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COMPACTNESS CRITERIA FOR RIEMANNIAN MANIFOLDS

GREGORY J. GALLOWAY

Abstract. Ambrose, Calabi and others have obtained Ricci curvature conditions

(weaker than Myers' condition) which ensure the compactness of a complete

Riemannian manifold. Using standard index form techniques we relate the prob-

lem of finding such Ricci curvature criteria to that of establishing the conjugacy of

the scalar Jacobi equation. Using this relationship we obtain a Ricci curvature

condition for compactness which is weaker than that of Ambrose and, in fact,

which is best among a certain class of conditions.

One of the most well-known results relating the curvature and topology of a

complete Riemannian manifold Af is the classical theorem of Myers [8] which

states that if the Ricci curvature with respect to unit vectors on Af has a positive

lower bound then M is compact. (Myers also gives a diameter estimate in terms of

this bound.) In 1957 Ambrose [1] published an interesting generalization of Myers'

theorem. He proved that if there is a point q M in such that along each geodesic y:

[0, oo ) —» M emanating from q (and parameterized by arc length t) the Ricci

curvature satisfies

then Af is compact. One of the important features of this result is that the Ricci

curvature is not required to be everywhere nonnegative. The author, together with

T. Frankel, has applied Ambrose's theorem to certain problems in general relativity

(see [4]).

In this paper we present a general technique for establishing compactness criteria

for complete Riemannian manifolds. As an application of this technique we obtain

a generalization of Ambrose's theorem, which, with respect to a certain class of

curvature conditions, is best. This generalization can be used to improve some of

the results in [4]. (See, especially, Theorem 5 and Corollary 6 of that paper.)

We take a moment to introduce some notation and terminology. Throughout, let

Af denote a smooth complete Riemannian manifold of dimension n > 2. Let < , >

be the Riemannian metric on M and let V be the associated Levi-Civita connec-

tion. If i —> y(t) is a curve in M, let D/dt he the covariant derivative operator on

vector fields along y induced by the connection V. For vector fields X and Y let

R(X, Y) he the Riemann curvature transformation, i.e.

R(X, Y)Z =VXVYZ - VYVXZ - V.rjZ.
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Let K(X A Y) he the sectional curvature of the plane spanned by the vectors X

and Y. In terms of the Riemann curvature,

K(XA Y) = (R(X, Y)Y,X}/\\XA Y\\2,

where \\X /\ Y\\2 is the square of the area of the parallelogram spanned by X and

Y, i.e. \\XA Y\\2 = (X, X}(Y, Y} - (X, Y}2.
The differential equation of Jacobi type,

(1) x" + r(t)x = 0,

where r(t) is continuous on an interval /, is said to be conjugate on / if there exists

a nontrivial solution <b(t) on I which vanishes for at least two values /,, t2 in /.

The technique we shall use for establishing compactness criteria is provided by

the following lemma (compare [2]).

Lemma 1. Suppose there is a point q in M such that along each geodesic

y: [0, oo ) —* M emanating from q (and parameterized by arc length t) the differential

equation (1), with r(t) = Ric(dy/dt, dy/dt)/(n — 1), is conjugate on [0, oo). Then Af

is compact.

Proof. The proof we give combines a lemma of Ambrose together with some

standard Morse index theory techniques (see [5, 8]). In [1], Ambrose shows that if

there is a point q in M such that every geodesic y emanating from q contains a

point conjugate to q along y then M is bounded and, hence, compact. Thus, it

suffices to establish the existence of a point conjugate to q along each geodesic

y: [0, oo) —> M emanating from q.

Since by assumption (1) is conjugate en [0, oo) there exists a nontrivial solution

d>: [0, oo) ̂  R to (1) such that <b(tx) = ¿»(f^ = 0 with 0 < /, < t2. Define the

function/: [0, t2] -> R as follows:

0, 0 < t < tx,

{<j>(t),    tx < t < t2.

Introduce the index form / on y|[0,j. For piecewise smooth vector fields X and Y

along y|[o,,2], which vanish at the end points, define (see [3]),

Let 0 = t0 < t, < • • • < rk = t2 be a subdivision of [0, t2] such that X\^^ and

Y\[r,r- i are smooth for each i. Then the right-hand side of (2) can be integrated by

parts to yield,

where ATDX/dt is the jump in DX/dt at t,.
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Let (e„ e2, . . . , e„_x) he n — 1 orthonormal vector fields along y|[0,,2] orthogonal

to dy/dt. For each i = 1, . . . , n — 1, define X¡(t) = f(f)e¡. Then a straightforward

computation shows

on each of the two subintervals [0, tx] and [/„ i2] on which / is smooth. Thus

substitution of (4) into (3) gives

I(X„ X) = - jf''[/" + K¡e, A^)f\fdt,

where we have used the fact that X¡ vanishes at t = tx. Then, using the fact that

Ric(dy/dt, dy/dt) = 2"=,' K(e¡ A dy/dt), we obtain upon summation,

"-'

2 /(*„ X,) = -(„-!)/ \f" + r(t)f)fdt
i=i ■'o

= -(n-l)Ch(<t>" + r(t)<t>)<t>dt = 0
Jti

since d> is a solution to (1). Therefore, for some i, I(X¡, X¡) < 0. However by a

standard index lemma (see, for example, Lemma 1.21 in [3]) we must have

I(X¡, X¡) > 0 unless there is some point conjugate to q along y|[0,,2]- This concludes

the proof of the lemma.

