
ξ

i + γ
)∣

∣

}

≤ max
{

sup
i∈Z

∣

∣αi –
(

α
τ
i – ε

)
∣

∣, sup
i∈Z

∣

∣βi –
(

β
τ
i – ε

)
∣

∣

}

= d
(

T,Tτ
)

< ε.

Hence, we have ξ + γ ∈ �ε and t ∈ T ∩ T
ξ+γ . Hence, we can take τ = ξ + γ > τ such

that t ∈ T∩T
τ . This completes the proof. �

Remark . From Lemma ., one see that if τ ∈ �ε and t ∈ T ∩ T
τ , then the set {τ ∈

�ε : t ∈ T∩T
τ } is an infinite number set.

Let μτ : T
τ →R

+ be the graininess function of Tτ , and we obtain

μτ (t + τ ) =

⎧

⎨

⎩

μ(t), t + τ /∈ T,

μ(t + τ ), t + τ ∈ T.
(.)

Thus, from (.), we can simplify Definition . as follows.

Definition . Let μ : T →R
+ be a graininess function of T. We say T is an almost peri-

odic time scale if for any ε > , the set

�∗ =
{

τ ∈ � :
∣

∣μ(t + τ ) –μ(t)
∣

∣ < ε,∀t ∈ T∩T
–τ

}

is relatively dense in �.

Definition . ([, ]) Let T be an almost periodic time scale, i.e., T satisfies Defini-

tion .. A function f ∈ C(T × D,En) is called an almost periodic function in t ∈ T uni-

formly for x ∈D if the ε-translation set of f

E{ε, f ,S} =
{

τ ∈ �ε :
∣

∣f (t + τ ,x) – f (t,x)
∣

∣ < ε, for all (t,x) ∈
(

T∩T
–τ

)

× S
}

is a relatively dense set in �ε for all ε > ε >  and for each compact subset S ofD; that is,

for any given ε > ε >  and each compact subset S ofD, there exists a constant l(ε,S) > 

such that each interval of length l(ε,S) contains a τ (ε,S) ∈ E{ε, f ,S} such that

∣

∣f (t + τ ,x) – f (t,x)
∣

∣ < ε, for all (t,x) ∈
(

T∩T
–τ

)

× S.

This τ is called the ε-translation number of f and l(ε,S) is called the inclusion length of

E{ε, f ,S}.

Remark . Note that Definition . from [] is equivalent to Definition .. For Defini-

tion . from [], we note the following:
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(i) for all t ∈ T∩ (∪T�ε ), there exists –τ ∈ �ε such that t ∈ T∩T
–τ . From

Remark ., we know that the set {–τ ∈ �ε : t ∈ T∩T
–τ } is an infinite number set.

(ii) d(T∩ (∪T�ε ),T) < ε.

(iii) According to (i) from Remark ., for all t ∈ T∩ (∪T�ε ), there exists an infinite

number set �̄ ⊂ �ε such that t + τ ∈ T.

Definition . ([, ]) Let T be an almost periodic time scale and assume that {τi} ⊂ T

satisfying the derived sequence {τ j
i }, i, j ∈ Z, is equipotentially almost periodic. We call a

function ϕ ∈ PCrd(T,R
n) almost periodic if:

(i) for any ε > , there is a positive number δ = δ(ε) such that if the points t′ and t′′

belong to the same interval of continuity and |t′ – t′′| < δ, then ‖ϕ(t′) – ϕ(t′′)‖ < ε;

(ii) for any ε > ε > , there is a relative dense set Ŵ of ε-almost periods such that if

τ ∈ Ŵ ⊂ �ε , then ‖ϕ(t + τ ) – ϕ(t)‖ < ε for all t ∈ T∩ (∪T�ε ) which satisfy the

condition |t – τi| > ε, i ∈ Z.

Remark . From Definition ., if T is a periodic time scale, then one can take a peri-

odicity set �̃ ⊂ � of T, such that μs(t) = μ(t) for all t ∈ T ∩Ts = T, s ∈ �̃, dt = dσ (t) = . If

T is an almost periodic time scale from [], then one can take a ε-translation number set

�ε ⊂ �of T, such that |μs(t) –μ(t)| < ε for all t ∈ T∩T
s, s ∈ �ε , i.e., for all right-scattered

and right-dense points t ∈ T∩T
s, one can obtain dt ,dσ (t) < ε.

According to Definition . and Remark ., we can introduce a concept of ε-equivalent

impulsive functional dynamic equations on almost periodic time scales as follows.

Definition . Let T be an almost periodic time scale. Consider the following impulsive

functional dynamic equations with sub-derivative x�–s (t) on T∩T–s:

⎧

⎨

⎩

x�–s (t) = f (t,xt), t ∈ T∩T
–s, t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,
(.)

where –s ∈ �, xt(s) = x(t + s). We say the functional dynamic equations

⎧

⎨

⎩

x�(t) = f (t,xt), t ∈ T∩T
–s, t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,
(.)

are ε-equivalent impulsive functional dynamic equations for (.) if –s ∈ �ε ⊂ �. Note

that (.) can also be written as

⎧

⎨

⎩

x�(t) = f (t,xt), t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,
(.)

where t ∈ T∩ (∪T�ε ).
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Remark . Let T be an almost periodic time scale. According to Theorem . and Re-

mark . from [], one can observe that we say the dynamic equations

⎧

⎨

⎩

x�(t) = f (t,xt), t ∈ T, t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,

have an almost periodic solution on the almost periodic time scale T if (.) has an almost

periodic solution on T∩T
–s for any –s ∈ �ε .

Remark . According to Theorems . and . from [], for (.), if we let xt(τ (t)) =

x(t – τ (t)), τ : T→ �ε , then it becomes

⎧

⎨

⎩

x�(t) = f (t,x(t – τ (t))), t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,

if we let xt(θ ) =
∫ b

a
x(t + θ )��εθ , and then it becomes

⎧

⎨

⎩

x�(t) = f (t,
∫ b

a
x(t + θ )��εθ ), t �= tk ,k ∈ Z,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z.

Lemma . ([]) Let A be a compact convex subset of a locally convex (linear topological)

space and f be a continuous map of A into itself. Then f has a fixed point.

3 Characterizations of compact sets in a regulated functional space on time

scales

In this section, we introduce some new definitions and establish new characterization

results of compact sets in functional spaces on time scales which will play an important

role in studying abstract discontinuous dynamic equations on time scales.

First, let δ+∞
L , δ+∞

R : [T, +∞)T → R
+ ∪ {}. Similar to [], we can extend the �-gauge

for [a,b]T to [T, +∞)T.

Definition . We say δ+∞ = (δ+∞
L , δ+∞

R ) is a �-gauge for [T, +∞)T provided δ+∞
L (t) >

 on (T, +∞)T and δ+∞
L (T) ≥ , δ+∞

R (t) >  on [T, +∞)T and δ+∞
R (t) ≥ μ(t) for all t ∈

[T, +∞)T.

For a �-gauge, δ+∞, we always assume δ+∞
L (T) ≥  (we will sometimes not even point

this out).

For T ∈ T and a Banach space (X,‖ · ‖), let

G
(

[T, +∞)T,X
)

:=
{

x : [T, +∞)T → X;

lim
s→t+

x(s) = x
(

t+
)

and lim
s→t–

x(s) = x
(

t–
)

exist and are finite,

s, t < +∞ and sup
t∈[T ,+∞)T

∥

∥x(t)
∥

∥ < +∞
}

.

Endow G([T, +∞)T,X) with the norm ‖x‖∞ = supt∈[T ,+∞)T
‖x(t)‖.
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Lemma . (G([T, +∞)T,X),‖ · ‖∞) is a Banach space.

Proof Let {xn} be an arbitrary Cauchy sequence inG, i.e., for any ε > , there existsN such

that n,m >N implies

∥

∥xn(t) – xm(t)
∥

∥ < ε for all t ∈ [T, +∞)T. (.)

Since X is a Banach space, for each t ∈ [T, +∞)T, {xn(t)} ⊂ X is a Cauchy sequence so

xn(t)→ x(t). Hence, letm → +∞ in (.), and we have

∥

∥xn(t) – x(t)
∥

∥ < ε for all t ∈ [T, +∞)T.

Furthermore, since {xn} ⊂ G, for any ε >  and t ∈ [T, +∞)T, there exists δ > , t ∈ (t –

δ+∞
L (t), t)T with

∥

∥xn(t) – xn
(

t+
)
∥

∥ < ε.

Hence, we obtain

∥

∥x(t) – x
(

t+
)
∥

∥ ≤
∥

∥x(t) – xn(t)
∥

∥ +
∥

∥xn(t) – xn
(

t+
)
∥

∥ +
∥

∥xn
(

t+
)

– x
(

t+
)
∥

∥ ≤ ε. (.)

Similarly, for t ∈ (t, t + δ+∞
R (t))T, we also obtain

∥

∥x(t) – x
(

t–
)∥

∥ ≤
∥

∥x(t) – xn(t)
∥

∥ +
∥

∥xn(t) – xn
(

t–
)∥

∥ +
∥

∥xn
(

t–
)

– x
(

t–
)∥

∥ ≤ ε. (.)

Therefore, from (.) and (.), we obtain x ∈G. Hence, G is a Banach space. �

In the following, we will introduce the definition of a partition P for [T, +∞)T.

Definition . A partition P for [T, +∞)T is a division of [T, +∞)T denoted by

P =
{

T = tP ≤ η ≤ tP ≤ · · · ≤ tPn– ≤ ηn ≤ tPn ≤ · · · < · · ·
}

with tPi > tPi– for i = , , . . . and ti,ηi ∈ T. We call the points ηi tag points and the points ti

end points.

Definition . If δ+∞ is a �-gauge for [T, +∞)T, then we say a partition P is δ+∞-fine if

ηi – δ+∞
L (ηi) ≤ tPi– < tPi ≤ ηi + δ+∞

R (ηi)

for i = , , . . . .

Remark . From Definition ., one can observe that if a partition P is δ+∞-fine for

[T, +∞)T, then for any closed interval [a,b]T ⊂ [T, +∞)T, there must exist a δ-fine par-

tition P∗ and P∗ ⊂P .
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Definition . A set A ⊂G([T, +∞)T,X) is called uniformly equi-regulated, if it has the

following property: for every ε >  and t ∈ [T, +∞)T, there is a δ+∞ = (δ+∞
L , δ+∞

R ) such

that

(a) If x ∈A, t′ ∈ [T, +∞)T and t – δ+∞
L (t) < t′ < t, then ‖x(t– ) – x(t′)‖ < ε.

(b) If x ∈A, t′′ ∈ [T, +∞)T and t < t′′ < t + δ+∞
R (t), then ‖x(t+ ) – x(t′′)‖ < ε.

From Definition ., we obtain the following theorem.

Theorem . A set A ⊂ G([T, +∞)T,X) is uniformly equi-regulated, if and only if, for

every ε > , there is a δ+∞-fine partition P :

T = tP < tP < tP < · · · < tPn < · · · < · · ·

such that

∥

∥x
(

t′
)

– x(t)
∥

∥ ≤ ε, (.)

for every x ∈A and [t, t′]T ⊂ (tPj–, t
P
j )T, j = , , . . . .

Proof Let ε >  be given and let

D =
{

ξ ; ξ ∈ (T, +∞)T
}

such that there is a partition P :

T = tP < tP < · · · < tPk = ξ

for which (.) holds with j = , , . . . ,k.

(i) If A ⊂ G([T, +∞)T,X) is uniformly equi-regulated, then there is a δ+∞
R (T) >  such

that

∥

∥x(t) – x
(

T+


)
∥

∥ <
ε


,

for every x ∈ A and t ∈ (T,T + δ+∞
R (T))T. Denote ξ = T + δ+∞

R (T),T = tP < tP = ξ.

