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Compactness for Yamabe Metrics in Low Dimensions

Olivier Druet

1 Introduction

Let (M,g) be a smooth compact Riemannian manifold of dimension n ≥ 3. A conformal

metric to g is a metric g̃ which expresses as a smooth positive function multiplied by g.

The conformal class [g] of g is the set of such metrics. If g̃ is a conformal metric to g, we

write that g̃ = u4/(n−2)g, where u ∈ C∞ (M), u > 0. The scalar curvatures Sg and Sg̃ of g

and g̃ are then related by the equation

∆gu + cnSgu = cnSg̃u
2�−1, (1.1)

where ∆g = − divg(∇) is the Laplace-Beltrami operator, 2� = 2n/(n − 2) is critical from

the Sobolev viewpoint, and cn = (n − 2)/4(n − 1). The problem of finding a metric confor-

mal to a given one with a constant scalar curvature is known as the Yamabe problem (see

Yamabe [29]). The Yamabe invariant µg is defined by

µg = inf
g̃∈[g]

V
−(n−2)/n
g̃

∫
M

Sg̃dvg̃, (1.2)

where Vg̃ denotes the volume of M with respect to g̃. Trudinger [28] solved the Yamabe

problem for nonpositive Yamabe invariant µg. In this case, the solution is unique up to

multiplication by a constant scale factor if the scalar curvature is not normalized. The

positive case µg > 0 is more intricate and the problem reduces to finding a smooth posi-

tive solution of the Yamabe equation

∆gu + cnSgu = u2�−1. (1.3)
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The problem was solved in large dimensions when the manifold is not conformally flat

by Aubin [2] and in the more difficult remaining cases by Schoen [20]. Moreover, there

are examples of manifolds for which (1.3) possesses multiple solutions (see Hebey and

Vaugon [13], Pollack [19], and Schoen [23]).

Schoen considered in [22, 23] the fascinating question of the compactness of Yam-

abe metrics. Let (M,g) be a smooth compact manifold of dimension n ≥ 3 with µg > 0.

Let (ui) be any sequence of smooth positive solutions of equations like

∆gui + cnSgui = u
qi−1
i , (1.4)

where 2 + ε0 ≤ qi ≤ 2�, with ε0 > 0 fixed. In [22], when the manifold is not the standard

sphere (a necessary assumption), Schoen announced that the ui’s, if bounded in H2
1(M),

are in fact bounded inC2,α(M),α ∈ (0, 1), and thus precompact inC2(M). Here and below,

H2
1(M) is the Sobolev space of functions in L2 with one derivative in L2. Schoen proved

the result when the manifold is conformally flat in [22]. Then, still in the conformally flat

case, Schoen proved in [23] that one can get rid of the bound on the H2
1-norm. The proof

in [23] uses the injectivity of the developing map and the Alexandrov method. In [21],

Schoen also gave strong indications for the proof of the result for arbitrary manifolds.

We refer also to Schoen and Zhang [27]. In [7], we proved compactness for sequences (ui)

of solutions of equations like

∆gui + aiui = u2�−1
i (1.5)

when the ui’s are bounded in H2
1(M), and (ai) is a converging sequence of functions on

M. We refer to [7] for a precise statement and point out the fact that theH2
1-bound is nec-

essary for such general equations (see [9]). The proof in [7] is based on the very general

C0-theory for blowup developed by Druet, Hebey, and Robert in [10].

In this paper, we are interested in proving compactness results on general com-

pact n-manifolds, 3 ≤ n ≤ 5, when we do not assume any H2
1-bound on the solutions.

We follow Schoen’s approach [21] and provide a detailed proof of his theorem. The 3-

dimensional case was already written by Li and Zhu [18]. We let (M,g) be a smooth com-

pact manifold of dimension 3 ≤ n ≤ 5 and let (ai) be a sequence of smooth positive

functions onM such that

lim
i→+∞ ai = a∞ in C2(M), (1.6)

where a∞ ∈ C2(M) is such that the operator ∆g + a∞ is coercive, namely, such that its

energy controls the H2
1-norm. In the positive case of the Yamabe problem we discussed
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above, the conformal Laplacian ∆g + cnSg in (1.3) is coercive. Also, we let (qi) be a se-

quence of positive real numbers in [2 + ε0; 2�], with ε0 > 0 fixed, and consider equations

like

∆gu + aiu = uqi−1. (1.7)

Equation (1.7) reduces to the geometric equation (1.3) when ai ≡ cnSg and qi = 2�. A

sequence (ui) is said to be a sequence of solutions of (1.7) if for any i, ui is a solution of

(1.7). We prove here the following result.