Thus, the problem of finding conditions on the Ricci curvature to ensure the

compactness of M is reduced to the problem of finding sufficient conditions on r(t)

for which the differential equation (1) is conjugate on [0, oo). But this is an old

problem in the theory of ordinary differential equations for which there exists a

vast literature. (See Swanson [11] for a survey of results up to 1968.) In fact many

conditions on r(t) have been obtained which imply the stronger condition that (1)

is oscillatory on [0, oo). (Equation (1) is oscillatory on [0, oo) if each solution to (1)

on [0, oo) has arbitrarily large, and hence infinitely many, zeros.) One such

condition is due to Wintner [12, 1949]: if f™ r(t) dt = +<x> then (1) is oscillatory.

Thus we observe that Ambrose's theorem is an immediate consequence of Lemma

1 and Wintner's result.

However, in 1955 R. A. Moore generalized Wintner's result as follows (see [7]): if

for some a, 0 < X < 1,

rtxr(t)dt= +00
•'o

then (1) is oscillatory. Roughly speaking, Moore's criterion requires that r(t)

behave on the average like a function having order greater than t~2, whereas

Wintner's criterion requires r(t) to behave on the average like a function having

order greater than or equal to t'x. Consideration of the Euler equation x" +

\(t + l)"2x = 0 (with solution x = c,Vf + 1 + c2Vl + 1 ln(f + 1)) shows that

Moore's result cannot be improved to include X = 1.

Moore's result in conjunction with Lemma 1 yields the following generalization

of Ambrose's theorem.
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Theorem 2. If there is a point q in M such that along each geodesic y: [0, oo) —* M

emanating from q (andparameterized by arc length t) the condition

r
Ja

r Ric(i) dt = +00

holds for some X, 0 < X < 1, where Ric(l) = Ric(dy/dt, dy/dt), then M is compact.

Note that from a slightly different point of view, Theorem 2 gives information

about the rate of decay of the Ricci curvature along some geodesic ray at each

point of an open (i.e. complete, noncompact) Riemannian manifold.

We now give an example to show that the curvature condition of Theorem 2

cannot be improved to allow X = 1. Let M = R2 and be furnished with the metric

(given in polar coordinates r, (?) ds2 = dr2 + G(r)d02 where G(r) is given by

r2,        0<r<{,

\g(r),     \<r<l,

r, r>\.

Here, g(r) is any smooth positive function whose graph matches up smoothly with

the graph of r2 at r = \ and the graph of r at r = 1. (The definition of G(r) for

r < \ ensures that the metric is nonsingular at the origin.) Af, in this metric, is

complete and spherically symmetric about the origin. The radial curves are geodes-

ies and r is arc length along them. In this two dimensional example the Ricci

curvature reduces to Gaussian curvature K(r), and for r > 1,

K(r) = - (I/YO )32VG /dr2 = l/4r2.

Thus, j™ rK(r) dr = + oo, yet Af is noncompact. This example is easily generalized

to higher dimensions.

If we restrict attention to manifolds having nonnegative Ricci curvature, the

curvature condition of Theorem 2 can be weakened as follows.

Theorem 3. Assume M has nonnegative Ricci curvature. If there is a point q in M

such that along each geodesic y: [0, oo)-» Af emanating from q (and parameterized

by arc length t) the inequality

r°° (2 - X)2     1
J^  t* Ric(f) dt >(n - 1)^7^ "pp

holds for some t0 > 0 and some X,0<X< 1, then M is compact.

The theorem is a consequence of Lemma 1 and a result of Nehari's (see [9,

Theorem III]) which shows that if the inequality

holds then (1) is conjugate on [0, oo). (In fact Nehari assumes r(t) > 0, but his

arguments are easily modified to allow r(t) > 0.) Note that the right-hand side of
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(4) can be written in the form

(2 - X)2 f°° x    \   J

4       4o í2

so that, roughly speaking, Nehari's criterion allows r(t) to behave on the average

like c • r2 on [t0, oo) where c > (2 — X)2/4 for some X, 0 < X < 1.

We present one final result which emphasizes the nature of the decay of the

Ricci curvature in open manifolds of nonnegative curvature. (For a related result,

see [10].)

Theorem A. If M is open then at each point q of M the inequality

(5) lim inf t2 Ric(t) < 2~-
r->oo 4

must hold along some geodesic y: [0, oo) —* M emanating from q (and parameterized

by arc length t).

Proof. Suppose, on the other hand, the inequality lim,^^ inf f ̂ (i) > \ holds

along each geodesic y emanating from some point q (where r(t) = Ric(r)/(n — 1)).

Then according to an oscillation result of Hille and Kneser [6], (1) is oscillatory.

Hence, by Lemma 1, Af is compact, which is a contradiction.

We remark that the example following Theorem 2 shows that the bound in (5) is

sharp.
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