Thus, for [t, t′]T ⊂ (T, ξ)T and x ∈A, the inequalities

∥

∥x(t) – x
(

t′
)
∥

∥ ≤
∥

∥x(t) – x
(

T+


)
∥

∥ +
∥

∥x
(

t′
)

– x
(

T+


)
∥

∥ ≤ ε,

holds and we have ξ ∈D.

Let ξ > ξ > T. Since x ∈ A, then there is a δ+∞
L (ξ) such that

∥

∥x
(

ξ–


)

– x(t)
∥

∥ <
ε



for every x ∈A and t ∈ (ξ – δ+∞
L (ξ), ξ)T ∩ [T, +∞)T.

Let ξ̃ ∈ (ξ–δL(ξ), ξ)T and a partitionT = tP < tP < tP < · · · < tPk = ξ̃ be such that (.)

holds with j = , , . . . ,k. Denote tPk+ = ξ. Then for [t, t′]T ⊂ (tPk , tPk+)T and x ∈ A, we have

∥

∥x(t) – x
(

t′
)
∥

∥ ≤
∥

∥x(t) – x
(

ξ–


)
∥

∥ +
∥

∥x
(

t′
)

– x
(

ξ–


)
∥

∥ ≤ ε
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which implies ξ ∈D. Thusweuse the same argument as before to find that ξi ∈ (ξi–, +∞)T

such that ξi ∈D, i = , , . . . . Hence ξ∞ = supD = +∞ and we are finished.

(ii) Reciprocally, for any given ε > , there is a δ+∞-fine partition P : T = tP < tP < tP <

· · · < tPk < · · · < · · · such that

∥

∥x(t) – x
(

t′
)
∥

∥ ≤ ε, (.)

for every x ∈A and [t, t′]T ⊂ (tPj–, t
P
j )T, j = , , . . . .

Let ηj be a tag of (tj–, tj)T. Since this partition is δ+∞-fine, we have (tPj–, t
P
j )T ⊂ (ηj –

δ+∞
L (ηj),ηj + δ+∞

R (ηj))T. Therefore, the inequality (.) holds, for t, t′ ∈ (ηj – δ+∞
L (ηj),ηj +

δ+∞
R (ηj))T. Taking t = η–

j and t′ ∈ (ηj – δ+∞
L (ηj),ηj]T, then the inequality (.) remains true.

Also, if t = η+
j and t′ ∈ [ηj,ηj + δ+∞

R (ηj))T, the inequality (.) is fulfilled. Then, from Defi-

nition ., it follows that A is uniformly equi-regulated. This completes the proof. �

Definition . Let A ⊂ G([T, +∞)T,X). We say A is uniformly Cauchy if for any ε > ,

there exist T ∈ (T, +∞)T and a δ+∞ = (δ+∞
L , δ+∞

R )-fine partition P :

tP = T < tP < tP < · · · < tPn < · · · < · · ·

such that:

(a) If x ∈A, t′, t ∈ [T, +∞)T and t – δ+∞
L (t) < t′ < t, then ‖x(t– ) – x(t′)‖ < ε.

(b) If x ∈A, t′′, t ∈ [T, +∞)T and t < t′′ < t + δ+∞
R (t), then ‖x(t+ ) – x(t′′)‖ < ε.

(c) If x ∈A, t′ ∈ [a′,b′]T ⊂ (tPj–, t
P
j )T, t

′′ ∈ [a′′,b′′]T ⊂ (tPi–, t
P
i )T, i, j = , , . . . , then

‖x(t′) – x(t′′)‖ < ε.

Remark . From Definition ., one can observe that if A ⊂ G([T, +∞)T,X) is uni-

formly Cauchy, then there exists T ∈ (T, +∞)T such that A is uniformly equi-regulated

on [T, +∞)T.

Theorem . Assume that a set A ⊂ G([T, +∞)T,X) is uniformly equi-regulated and

uniformly Cauchy, and for any t ∈ [T, +∞)T, there is a number βt such that, for x ∈A,

∥

∥x(t) – x
(

t–
)
∥

∥ ≤ βt ,
∥

∥x
(

t+
)

– x(t)
∥

∥ ≤ βt , t ∈ [T, +∞)T. (.)

Then there is a constant K >  such that ‖x(t) – x(T)‖ ≤ K , for every x ∈ A and t ∈
[T, +∞)T.

Proof SinceA is uniformlyCauchy, according toDefinition ., there existsT ∈ (T, +∞)T

such that

∥

∥x(t) – x(T)
∥

∥ < , t ∈ [T, +∞)T. (.)

Let C be the set of all τ ∈ (T,T]T such that there exists Kτ >  such that

∥

∥x(t) – x(T)
∥

∥ ≤ Kτ ,

for any x ∈A and t ∈ [T, τ ]T.
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Since A is uniformly equi-regulated, there is a δ+∞
R (T) such that

∥

∥x(t) – x
(

T+


)
∥

∥ ≤ ,

for every x ∈A and t ∈ (T,T + δ+∞
R (t)]T. This fact together with the hypothesis implies

that

∥

∥x(t) – x(T)
∥

∥ ≤
∥

∥x(t) – x
(

T+


)
∥

∥ +
∥

∥x
(

T+


)

– x(T)
∥

∥ ≤  + βT := KT+δ+∞ ,

for every t ∈ (T,T + δR(T)]T and x ∈A. Hence, (T,T + δR(T)]T ⊂ C.

Denote τ = supC. As a consequence of the uniformly equi-regulatedness of A, there is

a δ+∞
L (τ) >  such that ‖x(t) – x(τ–

 )‖ ≤  for x ∈ A and t ∈ [τ – δ+∞
L (τ), τ)T.

Let τ ∈ C∩ [τ – δ+∞
L (τ), τ)T. Then

∥

∥x(t) –x(T)
∥

∥ ≤
∥

∥x(t) –x
(

τ–


)
∥

∥+
∥

∥x
(

τ–


)

–x(τ )
∥

∥+
∥

∥x(τ ) –x(T)
∥

∥ ≤ + +Kτ = +Kτ ,

for every x ∈A and t ∈ (τ , τ)T. Also,

∥

∥x
(

τ–


)

– x(T)
∥

∥ ≤
∥

∥x
(

τ–


)

– x(τ )
∥

∥ +
∥

∥x(τ ) – x(T)
∥

∥ ≤  +Kτ .

These inequalities and this hypothesis imply that

∥

∥x(τ) – x(T)
∥

∥ ≤
∥

∥x(τ) – x
(

τ–


)
∥

∥ +
∥

∥x
(

τ–


)

– x(T)
∥

∥ ≤ βτ +  +Kτ . (.)

Thus τ ∈ C, where Kτ = βτ +  +Kτ .

If τ < T, then, since A is uniformly equi-regulated, there is a δ+∞
R (τ) >  such that

∥

∥x(t) – x
(

τ+


)
∥

∥ ≤ , for any x ∈ A and t ∈
(

τ, τ + δR(τ)
]

T
,

which implies

∥

∥x(t) – x(T)
∥

∥ ≤
∥

∥x(t) – x
(

τ+


)
∥

∥ +
∥

∥x
(

τ+


)

– x(τ)
∥

∥ +
∥

∥x(τ) – x(T)
∥

∥

≤  + βτ +Kτ = Kτ+δ+∞
R (τ),

for t ∈ (τ, τ + δ+∞
R (τ)]T and x ∈A. Thus τ + δ+∞

R (τ) ∈ C, which contradicts the fact that

τ = supC. Therefore, τ = T. Hence, by (.), we have

∥

∥x(T) – x(T)
∥

∥ ≤ Kτ .

Combining with (.), we have

∥

∥x(t) – x(T)
∥

∥ ≤
∥

∥x(t) – x(T)
∥

∥ +
∥

∥x(T) – x(T)
∥

∥ ≤  +Kτ ,

for t ∈ (T, +∞)T. Then we can get the desired result. �

Now, we give some sufficient conditions to guarantee that A is relatively compact in

G([T, +∞)T,X).
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Theorem . Let A ⊂ G([T, +∞)T,X) be uniformly equi-regulated and uniformly

Cauchy, for every t ∈ [T, +∞)T, and let the set {x(t);x ∈ A} be relatively compact in X.

Then the set A is relatively compact in G([T, +∞)T,X).

Proof Since A is uniformly Cauchy, ∀x ∈ A, by (a), (b) from Definition ., for any ε > ,

there exists T ∈ (T, +∞)T, there is a δ+∞ = (δ+∞
L , δ+∞

R )-fine partition P:

t
P
 = T < t

P
 < t

P
 < · · · < tP

n < · · · < · · ·

such that

∥

∥x
(

t
P+
j

)

– x
(

t′
)
∥

∥ < ε for t′ ∈
(

t
P
j , t

P
j + δ+∞

R

(

t
P
j

)]

T
, (.)

∥

∥x
(

t
P–
j

)

– x
(

t′′
)
∥

∥ < ε for t′′ ∈
[

t
P
j – δ+∞

L

(

t
P
j

)

, t
P
j

)

T
, (.)

∥

∥x
(

T+


)

– x
(

t′′′
)
∥

∥ < ε for t′′′ ∈
(

T,T + δ+∞
R (T)

]

T
, (.)

for each j = , , , . . . . From (c) in Definition ., we have

∥

∥x
(

T + δ+∞
R (T)

)

– x(t)
∥

∥ < ε for t ∈
[

t
P
j– + δ+∞

R

(

t
P
j–

)

, t
P
j – δ+∞

L

(

t
P
j

)]

T
(.)

and

∥

∥x
(

t′′′
)

– x
(

t′
)
∥

∥ < ε. (.)

From (.) and (.), we have

∥

∥x
(

T + δ+∞
R (T)

)

– x
(

t
P–
j

)
∥

∥ ≤
∥

∥x
(

T + δ+∞
R (T)

)

– x
(

t
P
j – δ+∞

L

(

t
P
j

))
∥

∥

+
∥

∥x
(

t
P–
j

)

– x
(

t
P
j – δ+∞

L

(

t
P
j

))
∥

∥ < ε, (.)

for each j = , , , . . . . Similarly, from (.), (.), and (.), we also have

∥

∥x
(

T+


)

– x
(

t
P+
j

)
∥

∥ ≤
∥

∥x
(

T+


)

– x
(

t′′′
)
∥

∥ +
∥

∥x
(

t
P+
j

)

– x
(

t′
)
∥

∥

+
∥

∥x
(

t′′′
)

– x
(

t′
)
∥

∥ < ε, (.)

for each j = , , , . . . . Hence, from (.), we obtain

∥

∥x
(

T + δ+∞
R (T)

)

– x(t)
∥

∥ < ε, t ∈
[

t
P
j– + δ+∞

R

(

t
P
j–

)

, t
P
j – δ+∞

L

(

t
P
j

)]

T
. (.)

From (.) and (.), we get

∥

∥x
(

T + δ+∞
R (T)

)

– x(t)
∥

∥ =
∥

∥x
(

t
P–
j

)

– x(t)
∥

∥ +
∥

∥x
(

T + δ+∞
R (T)

)

– x
(

t
P–
j

)
∥

∥

< ε, t ∈
[

t
P
j – δ+∞

L

(

t
P
j

)

, t
P
j

)

T
. (.)

Similarly, from (.) and (.), we also obtain

∥

∥x
(

t
P+
j

)

– x(t)
∥

∥ =
∥

∥x
(

T+


)

– x(t)
∥

∥ +
∥

∥x
(

T+


)

– x
(

t
P+
j

)
∥

∥

< ε, t ∈
(

t
P
j , t

P
j + δ+∞

R

(

t
P
j

)]

T
,
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so we obtain

∥

∥x
(

T+


)

– x(t)
∥

∥ < ε, t ∈
(

t
P
j , t

P
j + δ+∞

R

(

t
P
j

)]

T
. (.)