Theorem 1.1. Let (M,g) be a smooth compact manifold of dimension 3 ≤ n ≤ 5 with

µg > 0. We let (ai) and (qi) be as above. We assume that ai ≤ cnSg for all i and that (M,g)

is not conformally diffeomorphic to the standard sphere if a∞ ≡ cnSg and qi → 2� as i →
+∞. Then compactness holds for (1.7) in the sense that any sequence (ui) of solutions

of (1.7) is bounded in C2,α(M), α ∈ (0, 1), and thus precompact in C2(M). In particular,

when 3 ≤ n ≤ 5 and the manifold is not the standard sphere, the set of Riemannian

metrics with constant scalar curvature 1 in a given conformal class is precompact in the

C2-topology. �

Note that compactness for (1.7) does not hold in general if the condition ai ≤
cnSg is false (see [6, 9, 15]). Independently, note that another proof of the theorem when

n = 4, ai = cnSg, and qi = 2� for all i follows from the combination of Druet [7] and Li

and Zhang [17]. As a general remark, the blowup analysis we develop below, and in the

related works of Druet [7] and Druet, Hebey, and Robert [10], is valid in any dimension.

The proof we present here in dimensions n = 3, 4, 5, which, as already mentioned, mainly

follows the approach developed by Schoen in [21, 22], should easily extend to higher di-

mensions with the difficulty that, in the final computation where the Pohozaev identity is

involved, one more term (the Weyl tensor and then its derivatives) arises with each pair

of dimensions n = [2k, 2k + 1], k ≥ 3. The case of dimensions n = 6, 7 should follow from

the material we develop here; the case of dimensions n = 8, 9 will be more involved; the

case of dimensions n = 10, 11 is again more involved, and so on. The difficult problem

would be to do the compactness for arbitrary dimensions without assumptions on the

Weyl tensor. That pairs-of-dimensions occurrence was first noticed by Schoen [23, 24]. A

very clear explanation of the phenomenon is given by Hebey and Vaugon [14].

The paper is organized as follows. In Section 2, we derive various asymptotic es-

timates for an arbitrary sequence (ui) of solutions of equations like (1.7) around one of

its possible concentration points. This section is divided into several claims. The first

two ones are rather standard now: they provide fine asymptotic pointwise estimates on
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(ui) in a suitable neighborhood of a concentration point. In this neighborhood, ui is con-

trolled from above by a standard bubble. Claim 2.3 is purely technical and provides a

rough estimate on the speed of convergence of qi to 2� in the case of blowup. In Claims

2.4 and 2.5, we carry out a projection of ui on the set of standard bubbles so as to write

suitably ui as the sum of a standard bubble and a rest. And we give sharp estimates

on the H2
1-norm of this rest as i → +∞. This technique was initiated in the Euclidean

context by Adimurthi, Pacella, and Yadava [1]. Associated to strong pointwise estimates

(like those of Claim 2.2), as in [10], it revealed to be powerful in a Riemannian setting

(see, e.g., Druet and Hebey [8]). At last, Claims 2.6 and 2.7 make an intensive use of the

Pohozaev identity derived in the appendix. The restriction on the dimension of the man-

ifold appears in the computations involved in these claims (see also Remark 3.6). We get

estimates relating the weight of the concentration point, the size of the neighborhood of

this concentration point, where ui is controlled by a standard bubble, and the underly-

ing geometry of the manifold. Section 3 is devoted to the proof of the theorem. We prove

the theorem by contradiction assuming that some sequence of solutions of equation (1.7)

develops a concentration phenomenon. We first prove that concentration points are nec-

essarily isolated. Such a fact follows mainly from Claim 2.7. Then the ui’s are bounded in

H2
1(M) and we are in some sense back to Druet [7], with a slight difference from [7], where

qi = 2� for all i. Compactness with the H2
1-bound—which relies essentially on Claim 2.6

and thus on the Pohozaev identity—is proved at the end of Section 3.