Further, since A is uniformly equi-regulated on [T, +∞)T, given ε > , there is a δ+∞-

fine partition P:

t
P
 = T < t

P
 < · · · < t

P
K = T,

such that

∥

∥x
(

t′
)

– x(t)
∥

∥ < ε,

for every [t, t′]T ⊂ (t
P
j– , t

P
j )T, j ∈ {, , . . . ,K}. Obviously, P = P ∪ P is a δ+∞-fine parti-

tion for [T, +∞)T.

Let {xn;n ∈N} be a given sequence. By assumption, the set

{

xn
(

t
P
j

)

,xn
(

T + δ+∞
R (T)

)

,xn
(

T+


)

,n ∈N
}

is relatively compact in X for every j = , , , . . . ,K . Therefore, we can find a subsequence

of indices {nk ;k ∈N} ⊂ {n;n ∈ N} such that the set

{

xnk
(

t
P
j

)

,xnk
(

T + δ+∞
R (T)

)

,xnk
(

T+


)

,k ∈ N
}

is also relatively compact in X for every j = , , . . . ,K . Using this fact, we can find the

elements {yj; j = , , , . . . ,K ,K + ,K + } ⊂ X such that yj = limk→∞ xnk (t
P
j ), yK+ =

limk→∞ xnk (T + δ+∞
R (T)) and yK+ = limk→∞ xnk (T

+
 ). Therefore, there exists N ∈ N such

that, for every k >N , we have

∥

∥xnk
(

t
P
j

)

– yj
∥

∥ <
ε


.

Let q > k, and then

∥

∥xnq
(

t
P
j

)

– yj
∥

∥ <
ε


,

for any j = , , . . . ,K . Similarly, we also have

∥

∥xnq
(

T + δ+∞
R (T)

)

– yK+

∥

∥ <
ε


,

∥

∥xnq
(

T+


)

– yK+

∥

∥ <
ε


.

Now, let t ∈ [T,T]T and q ∈ N such that q > k. Then t = t
P
j for some j ∈ {, , . . . ,K}

and, in this case, we have

∥

∥xnk (t) – xnq (t)
∥

∥ ≤
∥

∥xnk
(

t
P
j

)

– yj
∥

∥ +
∥

∥xnq
(

t
P
j

)

– yj
∥

∥ <
ε


,
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or t ∈ (t
P
j– , t

P
j )T for some j ∈ {, , . . . ,K} and, in this case, we have

∥

∥xnk (t) – xnq (t)
∥

∥ ≤
∥

∥xnk (t) – xnq
(

t
P
j–

)
∥

∥ +
∥

∥xnq (t) – xnk
(

t
P
j–

)
∥

∥ +
∥

∥xnq
(

t
P
j–

)

– xnk
(

t
P
j–

)
∥

∥

<
ε


+

ε


+

ε


= ε.

Moreover, from (.), let t ∈ [T, +∞)T, we also obtain

∥

∥xnk (t) – xnq (t)
∥

∥ ≤
∥

∥xnk (t) – xnq
(

T + δ+∞
R (T)

)
∥

∥ +
∥

∥xnq (t) – xnk
(

T + δ+∞
R (T)

)
∥

∥

+
∥

∥xnq
(

T + δ+∞
R (T)

)

– xnk
(

T + δ+∞
R (T)

)
∥

∥

<
ε


+

ε


+

ε


< ε,

for t ∈ [t
P
j– + δ+∞

R (t
P
j–), t

P
j – δ+∞

L (t
P
j )]T, j ∈ {, , . . .}.

Similarly, from (.), we also obtain

∥

∥xnk (t) – xnq (t)
∥

∥ ≤
∥

∥xnk (t) – xnq
(

T + δ+∞
R (T)

)
∥

∥ +
∥

∥xnq (t) – xnk
(

T + δ+∞
R (T)

)
∥

∥

+
∥

∥xnq
(

T + δ+∞
R (T)

)

– xnk
(

T + δ+∞
R (T)

)
∥

∥

<
ε


+

ε


+

ε


< ε,

for t ∈ [t
P
j – δ+∞

L (t
P
j ), t

P
j )T, j ∈ {, , , . . .}.

From (.), we have

∥

∥xnk (t) – xnq (t)
∥

∥ ≤
∥

∥xnk (t) – xnq
(

T+


)
∥

∥ +
∥

∥xnq (t) – xnk
(

T+


)
∥

∥ +
∥

∥xnq
(

T+


)

– xnk
(

T+


)
∥

∥

<
ε


+

ε


+

ε


< ε,

for t ∈ (t
P
j , t

P
j + δ+∞

R (t
P
j )]T, j ∈ {, , , . . .}.

Thus, for t ∈ [T, +∞)T, the sequence

{

xnk (t);k ∈N
}

⊂ X

is a Cauchy sequence. Since X is complete, limk→∞ xnk (t) exists. Hence, any {xn} ⊂ A has

a convergent subsequence which means that A is a relatively compact set. The proof is

complete. �

In the following, let X = Rn; we will give some sufficient conditions to guarantee that

A ⊂G([T, +∞)T,R
n) is relatively compact.

Theorem . Let a set A ⊂ G([T, +∞)T,R
n). If A is relatively compact in the sup-norm

topology, then it is uniformly equi-regulated. IfA is uniformly equi-regulated anduniformly

Cauchy, satisfying (.), then A is relatively compact in G([T, +∞)T,R
n).

Proof A subset A of a Banach space X is relatively compact if and only if it is totally

bounded, i.e., for every ε > , there is a finite ε-net F for A, i.e., such a subset F =

{x,x, . . . ,xk} of X that, for every x ∈ A, there is xn ∈ F satisfying ‖x – xn‖ ≤ ε.
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(i) Assume thatA is relatively compact. Then it is bounded by a constantC, and evidently

(.) is satisfied with βt = C for every t ∈ [T, +∞)T.

Let t ∈ [T, +∞)T and ε be given. Let {x,x, . . . ,xk} ⊂ G([T, +∞)T,R
n) be a finite ε/-

net for A. For every n = , , . . . ,k, there is a δ+∞
n = (δ+∞,n

L , δ+∞,n
R ) such that

∣

∣xn(t) – xn
(

t+
)
∣

∣ <
ε


for t ∈

(

t, t + δ
+∞,n
R (t)

)

T
∩ [T, +∞)T

and

∣

∣xn
(

t–
)

– xn(t)
∣

∣ <
ε


for t ∈

(

t – δ
+∞,n
L (t), t

)

T
∩ [T, +∞)T.

Denote δ+∞ = (min≤n≤k(δ
+∞,n
L (t)),min≤n≤k(δ

+∞,n
R (t))) = (δ+∞

L (t), δ
+∞
R (t)).

For arbitrary x ∈ A, we can find xn such that ‖x – xn‖∞ ≤ ε/ for every t ∈ (t, t +

δ+∞
R (t))T ∩ [T, +∞)T, and we have the inequality

∣

∣x(t) – x
(

t+
)∣

∣ ≤
∣

∣x(t) – xn(t)
∣

∣ +
∣

∣xn(t) – xn
(

t+
)∣

∣ +
∣

∣xn
(

t+
)

– x
(

t+
)∣

∣

≤ ‖x – xn‖∞ +
∣

∣xn(t) – xn
(

t+
)
∣

∣ < ε,

and similarly, |x(t– ) – x(t)| < ε for t ∈ (t – δ+∞
L (t), t)T.

(ii) Assume that A is uniformly equi-regulated, (.) holds, i.e., there exists α̃ >  such

that |x(T)| ≤ α̃ for every x ∈A.

From Theorem ., there is K such that |x(t) – x(T)| ≤ K for any x ∈ A and t ∈
[T, +∞)T. Hence, |x(t)| ≤ |x(t) + x(T)| + |x(T)| ≤ K + α̃. If we denote γ̃ = K + α̃, then

‖x‖ ≤ γ̃ for x ∈A. SinceA is uniformly bounded inR
n,A is a sequentially compact closed

set in R
n, i.e., A is relatively compact in R

n. From Theorem ., one can obtain A is a

relatively compact set in G([T, +∞)T,R
n). This completes the proof. �

Remark . If Ã is uniformly bounded, equi-continuous and uniformly Cauchy, then Ã ⊂
A. Hence, one can observe that Lemma  from [] is just a particular case of Theorem ..

Remark . For a,b ∈ T, let

G

(

[a,b]T,X
)

:=
{

x : [a,b]T → X;

lim
s→t+

x(s) = x
(

t+
)

and lim
s→t–

x(s) = x
(

t–
)

exist and are finite
}

,

and according to each x ∈G, we can construct the setG([a, +∞)T,X), satisfying, for each

x̃ ∈G:

x̃(t) =

⎧

⎨

⎩

x(t), t ∈ [a,b]T,

x(b–), t ∈ (b, +∞)T.

One can immediately see that G and G are topological homeomorphic, i.e., there exists

a homeomorphic mapping f : G → G such that f (x) = x̃ and f –(x̃) = x. Since for any

set A ⊂G, according to the construction of the setG, one can see that f (A) is uniformly

Cauchy. If the set {f (x);x ∈A} is relatively compact inX, then, by Theorem ., the relative
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compactness of f (A) is decided by the uniformly equi-regulatedness of f (A). However, for

all t ∈ (b, +∞)T, obviously, f (A) is uniformly equi-regulated. Thus the uniformly equi-

regulatedness of f (A) on [a, +∞)T is actually decided by the equi-regulatedness of A on

[a,b]T. Therefore, if A is equi-regulated on [a,b]T, then f (A) ⊂ G is relatively compact,

i.e., A is relatively compact in G.

From Theorem . and Remark ., we can obtain the following corollaries.

Corollary . Let X = R
n. A set A ⊂ G is relatively compact if and only if it is equi-

regulated and for every t ∈ [a,b]T, the set {x(t);x ∈A} is bounded in R
n.

Proof If A ⊂G is relatively compact, then A is totally bounded in R
n, and then for every

t ∈ [a,b]T, {x(t);x ∈ A} is bounded in R
n. Moreover, by Remark ., there exists a home-

omorphic mapping f :G → G such that f (A) ⊂ G is relatively compact, which means

that f (A) ⊂G is equi-regulated on [a,b]T according toTheorem.. Since f is continuous

and a one-to-one mapping, A is equi-regulated on [a,b]T.

If A ⊂ G is equi-regulated and for every t ∈ [a,b]T, the set {x(t);x ∈ A} is bounded in

R
n, then f (A) ⊂G is equi-regulated and for every t ∈ [a, +∞)T, the set {f (x); f (x) ∈ f (A)}

is bounded in R
n, according to Theorem ., f (A) is relatively compact in G, i.e., A is

relatively compact in G. This completes the proof. �

Corollary . Let A ⊂ G be equi-regulated, and for every t ∈ [a,b]T, let the set {x(t);x ∈
A} be relatively compact in X. Then the set A is relatively compact in G([a,b]T,X).

Proof From the assumption of this corollary and Remark ., by Theorem ., we can

see that the set f (A) is relatively compact in G([a, +∞)T,X), i.e., the set A is relatively

compact in G([a,b]T,X). This completes the proof. �

Remark . In fact, if we let T =R, Corollaries . and . can include Corollary . from

[] and Theorem . from [], respectively.

Similarly, for T̄ ∈ T and a Banach space (X,‖ · ‖), let

G
(

(–∞, T̄]T,X
)

:=
{

x : (–∞, T̄]T → X;

lim
s→t+

x(s) = x
(

t+
)

and lim
s→t–

x(s) = x
(

t–
)

exist and are finite,

s, t < +∞ and sup
t∈(–∞,T̄]T

∥

∥x(t)
∥

∥ < +∞
}

.

From Definition ., we can also introduce a δ–∞ and extend the �-gauge for [a,b]T to

(–∞, T̄]T, and then we can repeat the same above discussion, and the following theorems

can also be obtained (we omit the proofs).

Theorem . Assume that a set A ⊂ G((–∞, T̄]T,X) is uniformly equi-regulated and

uniformly Cauchy, and for any t ∈ (–∞, T̄]T, there is a number βt such that, for x ∈A,

∥

∥x(t) – x
(

t–
)
∥

∥ ≤ βt ,
∥

∥x
(

t+
)

– x(t)
∥

∥ ≤ βt , t ∈ (–∞, T̄]T. (.)
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Then there is a constant K >  such that ‖x(t) – x(T̄)‖ ≤ K , for every x ∈ A and t ∈
(–∞, T̄]T.

Theorem . Let A ⊂ G((–∞, T̄]T,X) be uniformly equi-regulated and uniformly

Cauchy, for every t ∈ (–∞, T̄]T, let the set {x(t);x ∈ A} be relatively compact in X. Then

the set A is relatively compact in G((–∞, T̄]T,X).

Theorem . Let a set A ⊂ G((–∞, T̄]T,R
n). If A is relatively compact in the sup-norm

topology, then it is uniformly equi-regulated. IfA is uniformly equi-regulated anduniformly

Cauchy, satisfying (.), then A is relatively compact in G((–∞, T̄]T,R
n).

For the more general case, for a Banach space (X,‖ · ‖), let

G
(

(–∞, +∞)T,X
)

:=
{

x : (–∞, +∞)T → X;

lim
s→t+

x(s) = x
(

t+
)

and lim
s→t–

x(s) = x
(

t–
)

exist and are finite,

–∞ < s, t < +∞ and sup
t∈(–∞,+∞)T

∥

∥x(t)
∥

∥ < +∞
}

.

From Definition ., we can also introduce a δ±∞ and extend the �-gauge for [a,b]T to

(–∞, +∞)T, since for any T > T̄, (–∞, +∞)T = (–∞, T̄]T ∪ [T̄,T]T ∪ [T, +∞)T, and

then we can repeat the above discussion, and the above similar theorems can also be ob-

tained (we omit these similar statements here).

Let

G[T, +∞)T :=
{

x;x ∈ PCrd

(

[T, +∞)T,R
n
)

and sup
t∈[T ,+∞)T

∣

∣x(t)
∣

∣ < +∞
}

,

where PCrd([T, +∞)T,R
n) is the set formed by all rd-piecewise continuous functions (one

can consult Definition . from []). Endow G with the norm ‖x‖ = supt∈[T ,+∞)T
|x(t)|,

and note (G,‖ · ‖) is a Banach space.

Next, we will establish some theorems to guarantee that A ⊂ G([T, +∞)T,R
n) is uni-

formly Cauchy and uniformly equi-regulated.

Now, we give a new definition called ‘equi-absolutely continuity’ for the function set

A ⊂G, which will be used in the following lemma’s proof.

Definition . Let A ⊂ G. We say A is equi-absolutely continuous if for any f ∈ A and

ε > , there exists δ > , such that for any finite mutually disjoint open interval (xi, yi)T ⊂
[T, +∞)T (i = , , . . . ,n)

n
∑

i=

(yi – xi) < δ

implies

n
∑

i=

∣

∣f (xi) – f (yi)
∣

∣ < ε.
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Lemma . Let A ⊂G([T, +∞)T,R
n) be uniformly bounded and

Z =
{

t ∈ [T, +∞)T : x is not �-differentiable at t
}

and μ�(Z ) =  for all x ∈ A, i.e., x is �-differentiable at [T, +∞)T\Z and there exists

M >  such that |x�(t)| ≤ M for all x ∈A. Then A is uniformly equi-regulated, and for any

ε > , there exists T >  such that, for any x ∈A, the following is fulfilled:

∣

∣

∣

∣

∫

[T ,+∞)T\Z
x�(s)�s

∣

∣

∣

∣

≤ ε.

Proof From the condition of the theorem, since x is �-differentiable at [T, +∞)T\Z and

there exists M >  such that |x�(t)| ≤ M, according to Corollary . from [], we can

obtain for all t ∈ [T, +∞)T\Z , x(t) satisfies the Lipschitz condition

∣

∣x(t) – x(t)
∣

∣ ≤ M|t – t|, ∀t, t ∈ [T, +∞)T\Z .

So for each N ∈ Z
+, we can obtain

N
∑

j=

∣

∣tj – tj
∣

∣ <
ε

M
,

(

tj , t

j

)

T
⊂ [T, +∞)T, (.)

which implies

N
∑

j=

∣

∣x
(

tj
)

– x
(

tj
)
∣

∣ <M

N
∑

j=

∣

∣tj – tj
∣

∣ < ε, (.)

i.e., A is equi-absolutely continuous on [T, +∞)T\Z . Hence, from (.) and (.), for

all t ∈ [T, +∞)T\Z ,A is uniformly equi-regulated. For all t ∈ Z , sinceμ�(Z ) = , from

(.) and (.), we can take δ+∞ = (δ+∞
L , δ+∞

R ) and δL, δR <
ε
M
, so

∣

∣x
(

t+
)

– x(t)
∣

∣ <

N
∑

j=

∣

∣x
(

tj
)

– x
(

tj
)
∣

∣ < ε if t ∈
(

t, t + δ+∞
R (t)

)

T

and

∣

∣x
(

t–
)

– x(t)
∣

∣ <

N
∑

j=

∣

∣x
(

tj
)

– x
(

tj
)
∣

∣ < ε if t ∈
(

t – δ+∞
L (t), t

)

T
,

and thus A is uniformly equi-regulated on [T, +∞)T. According to Theorem ., for any

closed interval [aP ,bP ]T, there is a δ+∞
 -fine partition P:

aP := T = t
P
 < t

P
 < t

P
 < · · · < t

P
N := bP

such that

∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ ≤ 


,
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for every x ∈A and [t′, t′′]T ⊂ (t
P
j–, t

P
j )T, j = , , . . . ,N . Hence, we have

∣

∣x
(

t
P

–

j

)

– x
(

t
P

+

j–

)
∣

∣ ≤
∣

∣x
(

t
P

–

j

)

– x
(

t′
)
∣

∣ +
∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ +
∣

∣x
(

t′′
)

– x
(

t
P

+

j–

)
∣

∣ ≤ 


,

where t′ ∈ (t
P
j – δ+∞

L (t
P
j ), t

P
j )T, t

′′ ∈ (t
P
j–, t

P
j– + δ+∞

R (t
P
j–))T.

Similarly, for any closed interval [aP ,bP ]T, there is a δ+∞
 -fine partition P:

aP := bP = t
P
 < t

P
 < t

P
 < · · · < t

P
N := bP

such that

∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ ≤ 


,

for every x ∈A and [t′, t′′]T ⊂ (t
P
j– , t

P
j )T, j = , , . . . ,N . Hence, we have

∣

∣x
(

t
P

–

j

)

– x
(

t
P

+

j–

)
∣

∣ ≤
∣

∣x
(

t
P

–

j

)

– x
(

t′
)
∣

∣ +
∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ +
∣

∣x
(

t′′
)

– x
(

t
P

+

j–

)
∣

∣ ≤ 


,

where t′ ∈ (t
P
j – δ+∞

L (t
P
j ), t

P
j )T, t

′′ ∈ (t
P
j– , t

P
j– + δ+∞

R (t
P
j– ))T.

We can repeat the above process, then for each i = , , . . . , we can see that, for any closed

interval [aPi
,bPi

]T, there is a δ+∞
i -fine partition Pi:

aPi
:= bPi– = t

Pi
 < t

Pi
 < t

Pi
 < · · · < t

Pi
N := bPi

such that

∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ ≤ 

i
, (.)

for every x ∈A and [t′, t′′]T ⊂ (t
Pi
j–, t

Pi
j )T, j = , , . . . ,N . Hence, we have

∣

∣x
(

t
Pi

–

j

)

– x
(

t
Pi

+

j–

)
∣

∣ ≤
∣

∣x
(

t
Pi

–

j

)

– x
(

t′
)
∣

∣ +
∣

∣x
(

t′
)

– x
(

t′′
)
∣

∣ +
∣

∣x
(

t′′
)

– x
(

t
Pi

+

j–

)
∣

∣ ≤ 

i
,

where t′ ∈ (t
Pi
j – δ+∞

L (t
Pi
j ), t

Pi
j )T, t

′′ ∈ (t
Pi
j–, t

Pi
j– + δ+∞

R (t
Pi
j–))T. Thus, from (.), we obtain

+∞
∑

i=

N
∑

j=

∣

∣x
(

t
Pi

–

j

)

– x
(

t
Pi

+

j–

)
∣

∣ ≤ N

+∞
∑

i=



i
< +∞,

which implies that, for any ε > , there exists i >  such that

+∞
∑

i=i

N
∑

j=

∣

∣x
(

t
Pi

–

j

)

– x
(

t
Pi

+

j–

)
∣

∣ ≤ ε,

which implies that, for any ε > , there exists T ≥ t
Pi
 and a partition

P :=

+∞
⋃

i=i

Pi,
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i.e., t
Pi
 = tP < t

Pi
 = tP < t

Pi
 = tP < · · · < t

Pi
N = tPN < t

Pi+

 = tPN+ < t
Pi+

 = tPN+ < · · · <
· · · such that

+∞
∑

j=

∣

∣x
(

tP
–

j

)

– x
(

tP
+

j–

)
∣

∣ =

+∞
∑

i=i

N
∑

j=

∣

∣x
(

t
Pi

–

j

)

– x
(

t
Pi

+

j–

)
∣

∣ ≤ ε.

Moreover, since x is �-differentiable almost everywhere on [T, +∞)T, we obtain

∣

∣

∣

∣

∫

[T ,+∞)T\Z
x�(s)�s

∣

∣

∣

∣

=

+∞
∑

j=

∣

∣

∣

∣

∫

(tP+
j– ,t

P–
j )\Z

x�(s)�s

∣

∣

∣

∣

=

+∞
∑

j=

∣

∣x
(

tP
–

j

)

– x
(

tP
+

j–

)
∣

∣ ≤ ε.

This completes the proof. �

Theorem . Let A ⊂G([T, +∞)T,R
n) be uniformly bounded and

Z =
{

t ∈ [T, +∞)T : x is not �-differentiable at t
}

and μ�(Z ) =  for all x ∈ A, i.e., x is �-differentiable at [T, +∞)T\Z and there exists

M >  such that |x�(t)| ≤ M for all x ∈A. Then there exists T >  such that A is uniformly

Cauchy on [T, +∞)T.

Proof According to Lemma ., for any ε > , there exists T >  such that, for any x ∈ A,

the following is fulfilled:

∣

∣

∣

∣

∫

[T ,+∞)T\Z
x�(s)�s

∣

∣

∣

∣

≤ ε.

Hence, for any t, t /∈ Z , t, t > T, we obtain

∣

∣x(t) – x(t)
∣

∣ =

∣

∣

∣

∣

∫ t

t

x�(s)�s

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

[T ,+∞)T\Z
x�(s)�s

∣

∣

∣

∣

≤ ε.

This completes the proof. �

In the following, we will give the following useful corollaries.

Corollary . Let A ⊂G([T, +∞)T,R
n) be uniformly bounded and

Z =
{

t ∈ [T, +∞)T : x is not �-differentiable at t
}

and μ�(Z ) =  for all x ∈ A, and there exists M >  such that |x�(t)| ≤ M for all x ∈ A.

Then A is relatively compact in G.