2 Pointwise estimates around a concentration point

We let (M,g) be a smooth compact Riemannian manifold of dimension 3 ≤ n ≤ 5 and we

let (ai) be a sequence of smooth functions onM such that (1.6) holds and such that

ai ≤ cnSg. (2.1)

We let also qi ∈ [2 + ε0; 2�], with ε0 > 0 fixed. We need to consider sequences of solutions

of a slightly more general equation than (1.7). This will allow us to perform a suitable

conformal change of the metric in Section 3. Thus we let ϕ ∈ C∞ (M), ϕ > 0, and we

consider (ui) a sequence of solutions of

∆gui + aiui = ϕ2�−qiu
qi−1
i inM. (2.2)

Throughout this section, we assume that there exist a sequence (xi) of local maxima of

ui in M and a bounded sequence (ρi) of positive real numbers such that the following

assertions hold:
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(H1) ρiui(xi)(qi−2)/2 → +∞ as i → +∞;

(H2) there exists C0 > 0 independent of i such that

dg

(
xi, x

)2/(qi−2)
ui(x) ≤ C0 in Bxi

(
3ρi

)
. (2.3)

We divide this section into many claims, being more and more precise in the estimates

on ui around xi. We let µi > 0 be defined by

ui

(
xi

)
= µ

−2/(qi−2)
i (2.4)

so that

µi −→ 0,
ρi

µi
−→ +∞, as i −→ +∞, (2.5)

thanks to assumption (H1). Claim 2.1 is really standard now.

Claim 2.1. We have that, after passing to a subsequence,

µ
2/(qi−2)
i ui

(
expxi

(
µix
)) −→ U(x) (2.6)

in C2
loc(R

n) as i → +∞, where

U(x) =

(
1 +

|x|2

n(n − 2)

)−(n−2)/2

. (2.7)

Moreover, we have that qi → 2� as i → +∞. �

Proof of Claim 2.1. We let (zi) be a sequence of points in Bxi
(ρi) such that

ui

(
zi
)

= sup
Bxi

(ρi)
ui, (2.8)

and we set

ui

(
zi
)

= µ̃
−2/(qi−2)
i . (2.9)

Thanks to (H2), we have that

dg

(
xi, zi

)
= O

(
µ̃i

)
. (2.10)
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Fix 0 < δ < inj(M), with inj(M) the injectivity radius of M. We set for x ∈ B0(δµ̃−1
i ) the

Euclidean ball of center 0 and radius δµ̃−1
i ,

ũi(x) = µ̃
2/(qi−2)
i ui

(
expzi

(
µ̃ix
))
, g̃i(x) = exp�

zi
g
(
µ̃ix
)
. (2.11)

Since µ̃i → 0 as i → +∞, we have that g̃i → ξ in C2
loc(R

n), with ξ the Euclidean metric.

Independently, ũi verifies

∆g̃i
ũi + µ̃2

iai

(
expzi

(
µ̃ix
))
ũi = ϕ

(
expzi

(
µ̃ix
))2�−qi

ũ
qi−1
i in B0

(
δµ̃−1

i

)
,

ũi(0) = sup
(1/µ̃i) exp−1

zi
(Bxi

(ρi))
ũi = 1.

(2.12)

Thanks to (2.4), (2.5), (2.8), (2.9), and (2.10), we have that

1

µ̃i
exp−1

zi

(
Bxi

(
ρi

)) −→ R
n as i −→ +∞. (2.13)

It follows from the standard elliptic theory (see, e.g., [12]) that after passing to a subse-

quence,

ũi −→ U in C2
loc

(
R

n
)

as i −→ +∞, (2.14)

where

∆ξU = ϕ
(
z0
)2�−q0

Uq0−1 in R
n, U(0) = 1, 0 ≤ U ≤ 1 in R

n, (2.15)

q0 = limi→+∞ qi, and z0 = limi→+∞ zi. Thanks to [11], it is possible if and only if q0 = 2�,

which proves the second assertion of Claim 2.1, and thanks to [5], we have that

U(x) =

(
1 +

|x|2

n(n − 2)

)1−n/2

. (2.16)

Thus we have obtained that

lim
i→+∞ µ̃

2/(qi−2)
i ui

(
expzi

(
µ̃ix
))

= U(x) in C2
loc

(
R

n
)
. (2.17)

Thanks to (2.10), we have that, up to the extraction of a new subsequence,

1

µ̃i
exp−1

zi

(
xi

) −→ x0 as i −→ +∞, (2.18)

for some x0 ∈ R
n. Moreover, since xi is a local maximum of ui for all i, we get that x0 is a

local maximum of U. This implies x0 = 0. In turn, this clearly implies that µ̃i/µi → 1 as

i → +∞. Claim 2.1 easily follows. �
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For 0 ≤ r ≤ 3ρi, we set