Proof According to Theorem ., A is uniformly equi-regulated, uniformly Cauchy. Fur-

ther, since A is uniformly bounded, so it satisfies (.), by Theorem ., we get the desired

result immediately. �
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Let

BC[T, +∞)T :=
{

x ∈ BC
(

[T, +∞)T,R
n
)

and sup
t∈[T ,+∞)T

∣

∣x(t)
∣

∣ < ∞
}

,

where BC([T, +∞)T,R
n) denotes the set of all bounded continuous functions on [T,

+∞)T. Then we can obtain the following corollary.

Corollary . Let A ⊂ BC[T, +∞)T be uniformly bounded and for all x ∈ A, x is �-

differentiable and there exists M >  such that |x�(t)| <M. Then A is relatively compact in

BC .

Proof Since x is �-differentiable on [T, +∞)T, A is equi-absolutely continuous on

[T, +∞)T, for any t, t ∈ [T, +∞)T, we can obtain

∣

∣x(t) – x(t)
∣

∣ =

∣

∣

∣

∣

∫ t

t

x�(s)�s

∣

∣

∣

∣

≤  sup
t∈[T ,+∞)T

∣

∣x(t)
∣

∣ < M,

which means that

∣

∣

∣

∣

∫ +∞

t

x�(s)�s

∣

∣

∣

∣

< M, M is some constant.

Thus, for any ε > , there exists T > , and we have t′ > t′ > T implies

∣

∣x
(

t′
)

– x
(

t′
)
∣

∣ =

∣

∣

∣

∣

∫ t′

t′

x�(s)�s

∣

∣

∣

∣

< ε,

i.e., A is uniformly Cauchy. According to Theorem ., A is relatively dense in BC . This

completes the proof. �

Remark . Note that if for all x ∈A ⊂ BC , x has uniformly bounded �-derivatives, then

one can see that A is equi-absolutely continuous, which will lead to that A is uniformly

Cauchy. Hence, the uniformly boundedness of A and the uniformly boundedness of �-

derivatives functions of A can guarantee A is relatively compact.

4 Existence of solutions for impulsive functional dynamic equations

In this section, we introduce some new definitions and give some new methods to obtain

some sufficient conditions for the existence of solutions for a class of ε-equivalent impul-

sive functional dynamic equations on almost periodic time scales. We always assume that

supT = +∞ and infT = –∞.

Definition . For arbitrary functions x, y : T → R
n, we define the function [x(·), y(·)]μ :

T → R to be the number (provided it exists) with the property that, for any given ε > ,

there exists a neighborhood U of t (i.e., U = (t – δ, t + δ)T for some δ > ) such that

∣

∣

∣

∣x(t) +
∣

∣σ (t) – s
∣

∣y(t)
∣

∣ –
∣

∣x(t)
∣

∣ –
∣

∣σ (t) – s
∣

∣

[

x(·), y(·)
]

μ

∣

∣ < ε
∣

∣σ (t) – s
∣

∣ for all s ∈U .
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Remark . In Definition ., if t is a right-dense point, μ(t) = , then one can obtain

[

x(t), y(t)
]


= lim

s→t

|x(t) + |t – s|y(t)| – |x(t)|
|t – s| , (.)

let s – t = h→ +, and (.) can be written as

[

x(t), y(t)
]


= lim

h→+

|x(t) + hy(t)| – |x(t)|
h

. (.)

If t is a right-scattered point, μ(t) > , then one can get

[

x(t), y(t)
]

μ
=

|x(t) +μ(t)y(t)| – |x(t)|
μ(t)

.

In the following, we will consider the following impulsive system:

⎧

⎨

⎩

x�(t) = A(t,x) + g(t), t �= tk ,

�x(tk) = Ĩk(x(tk)), t = tk ,k ∈ Z,
(.)

where A ∈ PCrd(T×R
n,Rn), g ∈ PCrd(T,R

n), Ĩk ∈ C(Rn,Rn).

Next, we will give the following theorem to guarantee that (.) has a unique global

solution.

Theorem . Let T be a time scale with the bounded graininess function μ. In the system

(.), if for any ε > , there exists a neighborhood U of t such that

d̃
(

x(t) +
∣

∣σ (t) – s
∣

∣

(

A(t,x) + g(t)
)

,Br()
)

< ε
∣

∣σ (t) – s
∣

∣, s ∈U , (.)

for all (t,x) ∈ (tk–, tk)T ×Br(),k ∈ Z,where d̃(z,Br()) denotes the distance from z to Br()

and Br() = {x ∈ PCrd(T,R
n) : ‖x‖ ≤ r, r is a constant}. Then for each tn ∈ T (n ∈ N), the

Cauchy problem with the initial value x(tn) = un for (.) has a unique global solution x(t)

on T such that x ∈ Br() for all t ∈ T.

Proof Consider the following form of (.):

⎧

⎨

⎩

x�(t) = Ãx(t) +A(t,x) – Ãx(t) + g(t), t �= tk ,

�x(tk) = Ĩk(x(tk)), t = tk ,k ∈ Z,
(.)

where Ã = A(t,). From Theorem . from [], for any t ∈ T, we can find k ∈ Z, tk– <

t ≤ tk , for t ∈ [t, tk)T, there is a unique solution

x(t) = eÃ(t, t)x(t) +

∫ t

t

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s,

and by using x(t+k ) – x(t–k ) = Ĩk(x(tk)), we obtain

x
(

t+k
)

= eÃ(tk , t)x(t) +

∫ tk

t

eÃ(tk , s)
[

A(s,x) – Ãx(s) + g(s)
]

�s + Ĩk
(

x(tk)
)

,
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and then we have

x(t) = eÃ(t, tk)x
(

t+k
)

+

∫ t

tk

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s

= eÃ(t, tk)

[

eÃ(tk , t)x(t) +

∫ tk

t

eÃ(tk , s)
[

A(s,x) – Ãx(s) + g(s)
]

�s + Ĩk
(

x(tk)
)

]

+

∫ t

tk

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s

= eÃ(t, t)x(t) +

∫ tk

t

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s + eÃ(t, tk)Ĩk
(

x(tk)
)

+

∫ t

tk

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s

= eÃ(t, t)x(t) +

∫ t

t

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s + eÃ(t, tk)Ĩk
(

x(tk)
)

.

Repeating this procedure, we get

x(t) = eÃ(t, t)x(t) +

∫ t

t

eÃ(t, s)
[

A(s,x) – Ãx(s) + g(s)
]

�s +
∑

t<tk<t

eÃ(t, tk)Ĩk
(

x(tk)
)

.

Hence, for t ≥ t, we know that (.) has a unique solution satisfying

x(t,x) = eÃ(t, t)x +

∫ t

t

eÃ
(

t,σ (s)
)(

A(s,x) – Ãx(s) + g(s)
)

�s

+
∑

t<tk<t

eÃ(t, tk)Ĩk
(

x(tk)
)

. (.)

Therefore, (.) has a unique global solution un(t) on T. Furthermore, combining with

(.), for all t ∈ (tk–, tk)T,k ∈ Z, i.e., t �= tk , (.) can be changed into the following:

d̃
(

x(t) +
∣

∣σ (t) – s
∣

∣x�(t),Br()
)

< ε
∣

∣σ (t) – s
∣

∣. (.)

Case . If t is a right-dense point, from (.), we obtain

d̃

(

x(t) + h lim
h→+

x(t + h) – x(t)

h
,Br()

)

< εh,

that is,

d̃
(

x(t),Br()
)

< ε. (.)

Case . If t is a right-scattered point, from (.), we get

d̃

(

x(t) +μ(t) · x(σ (t)) – x(t)

μ(t)
,Br()

)

< εμ(t) ≤ εμ̄, μ̄ = sup
t∈T

μ(t),

that is,

d̃
(

x
(

σ (t)
)

,Br()
)

< ε. (.)



Wang et al. Advances in Difference Equations  ( 2016)  2016:197 Page 27 of 41

Thus, if ρ(t) < t, that is, ρ(t) is a right-scattered point, we have σ (ρ(t)) = t, by (.), one

has

d̃
(

x(t),Br()
)

= d̃
(

x
(

σ
(

ρ(t)
))

,Br()
)

< ε.

If ρ(t) = t, that is, t is a left-dense point, so there must exist a right-dense point s, for any

ε > , there exists a δ+∞
L >  such that s ∈ (t – δ+∞

L (t), t)T implies

d̃
(

x(s),x(t)
)

< ε.

Hence, by (.), we can easily get

d̃
(

x(t),Br()
)

< d̃
(

x(t),x(s)
)

+ d̃
(

x(s),Br()
)

< ε + ε = ε, t �= tk ,k ∈ Z.

For the impulsive points tk ,k ∈ Z, since (tk – δ+∞
L (tk), tk)T ⊂ (t – δ+∞

L (t), t + δ+∞
R (t))T,

where |t – tk| < min{δ+∞
L (t), δ+∞

R (t)}, then

d̃
(

x(tk),Br()
)

< d̃
(

x(tk),x
(

t–k
))

+ d̃
(

x
(

t–k
)

,x(s)
)

+ d̃
(

x(s),Br()
)

< ε + ε + ε = ε,

where s ∈ (tk – δ+∞
L (tk), tk)T ⊂ (t – δ+∞

L (t), t + δ+∞
R (t))T,k ∈ Z. This completes the proof.

�

Lemma . Let functions x, y, z : T → Rn. Then for any a ∈ R+ ∪ {}, the function

[x(·), y(·)]μ has the following properties:

(i) |[x(t), y(t)]aμ| ≤ |y(t)|.
(ii) [x(t), y(t) + z(t)]aμ ≤ [x(t), y(t)]aμ + [x(t), z(t)]aμ.

(iii) Let u(t) be a function from an interval J ⊂ T into Rn such that u�(t) exists for an

interior point t of J . Then D+|u(t)|� exists and

D+

∣

∣u(t)
∣

∣

�
=

[

u(t),u
�(t)

]

μ
,

where D+|u(t)|� denotes the right derivative of |u(t)| at t. Further, for any
a ∈R

+ ∪ {}, we have [u(t),u�(t)]μ ≤ D+|u(t)|�.

Proof If a = , then aμ = , from Remark ., the results (i)-(iii) are obvious. If a ∈R
+, we

can conclude the following:

(i) In fact, if t is a right-dense point, by (.), the result is obvious. Let t be a

right-scattered point, then

∣

∣

[

x(t), y(t)
]

aμ

∣

∣ =

∣

∣

∣

∣

|x(t) + aμ(t)y(t)| – |x(t)|
aμ(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

|x(t) + aμ(t)y(t) – x(t)|
aμ(t)

∣

∣

∣

∣

=
∣

∣y(t)
∣

∣.
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(ii) If t is a right-dense point, by (.), the result is obvious. Let t be a right-scattered

point, then

[

x(t), y(t) + z(t)
]

aμ
=

|x(t) + aμ(t)(y(t) + z(t))| – |x(t)|
aμ(t)

=
| 

x(t) + aμ(t)y(t) + 


x(t) + aμ(t)z(t)| – |x(t)|

aμ(t)

≤


|x(t) + aμ(t)y(t)| + 


|x(t) + aμ(t)z(t)| – |x(t)|

aμ(t)

=
(|x(t) + aμ(t)y(t)| – |x(t)|) + (|x(t) + aμ(t)z(t)| – |x(t)|)

aμ(t)

=
|x(t) + aμ(t)y(t)| – |x(t)|

aμ(t)
+

|x(t) + aμ(t)z(t)| – |x(t)|
aμ(t)

=
[

x(t), y(t)
]

aμ
+

[

x(t), z(t)
]

aμ
.

(iii) If t is a right-dense point, by (.), the result is obvious. Let t be a right-scattered

point, then

[

u(t),u
�(t)

]

μ
=

|u(t) +μ(t)u
�(t)| – |u(t)|

μ(t)

=
|u(t) +μ(t)

u(σ (t))–u(t)
μ(t)

| – |u(t)|
μ(t)

=
|u(σ (t))| – |u(t)|

μ(t)
=D+

∣

∣u(t)
∣

∣

�
.