ψi(r) = r2/(qi−2)

∫
∂Bxi

(r)
uidσg∫

∂Bxi
(r)
dσg

, (2.19)

where dσg denotes the (n − 1)-dimensional Riemannian measure. If we let (Xi) be a se-

quence of positive real numbers converging to someX > 0 as i → +∞, it is easily checked,

thanks to Claim 2.1, that

ψi

(
Xiµi

)
=

 X

1 +
1

n(n − 2)
X2


(n−2)/2

+ o(1),

ψ ′
i

(
Xiµi

)
=
n − 2

2

 X

1 +
1

n(n − 2)
X2


n/2(

1

X2
−

1

n(n − 2)

)
+ o(1).

(2.20)

We let R0 ≥ 2√n(n − 2) and we define ri by

ri = max
{
r ∈ [R0µi; ρi

]
: ψ ′

i(s) ≤ 0 for s ∈ [R0µi; r
]}
. (2.21)

It follows from (2.20) that

ri

µi
−→ +∞ as i −→ +∞. (2.22)

Claim 2.2 provides strong pointwise estimates on ui in Bxi
(2ri).

Claim 2.2. There exists C1 > 0 such that for any i,

ui(x) ≤ C1µ
n−2−2/(qi−2)
i dg

(
xi, x

)2−n
in Bxi

(
2ri
)
\
{
xi

}
,∣∣∇ui(x)

∣∣ ≤ C1µ
n−2−2/(qi−2)
i dg

(
xi, x

)1−n
in Bxi

(
2ri
)
\
{
xi

}
.

(2.23)
�

Proof of Claim 2.2. First, we note that it follows from assumption (H2) and from Har-

nack’s inequality (see, e.g., [12]) that there exists C2 > 1 such that for all r ∈ [0; (5/2)ρi]

and all i,

1

C2
max

∂Bxi
(r)
ui ≤ r−2/(qi−2)ψi(r) ≤ C2 min

∂Bxi
(r)
ui. (2.24)
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As a consequence, we can write, thanks to (2.20) and (2.21), that for all R > R0, all r ∈
[Rµi; ri], all i, and all x ∈ ∂Bxi

(r),

dg

(
xi, x

)2/(qi−2)
ui(x) ≤ C2ψi(r)

≤ C2ψi

(
Rµi

)

= C2

 R

1 +
1

n(n − 2)
R2


(n−2)/2

+ o(1).

(2.25)

Thus we have that

sup
Bxi

(ri)\Bxi
(Rµi)

(
dg

(
xi, x

)2
ui(x)qi−2

)
= ε(R) + o(1), (2.26)

where ε(R) → 0 as R → +∞. We introduce the operator

Li : u �−→ ∆gu + aiu −ϕ2�−qiu
qi−2
i u (2.27)

which verifies the maximum principle since Liui = 0 and ui > 0 (see [3]). We let Gi be

the Green function of ∆g + ai. Standard properties of the Green function (see, e.g., [10,

Appendix A]) give that there exist ρ̃ > 0, C3 > 1, and C4 > 1 such that for all x, y ∈ M,

x �= y,

dg(x, y) ≤ ρ̃ =⇒


1

C3
≤ dg(x, y)n−2Gi(x, y) ≤ C3,

1

C4
≤ dg(x, y)

∣∣∇Gi(x, y)
∣∣
g

Gi(x, y)
≤ C4.

(2.28)

For 0 < σ < 1, we write that

LiGi

(
xi, ·

)σ
= Gi

(
xi, ·

)σ[(1 − σ)ai + σ(1 − σ)

∣∣∇Gi

(
xi, ·

)∣∣2
g

Gi

(
xi, ·

)2 −ϕ2�−qiu
qi−2
i

]

≥ Gi

(
xi, ·

)σ[(1 − σ) min
M

ai +
σ(1 − σ)

C2
4dg

(
xi, ·

)2 −ϕ2�−qiu
qi−2
i

] (2.29)

in Bxi
(ρ̃)\{xi} thanks to (2.28). We then obtain, thanks to (2.26) and to the fact that qi →

2� as i → +∞ (Claim 2.1), that

LiGi

(
xi, ·

)σ ≥ Gi

(
xi, ·

)σ
dg

(
xi, ·

)2 [(1 − σ)dg

(
xi, ·

)2
min

M
ai +

σ(1 − σ)
C2

4

− ε(R) + o(1)
]