Further, for a ∈R
+, we can obtain

[

u(t),u
�(t)

]

aμ
=

|u(t) + aμ(t)u
�(t)| – |u(t)|

aμ(t)

=
|u(t) + aμ(t)

u(σ (t))–u(t)
μ(t)

| – |u(t)|
aμ(t)

=
|au(σ (t)) – au(t) + u(t)| – |u(t)|

aμ(t)

≤ |au(σ (t)) – au(t) + u(t) – u(t)|
aμ(t)

=D+

∣

∣u(t)
∣

∣

�
.

This completes the proof. �

FromDefinition ., we obtain the following theorem, which guarantees that (.) has a

unique global solution on T.

Theorem . Let A ∈ PCrd(T × R
n,Rn), g ∈ PCrd(T,R

n) be bounded, A(t,) =  for all

t ∈ T and Ik() = , � be relatively dense in R. Suppose that there exist positive numbers

p >M > , r >  such that |g(t)| ≤ M,p > M
r
and

[

x – y,A(t,x) –A(t, y)
]

aμ
≤ –p|x – y| (.)
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for t ∈ (tk–, tk),k ∈ Z, –p ∈R+,a ∈R
+ ∪ {}, |x(t)| ≤ r, |y(t)| ≤ r, and

∣

∣Ĩk(x) – Ĩk(y)
∣

∣ ≤ Ĩ|x – y|, ∀x, y ∈R
n, (.)

and h̃ = inf(tk – tk–) >
ln(+Ĩ)
M

, Ĩ is a Lipschitz constant. Then (.) has a unique solution

u(t) with respect to the set of solution of (.) in Cr , where Cr = {ϕ ∈ PCrd(T,R
n) : |ϕ(t)| ≤

r for all t ∈ T}.Moreover, if v(t) is any solution of (.) such that, for some t ∈ T, |v(t)| ≤
M
p
, then |v(t)| ≤ r and

∣

∣v(t) – u(t)
∣

∣ ≤
∣

∣v(t) – u(t)
∣

∣

∏

t<tk<t

( + Ĩ)e–p(t, t)

for all t ≥ t.

Proof We fix a vector u ∈R
n with |u| ≤ M

p
. For each positive tn ∈ T(n ∈N), we consider

the Cauchy problem for (.) with the initial value x(tn) = u.

For each x ∈R
n with |x| = r, for t ∈ (tk–, tk)T,k ∈ Z, (.) and (ii) in Lemma . imply

[

x,A(t,x) + g(t)
]

μ
≤

[

x,A(t,x)
]

μ
+

∣

∣g(t)
∣

∣ ≤ –p|x| +M = –pr +M < .

So for any ε > , there exists a neighborhood of U such that

∣

∣x +
∣

∣σ (t) – s
∣

∣

(

A(t,x) + g(t)
)

– |x|
∣

∣ <
∣

∣x +
∣

∣σ (t) – s
∣

∣

(

A(t,x) + g(t)
)

– |x|

–
∣

∣σ (t) – s
∣

∣

[

x,A(t,x) + g(t)
]

μ

∣

∣

< ε
∣

∣σ (t) – s
∣

∣,

which implies that

d̃
(

x +
∣

∣σ (t) – s
∣

∣

(

A(t,x) + g(t)
)

,Br()
)

< ε
∣

∣σ (t) – s
∣

∣,

by Theorem ., and we see that (.) has a unique global solution un(t) on T such that

un ∈ Br() for all t ∈ T. Moreover, we can show that |un(t)| ≤ r for all t ∈ T. In fact, (.)

and (iii) from Lemma . imply

D+

∣

∣un(t)
∣

∣

�
=

[

un(t),A
(

t,un(t)
)

+ g(t)
]

μ
≤ –p

∣

∣un(t)
∣

∣ +
∣

∣g(t)
∣

∣ ≤ –p
∣

∣un(t)
∣

∣ +M (.)

for t ∈ (tk–, tk)T,k ∈ Z. By (.), solving the differential inequality (.), we obtain

∣

∣un(t)
∣

∣ ≤
∣

∣un
(

tn
)
∣

∣e–p
(

t, tn
)

+M

∫ t

tn

e–p
(

t,σ (s)
)

�s +
∑

tn<tk<t

e–p(t, tk)Ĩk
(

un(tk)
)

≤ M

p
e–p

(

t, tn
)

+

(

–
M

p

)

[

e–p
(

t, tn
)

– e–p(t, t)
]

+ Ĩ
∑

tn<tk<t

e–p(t–tk )

≤ M

p
+

Ĩ

 – e–pθ
≤ M

p
+

Ĩ

 – e⊖p(θ , )
:= r
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for all t ∈ T, we always denote that supk e⊖p(tk+, tk) := e⊖p(θ , ). According toCorollary .,

there exists a subsequence {unk } such that unk → u on T as k → +∞. Therefore, there

exists a solution u(t) of (.) such that |u(t)| ≤ r for all t ∈ T.

We next show that this solution u(t) is unique with respect to the set of solutions of (.)

in Cr . Let v(t) be another solution of (.) in Cr and let w(t) = |u(t) – v(t)| for t ∈ T. Then

by (iii) from Lemma . and (.), we have

D+w
�(t) =

[

u(t) – v(t),A
(

t,u(t)
)

–A
(

t, v(t)
)]

μ

≤ –p
∣

∣u(t) – v(t)
∣

∣ = –pw(t)

for t ∈ (tk–, tk)T. This implies that w(t) is a nonincreasing function on (tk–, tk)T. Hence,

for t ∈ T, t ≥ t, we obtain

w(t) ≤ w(t) – p

∫ t

t

w(s)�s + Ĩ
∑

t<tk<t

w(tk), (.)

and by Gronwall-Bellman’s inequality on time scales, from (.), we obtain

w(t) ≤ w(t)
∏

t<tk<t

( + Ĩ)e–p(t, t). (.)

Suppose, for contradiction, that w(t) >  for some t ∈ T. Since w(t) is bounded and is

increasing as t decreases, limt→–∞ w(t) exists. For� is relatively dense inR, which implies

that, for each ε >  and h > ,–h ∈ �, there exists t ≤ , t ∈ T∩T
–h such that t+h < t

and

w(t) –w(t + h) < εh.

Set h ≤ h

and –h ∈ � such that t ∈ T∩T

–h . Then we have either

w(t) –w(t + h) < εh

or

w(t + h) –w(t + h) < εh.

Hence there exists t ∈ T∩T
–h (t = t or t + h) such that t, t + h ∈ [t, t + h]T and

w(t) –w(t + h) < εh.

Repeating this procedure, we have sequences {tn}, {tn+hn} such that tn, tn+hn ∈ [t, t+h]T

and

w(tn) –w(tn + hn) < εhn, for n≥ .
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On the other hand, by (.), we have

w(tn + hn) ≤ w(tn)
∏

tn<tk<tn+hn

( + Ĩ)e–p(tn + hn, tn)

≤
(

w(tn + hn) + εhn
)

∏

tn<tk<tn+hn

( + Ĩ)e–p(tn + hn, tn)

≤ w(tn + hn)
∏

tn<tk<tn+hn

( + Ĩ)e–p(tn + hn, tn) + εhn

for n≥ . Therefore, it follows that

w(t) ≤ w(tn + hn) ≤
{

hn

 –
∏

tn<tk<tn+hn
( + Ĩ)e–p(tn + hn, tn)

}

ε

≤
{

hn

 –
∏

tn<tk<tn+hn
( + Ĩ)e–phn

}

ε

≤
{

hn

 –
∏

tn<tk<tn+hn
( + Ĩ)e–p(tk+–tk )

}

ε (n≥ ). (.)

Next, we will show that

∏

tn<tk<tn+hn

( + Ĩ)e–p(tk+–tk ) < . (.)

Case I . If [tn, tn + hn]T does not contain any tk ,k ∈ Z, then tk+ – tk > hn, (.) becomes

∏

tn<tk<tn+hn

e–p(tk+–tk ) = e–p(tk+–tk ) < e–phn < .

Case II . If [tn, tn + hn]T contains n impulsive points tk ,k ∈ S = {, , . . . ,n}, then

∏

tn<tk<tn+hn

( + Ĩ)

ep(tk+–tk )
<

∏

tn<tk<tn+hn

( + Ĩ)

eM(tk+–tk )
<

( + Ĩ)n
∏

tn<tk<tn+hn
e(tk–tk–)M

<

(

 + Ĩ

eh̃M

)n

<

(

 + Ĩ

eh̃M

)n

<  since h̃ >
ln( + Ĩ)

M
.

Hence, from (.), let n → ∞, we have w(t) = . This leads to a contradiction. The last

assertion of this theorem follows easily from the preceding argument. The proof is com-

plete. �

In the following, let T be an almost periodic time scale. For convenience, we give some

notation, BC denotes the set of Rn-valued functions that is continuous and bounded on

(–∞, s]�ε , s ∈ �ε ; for each φ ∈ BC we define ‖φ‖ε = sups∈(–∞,s]�ε
|φ(s)|. Then (BC,‖·‖ε)

is a real Banach space for any fixed ε > .

Remark . From the definition of ‖φ‖ε , if we introduce a set

�̃ =
{

φ : ‖φ‖ε ≤ r,∀ε > , r is a constant
}

,

then for ∀φ ∈ �̃, one can immediately obtain that ‖φ‖ε ≤ ‖φ‖ε ≤ r if ε < ε.
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Let x(t) be an R
n-valued function that is continuous and bounded on T, we define for

each t ∈ T∩ (∪T�ε ), xt(s) = x(t + s) for –s ∈ �ε . Clearly, xt ∈ BC for each t ∈ T∩ (∪T�ε ).

We now consider the ε-equivalent impulsive functional dynamic equation

⎧

⎨

⎩

x�(t) = F(t,x(t),xt), t �= tk , t ∈ T∩ (∪T�ε ),

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,
(.)

F(t,x,φ) is the Rn-valued function defined on T×R
n × BC which satisfies the following

conditions:

(H) for each r > , there existsM(r) >  and N(r) >  such that

∣

∣F(t, ,φ)
∣

∣ ≤ M(r) and
∣

∣F(t,x,φ)
∣

∣ ≤ N(r)

for all t ∈ T, |x| ≤ r and ‖φ‖ε ≤ r(φ ∈ BC). Moreover, for any x, y ∈ R
n,

∣

∣Ik(x) – Ik(y)
∣

∣ ≤ Ñ(r)|x – y|, Ik() = ,

and h̃ = inf(tk – tk–) >
ln(+Ñ(r))

M(r)
;

(H) if for x(t) that is piecewise continuous and bounded on T, F(t, y,xt) is piecewise con-

tinuous in (t, y) on T×R
n;

(H) if there exist positive numbers p, r,L such that p > max{M(r)
r
,L}, where M(r) is as in

(H), such that

(i) [x – y,F(t,x,φ) – F(t, y,φ)]aμ ≤ –p|x – y| for
t ∈ T, |x| ≤ r, |y| ≤ r,‖φ‖ε ≤ r(φ ∈ BC),a ∈R+;

(ii) [φ() – φ∗(),F(t,φ(),φ) – F(t,φ∗(),φ∗)]aμ ≤ –p|φ() – φ∗()|+ L‖φ – φ∗‖ε

for t ∈ T,‖φ‖ε ≤ r,‖φ∗‖ε ≤ r(φ,φ∗ ∈ BC),a ∈R
+ ∪ {};

(iii) Ñ(r)
–e–p(θ ,)

+ L
p
< , where supk e–p(tk+, tk) := e–p(θ , );

(H) if for xk(t), yk(t),x(t) and y(t) are piecewise continuous such that |xk(t)| ≤ r, |yk(t)| ≤ r

for all t ∈ T, k ≥  and xk(t)→ x(t), yk(t) → y(t) as k → ∞ for t ∈ T, we have

F
(

t,xk(t), ykt
)

→ F
(

t,x(t), yt
)

as k → ∞ for t ∈ T∩
(

∪T�ε
)

.

Remark . In (H), piecewise continuity of F(t, y,xt) in (t, y) onT×R
n implies piecewise

continuity of F(t,x(t),xt) in t on T. Moreover, if F is Lipschitz continuous in x uniformly

for t ∈ T,φ ∈ BC(‖φ‖ε ≤ r) with Lipschitz constant K , then we can take N(r) = Kr +M(r).

Theorem . Suppose that (H)-(H) are satisfied and

∣

∣F(t,x,φ) – F(t, y,φ)
∣

∣ ≤ K |x – y|, ∀x, y ∈R
n,

where K is a Lipschitz constant. Then there exists a solution u(t) of (.) such that

|u(t)| ≤ r for all t ∈ T ∩ (∪T�ε ), and this solution is unique in C∗
r |T∩(∪T�ε ). Here r is as

in (H), C
∗
r = {ϕ ∈ PCrd(T,R

n) : ϕ(t) is piecewise continuous and |ϕ(t)| ≤ r for all t ∈ T},
and C∗

r |T∩(∪T�ε ) = {ϕ|T∩(∪T�ε ) : ∀ϕ ∈ C∗
r }.
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Proof Let N(r) be as in (H) and set Sr = {f ∈ PCrd(T,R
n) : |f (t)| ≤ r and |f �(t)| ≤ Kr +

M(r)}. Obviously, Sr is a compact convex subset of PCrd(T,R
n). We set

A(t,x,φ) = F(t,x,φ) – F(t, ,φ) and B(t,φ) = F(t, ,φ).

Define a mapping T : Sr → Sr as follows: x(t) = Tf (t) is the unique solution in Cr of

⎧

⎨

⎩

x�(t) = A(t,x(t), ft) + B(t, ft), t ∈ T, t �= tk ,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z,
(.)

where Cr is as in Theorem . and f ∈ Sr . Such a solution x(t) exists by Theorem . and

satisfies |x(t)| ≤ r for all t ∈ T. Since

∣

∣x�(t)
∣

∣ =
∣

∣F(t,x,φ) – F(t, ,φ) + F(t, ,φ)
∣

∣

≤
∣

∣F(t,x,φ) – F(t, ,φ)
∣

∣ +
∣

∣F(t, ,φ)
∣

∣ ≤ Kr +M(r)

it follows that x ∈ Sr .

We shownext thatT is continuous on Sr . Let f
k and f be in Sr such that f

k → f as k → ∞.

Put xk = Tf k and x = Tf . We show that each sequence of {xk} contains a subsequence

which converges to x. This will show that T is continuous at f ∈ Sr . Let us denote this

arbitrary subsequence again by {xk} for simplicity. Since xk ∈ Sr , {xk} is �-differentiable

almost everywhere on T and uniformly bounded on T. According to Corollary ., there

exists a subsequence {xkj} of {xk} and a w ∈ Sr such that xkj (t) → w(t) as j → ∞ uniformly

on T. Let t ∈ T∩ (∪T�ε ) and let

w∗(t) = w(t) +

∫ t

t

F
(

s,w(s), fs
)

�s +
∑

t<tk<t

Ik
(

w(tk)
)

for t ∈ T∩
(

∪T�ε
)

.

Then we have

∣

∣xkj (t) –w∗(t)
∣

∣ =

∣

∣

∣

∣

xkj (t) +

∫ t

t

F
(

s,xkj (s), f
kj
s

)

�s –w(t) –

∫ t

t

F
(

s,w(s), fs
)

�s

+
∑

t<tk<t

Ik
(

xkj (tk)
)

–
∑

t<tk<t

Ik
(

w(tk)
)

∣

∣

∣

∣

≤
∣

∣xkj (t) –w(t)
∣

∣ +

∫ t

t

∣

∣F
(

s,xkj (s), f
kj
s

)

– F
(

s,w(s), fs
)
∣

∣�s

+
∑

t<tk<t

Ñ(r)
∣

∣xkj (tk) –w(tk)
∣

∣

for t ∈ T∩ (∪T�ε ). By (H), (H), (H), and the Lebesgue dominated convergence theorem

we can see that xkj (t) → w∗(t) as j → ∞ for t ∈ T, i.e., w∗(t) = w(t) for t ∈ T ∩ (∪T�ε ).

Hence, w is a solution for (.) on C∗
r |T∩(∪T�ε ). By the uniqueness of solutions of (.), it

follows that w(t) = x(t) for t ∈ T∩ (∪T�ε ). Thus we conclude that T is continuous at each
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f ∈ Sr . From Lemma ., there exists a u ∈ Sr such that Tu = u, i.e.,

⎧

⎨

⎩

u�(t) = A(t,u(t),ut) + B(t,ut) = F(t,u(t),ut), t ∈ T∩ (∪T�ε ), t �= tk ,

�u(tk) = Ik(u(tk)), t = tk ,k ∈ Z.

To prove the uniqueness of the solution of (.), let v ∈ C∗
r |T∩(∪T�ε ) be another solution

of (.). By (ii), (iii) in (H), and (iii) in Lemma ., we have

D+

∣

∣u(t) – v(t)
∣

∣

�
=

[

u(t) – v(t),F
(

t,u(t),ut
)

– F
(

t, v(t), vt
)]

μ

≤ –p
∣

∣u(t) – v(t)
∣

∣ + L‖ut – vt‖ε

for all t ∈ (tk–, tk)T ∩ (∪T�ε ),k ∈ Z. Let ψ(t) = |u(t) – v(t)|, then we obtain

⎧

⎨

⎩

D+ψ(t)� ≤ –pψ(t) + L‖ψt‖ε ,

ψ(t+k ) ≤ ψ(t–k ) + Ñ(r)ψ(tk).
(.)

Then for t ∈ [tk , tk+)T ∩ (∪T�ε ),k ∈ Z, we get

ψ(t)≤ ψ
(

t+k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)

L‖ψs‖ε�s,

thus we obtain

ψ(t)≤ ψ
(

t–k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)

L‖ψs‖ε�s + Ñ(r)ψ(tk)e–p(t, tk), (.)

ψ
(

t–k+
)

≤ ψ
(

t+k
)

e–p(tk+, tk) +

∫ tk+

tk

e–p
(

tk+,σ (s)
)

L‖ψs‖ε�s. (.)

Note that u(t) – v(t) = ut() – vt(), from (.) and (.), for t ∈ [t + s, t + s)T ∩ (∪T�ε ),

solving the differential inequality (.), we have

ψ(t + s) ≤ ψ(t + s)
∏

t+s<tk<t+s

e–p(t + s, t + s)

+
∑

t+s<tk<t+s

(

∏

tk<tj<t+s

e–p(t + s, tk)

)

Ñ(r)ψ(tk)

+

∫ t+s

t+s

∏

θ<tk<t+s

e–p
(

t + s,σ (θ )
)

L‖ψθ‖ε�θ ,

for all t ∈ [t, +∞)T ∩ (∪T�ε ), –s ∈ �ε . Note ‖ψθ‖ε = ‖uθ – vθ‖ε is nondecreasing function

of θ . It therefore follows that

‖ut – vt‖ε ≤
∏

t+s<tk<t+s

e–p(t + s, t + s)‖ut – vt‖ε

+

(

Ñ(r)

 – e–p(θ , )
+
L

p

(

 – e–p(t + s, t + s)
)

)

‖ut – vt‖ε
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≤
∏

t+s<tk<t+s

e–p(t + s, t + s)‖ut – vt‖ε

+

(

Ñ(r)

 – e–p(θ , )
+
L

p

)

‖ut – vt‖ε

for all t ∈ [t, +∞)T ∩ (∪T�ε ), and this implies

‖ut – vt‖ε ≤ 

 – M̃

∏

t+s<tk<t+s

e–p(t + s, t + s)‖ut – vt‖ε

for all t ∈ [t, +∞)T ∩ (∪T�ε ), where

M̃ =
Ñ(r)

 – e–p(θ , )
+
L

p
.

Consequently, for each t ∈ T∩ (∪T�ε ), we have

‖ut – vt‖ε ≤ ‖ut – vt‖ε ≤ 

 – M̃

∏

t+s<tk<t+s

e–p(t + s, t + s)‖ut – vt‖ε

for all t ∈ [t, +∞)T ∩ (∪T�ε ). Letting t → +∞ we have ‖ut – vt‖ε =  and this implies in

particular u(t) = v(t). The proof is complete. �

We next consider the existence of almost periodic solutions of (.) when F satisfies

the following condition:

(H) F(t,x,φ) is almost periodic in t uniformly for (x,φ) in bounded closed subsets ofRn ×
BC.

Theorem . Suppose (H)-(H) are satisfied and the following are fulfilled:

(i) |F(t,x,φ) – F(t, y,φ)| ≤ K |x – y|,∀x, y ∈R
n, where K is a Lipschitz constant;

(ii) the impulsive operator sequence {Ik} is an almost periodic sequence;

(iii)
(p–L)(–e–p(θ ,))

p(–e–p(θ ,))
< , where supk e–p(tk+, tk) := e–p(θ , ).

Then (.) has a unique almost periodic solution u(t) in C∗
r |T∩(∪T�ε ) for  < r < .Moreover,

if p – L ≥ pLr+M(r)
r

and v(t) is any solution of (.) with ‖vt‖ε ≤ M(r)
p

for some t ∈ T ∩
(∪T�ε ), then ‖vt‖ε ≤ r and

‖ut – vt‖ε ≤ p

p – L
e–p(t, t)

∏

t+s<tk<t+s

e–p(t + s, t + s)‖ut – vt‖ε (.)

for all t ∈ [t, +∞)T ∩ (∪T�ε ), –s ∈ �ε .

Proof Let u(t) be the unique solution of (.) in C∗
r |T∩(∪T�ε ) obtained in Theorem ..

For each ε > , there exists a positive number l(ε) such that any interval of length l(ε)

contains a τ = τ (ε) ∈ E{ε,F} for which

∣

∣F
(

t + τ ,u(t + τ ),ut+τ

)

– F
(

t,u(t + τ ),ut+τ

)
∣

∣ < ε
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for all t ∈ (tk–, tk)T ∩T
–τ , τ ∈ �ε ,k ∈ Z. By (iii) in Lemma . and (i), (ii) in (H), we have

D+

∣

∣u(t + τ ) – u(t)
∣

∣

�
=

[

u(t + τ ) – u(t),F
(

t + τ ,u(t + τ ),ut+τ

)

– F
(

t,u(t),ut
)]

μ

≤ –p
∣

∣u(t + τ ) – u(t)
∣

∣ + L‖ut+τ – ut‖

+
∣

∣F
(

t + τ ,u(t + τ ),ut+τ

)

– F
(

t,u(t + τ ),ut+τ

)
∣

∣

≤ –p
∣

∣u(t + τ ) – u(t)
∣

∣ + L‖ut+τ – ut‖ε + ε (.)

for all t ∈ (tk–, tk)T ∩T
–τ , –τ ∈ �ε ,k ∈ Z.

For all t ∈ T∩T
–s, –s ∈ (–∞, ]�ε

. From Lemma ., we can find β >  and β ∈ �ε such

that –s + β ∈ �ε . Thus we obtain

d
(

T
–τ–s+β ,T

)

< d
(

T
–τ–s+β ,T–s+β

)

+ d
(

T
–s+β ,T

)

< ε. (.)

Let ϕ̃(t) = |u(t + τ ) – u(t)|, (.) can be written in the form

D+ϕ̃
�(t) ≤ –pϕ̃(t) + L‖ϕ̃t‖ε + ε.

Moreover, since {Ik} is an almost periodic sequence, there exists a q >  such that |Ik+q –
Ik| < ε. Hence, we obtain

ϕ̃
(

t+k
)

– ϕ̃
(

t–k
)

≤
∣

∣Ik+q
(

u(tk+q)
)

– Ik
(

u(tk)
)
∣

∣ < ε.

Then for t ∈ [tk , tk+)T ∩ (∪T�ε ),k ∈ Z, we get

ϕ̃(t) ≤ ϕ̃
(

t+k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)(

L‖ϕ̃s‖ε + ε
)

�s,

thus we obtain

ϕ̃(t) ≤ ϕ̃
(

t–k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)(

L‖ϕ̃s‖ε + ε
)

�s + εe–p(t, tk), (.)

ϕ̃
(

t–k+
)

≤ ϕ̃
(

t+k
)

e–p(tk+, tk) +

∫ tk+

tk

e–p
(

tk+,σ (s)
)(

L‖ϕ̃s‖ε + ε
)

�s. (.)

Under (.), for all t ∈ T∩ (∪T�ε ), using (.) and (.), we can solve the differential

inequality (.) and obtain

ϕ̃(t + s) ≤ ϕ̃(t + s – β)
∏

t+s–β<tk<t+s

e–p(t + s, t + s – β)

+
∑

t+s–β<tk<t+s

(

∏

tk<tj<t+s

e–p(t + s, tk)

)

ε

+

∫ t+s

t+s–β

∏

θ<tk<t+s

e–p
(

t + s,σ (θ )
)(

L‖ϕ̃θ‖ε + ε
)

�θ
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for all t ∈ T ∩ (∪T�ε ). Note ‖ϕ̃θ‖ε = ‖uθ+τ – uθ‖ε is nondecreasing in θ and u ∈
C∗
r |T∩(∪T�ε )

. It follows from this that

‖ut+τ – ut‖ε ≤
∏

t+s–β<tk<t+s

e–p(t + s, t + s – β)‖ut+τ–β – ut–β‖ε

+
L

p

(

 – e–p(t + s, t + s – β)
)

‖ut+τ – ut‖ε +
ε

 – e–p(θ , )

+ ε
(

 – e–p(t + s, t + s – β)
)

≤
(

∏

t+s–β<tk<t+s

e–p(t + s, t + s – β) +
L

p

)

‖ut+τ – ut‖ε

+
ε

 – e–p(θ , )
+ ε,

so we can obtain

‖ut+τ – ut‖ε ≤ p

p – L

∏

t+s–β<tk<t+s

re–p(t + s, t + s – β)

+
( – e–p(θ , ))εp

( – e–p(θ , ))(p – L)
.

Hence, for  < r < , we can choose a sufficiently large β >  such that

∏

t+s–β<tk<t+s

re–p(t + s, t + s – β) < ε.

Then

‖ut+τ – ut‖ε ≤
[

p

p – L

(

 +
 – e–p(θ , )

 – e–p(θ , )

)]

ε for all t ∈ T∩
(

∪T�ε
)

.

Since ε is arbitrary and ε > ε > , from the condition (iii) from Theorem ., we obtain

[

p

p – L

(

 +
 – e–p(θ , )

 – e–p(θ , )

)]

ε > ε > ,

by Definition ., u(t) is an almost periodic function on the almost periodic time scale T.

Next, we assume that p – L ≥ pLr+M(r)
r

. Let v(t) be any solution of (.) such that

‖vt‖ε ≤ M(r)
p

for some t ∈ T ∩ (∪T�ε ). Then, by (ii), (iii) in Lemma ., and (ii) in (H),

for t ∈ (tk , tk+)T ∩ (∪T�ε ), we have

D+

∣

∣v(t)
∣

∣

�
=

[

v(t),F
(

t, v(t), vt
)]

μ

≤
[

v(t),F
(

t, v(t), vt
)

– F(t, , )
]

μ
+

∣

∣F(t, , )
∣

∣

≤ –p
∣

∣v(t)
∣

∣ + L‖vt‖ +M(r). (.)

Moreover, note Ik satisfies the Lipschitz condition for each k. Hence, we can obtain

v
(

t+k
)

– v
(

t–k
)

≤
∣

∣Ik
(

v(tk)
)

– Ik()
∣

∣ < Lr.
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Then for t ∈ [tk , tk+)T ∩ (∪T�ε ),k ∈ Z, we get

v(t)≤ v
(

t+k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)(

L‖vs‖ε +M(r)
)

�s,

thus we obtain

v(t)≤ v
(

t–k
)

e–p(t, tk) +

∫ t

tk

e–p
(

t,σ (s)
)(

L‖vs‖ε +M(r)
)

�s + Lre–p(t, tk), (.)

v
(

t–k+
)

≤ v
(

t+k
)

e–p(tk+, tk) +

∫ tk+

tk

e–p
(

tk+,σ (s)
)(

L‖vs‖ε +M(r)
)

�s. (.)

Using (.) and (.), we can solve the differential inequality (.) and obtain

v(t + s) ≤ v(t + s)
∏

t+s<tk<t+s

e–p(t + s, t + s)

+
∑

t+s<tk<t+s

(

∏

tk<tj<t+s

e–p(t + s, tk)

)

Lr

+

∫ t+s

t+s

∏

θ<tk<t+s

e–p
(

t + s,σ (θ )
)(

L‖vθ‖ε +M(r)
)

�θ

for all t ∈ T∩ (∪T�ε ), –s ∈ (–∞, ]�ε
, which implies that

‖vt‖ε ≤
∏

t+s<tk<t+s

e–p(t + s, t + s)‖vt‖ε

+
L

p

(

 – e–p(t, t)
)

‖vt‖ε +
M(r)

p

(

 – e–p(t, t)
)

+
Lr

 – e–p(θ , )

≤
∏

t+s<tk<t+s

e–p(t + s, t + s)‖vt‖ε +
L

p
‖vt‖ε + Lr +

M(r)

p

and thus

‖vt‖ε ≤ p

p – L

∏

t+s<tk<t+s

e–p(t + s, t + s)‖vt‖ε +
Lrp +M(r)

p – L
≤ r.

Consequently, ‖vt‖ε ≤ r for all t ∈ T∩ (∪T�ε ). The estimate (.) follows from the same

argument as in the proof of Theorem .. The proof is complete. �

Example . Let T be an almost periodic time scale with Z ⊂ T and c ∈ PCrd(T,R
+).

Consider the following ε-equivalent impulsive dynamic equation:

⎧

⎨

⎩

x�(t) = – c(t)
+c(t)μ(t)

x(t) + sin
√
t+cos t

+c(t)μ(t)
xt , t �= tk = k,k ∈ Z,

�x(k) = k–
k

x(k), t = tk = k.
(.)

Obviously,

F(t,x,xt) = –
c(t)

 + c(t)μ(t)
x(t) +

sin
√
t + cos t

 + c(t)μ(t)
xt , Ik

(

x(k)
)

=
k – 

k
x(k), k ∈ Z.
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One can check that (.) is equivalent to the following impulsive dynamic equation:

⎧

⎨

⎩

x�(t) = –c(t)xσ (t) + (sin
√
 + cos t)xt , t �= tk = k,k ∈ Z,

�x(k) = k–
k

x(k), t = tk = k.

Hence, by (iii) from Lemma . in this paper and using Lemma . from [], for t ∈
T∩ (∪T�ε ), we can calculate that

D+

∣

∣x(t) – y(t)
∣

∣

�
=

∣

∣x(t) – y(t)
∣

∣

�
=

[

x(t) – y(t),x�(t) – y�(t)
]

μ

=
[

x(t) – y(t),F(t,x,xt) – F(t, y, yt)
]

μ

≤
[

x(t) – y(t), –
c(t)

 + c(t)μ(t)

(

x(t) – y(t)
)

+
sin

√
t + cos t

 + c(t)μ(t)
(xt – yt)

]

μ

≤ sign
(

xσ (t) – yσ (t)
)(

x�(t) – y�(t)
)

= sign
(

xσ (t) – yσ (t)
)(

–c(t)
(

xσ (t) – yσ (t)
)

+ (sin
√
t + cos t)(xt – yt)

)

= –c(t)
∣

∣xσ (t) – yσ (t)
∣

∣ + | sin
√
t + cos t|‖xt – yt‖ε

= –c(t)
(

μ(t)
∣

∣x(t) – y(t)
∣

∣

�
+

∣

∣x(t) – y(t)
∣

∣

)

+ | sin
√
t + cos t|‖xt – yt‖ε .

Therefore, we can obtain

D+

∣

∣x(t) – y(t)
∣

∣

� ≤ –
c(t)

 + c(t)μ(t)

∣

∣x(t) – y(t)
∣

∣ +
| sin

√
t + cos t|

 + c(t)μ(t)
‖xt – yt‖ε .

Also, for |x| ≤ r, we can easily obtain

∣

∣F(t, ,φ)
∣

∣ ≤ r

 + c(t)μ(t)
≤ r

inft∈T∩(∪T�ε )  + c(t)μ(t)
≤ r + ln




:=M(r)

and

∣

∣F(t,x,φ)
∣

∣ ≤ ( + c(t))r

 + c(t)μ(t)
≤

( + supt∈T∩(∪T�ε ) c(t))r

inft∈T∩(∪T�ε )  + c(t)μ(t)
:=N(r).

Further, we can obtain

∣

∣Ik(x) – Ik(y)
∣

∣ ≤ Ñ(r)|x – y|, Ik() = , Ñ(r) =



+ r

and

h̃ = inf(tk – tk–) =  >
ln( + Ñ(r))

M(r)
=

ln( 

+ r)

r + ln 


, ∀r > .

Thus we can take L = 
inf

t∈T∩(∪T�ε )
+c(t)μ(t)

<  such that there exists

p > max

{

 +


r
ln




, ,




+ r

}

> max

{

M(r)

r
,L

}
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such that

Ñ(r)

 – e–p(θ , )
+
L

p
<



+ r

 – e–p
+
L

p
<



+ r

–p
+


p
<



p
<  sincep > .

In addition, we can obtain

(p – L)( – e–p(θ , ))

p( – e–p(θ , ))
<
( – e–p(θ , ))

 – e–p(θ , )
<

 – e–p(θ , )

 – 

e–p(θ , )

< .

Therefore, all the conditions from Theorem . are satisfied, then (.) has a unique

almost periodic solution u(t) in C∗
r |T∩(∪T�ε ) for  < r < .

5 Conclusion and further discussion

Since impulsive dynamic equations with ‘slight vibration’ can be established on almost

periodic time scales and describe many natural phenomena precisely, we propose a new

type of ε-equivalent impulsive dynamic equations on almost periodic time scales to reflect

such a ‘slight vibration’, which will contribute to the theory of dynamic equations on time

scales and practical applications in the real world. From this paper, one can observe that

ε-equivalent impulsive dynamic equations are ‘little fuzzy’ in time variables, thus there is

a theoretical and practical significance to obtain the existence of solutions for this type of

dynamic equations.

To study the existence of solutions for ε-equivalent impulsive functional dynamic equa-

tions on almost periodic time scales, we established several theorems in the paper (see

Sections  and ) to obtain some new existence results for solutions. These results are

also new when T = R and T = Z. This is the first investigation for this new type of func-

tional dynamic equations with ‘slight vibration’ and several new methods are provided.

However, many problems remain to be studied. From Definition ., we introduce the

concept of �-sub-derivatives on time scales, which means that (.) is the most general

functional dynamic equations with ‘arbitrary vibration’ in time variables. In Theorem .,

we provide sufficient conditions to guarantee the existence of solutions for (.) with ‘ar-

bitrary vibration’. Nevertheless, since this type of dynamic equations has complicated �-

sub-derivatives.
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