(2.30)
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in (Bxi
(ρ̃) ∩ Bxi

(ri))\Bxi
(Rµi). Fix 0 < ν < 1/2. We choose 0 < ρ̄ < ρ̃ such that

ρ̄2 min
M

ai ≥ −
ν

2C2
4

(2.31)

for all i. Note that this is possible thanks to (1.6). Applying (2.30)with σ = ν and σ = 1−ν,

it is easily checked that we can choose Rν > R0 large enough such that

LiGi

(
xi, ·

)ν ≥ 0, LiGi

(
xi, ·

)1−ν ≥ 0 in Bxi

(
r̄i
)
\Bxi

(
Rνµi

)
(2.32)

for i large, where r̄i is given by

r̄i = min
{
ri; ρ̄

}
. (2.33)

Thanks to Claim 2.1 and (2.28), we have that

ui ≤
(
C3R

n−2
ν

)1−ν
µ

(n−2)(1−ν)−2/(qi−2)
i Gi

(
xi, ·

)1−ν
on ∂Bxi

(
Rνµi

)
, (2.34)

while

ui ≤ Cν
3 r̄

(n−2)ν
i

(
sup

∂Bxi
(r̄i)
ui

)
Gi

(
xi, ·

)ν
on ∂Bxi

(
r̄i
)
. (2.35)

Applying the maximum principle, we thus get, thanks to (2.32), to the fact that Liui = 0

inM, and to these last two relations, that

ui ≤
(
C3R

n−2
ν

)1−ν
µ

(n−2)(1−ν)−2/(qi−2)
i Gi

(
xi, ·

)1−ν

+ Cν
3 r̄

(n−2)ν
i

(
sup

∂Bxi
(r̄i)
ui

)
Gi

(
xi, ·

)ν (2.36)

in Bxi
(r̄i)\Bxi

(Rνµi), which gives with (2.28) that

ui ≤
(
C2

3R
n−2
ν

)1−ν
µ

(n−2)(1−ν)−2/(qi−2)
i dg

(
xi, ·

)−(n−2)(1−ν)

+ C2ν
3 r̄

(n−2)ν
i

(
sup

∂Bxi
(r̄i)
ui

)
dg

(
xi, ·

)−(n−2)ν (2.37)

in Bxi
(r̄i)\Bxi

(Rνµi). Let 0 < β < 1. Thanks to definitions (2.21) and (2.33) of ri and r̄i,

respectively, and to (2.24), we can write that

max
∂Bxi

(r̄i)
ui ≤ C2r̄

−2/(qi−2)
i ψi

(
r̄i
)

≤ C2r̄
−2/(qi−2)
i ψi

(
βr̄i
)

≤ C2β
2/(qi−2) max

∂Bxi
(βr̄i)

ui,

(2.38)
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which leads with (2.37) to

max
∂Bxi

(r̄i)
ui ≤ C2

(
C2

3R
n−2
ν

)1−ν
β2/(qi−2)−(n−2)(1−ν)r̄

−(n−2)(1−ν)
i µ

(n−2)(1−ν)−2/(qi−2)
i

+ C2C
2ν
3 β2/(qi−2)−(n−2)ν max

∂Bxi
(r̄i)
ui.

(2.39)

Since qi → 2� and ν < 1/2, we can choose β > 0 small enough such that

C2C
2ν
3 β2/(qi−2)−(n−2)ν ≤ 1

2
(2.40)

for i large in order to obtain that

max
∂Bxi

(r̄i)
ui ≤ 2C2

(
C2

3R
n−2
ν

)1−ν
β2/(qi−2)−(n−2)(1−ν)r̄

−(n−2)(1−ν)
i µ

(n−2)(1−ν)−2/(qi−2)
i .

(2.41)

Coming back to (2.37) with this last relation and using the fact that dg(xi, x) ≤ r̄i in

Bxi
(r̄i), we get the existence of some Cν > 0 such that

ui ≤ Cνµ
(n−2)(1−ν)−2/(qi−2)
i dg

(
xi, ·

)−(n−2)(1−ν)
(2.42)

in Bxi
(r̄i)\Bxi

(Rνµi). Since this relation obviously holds in Bxi
(Rνµi)\{xi} thanks to Claim

2.1 and in Bxi
(ri)\Bxi

(r̄i) thanks to (2.21), (2.24), and (2.33), we have obtained the follow-

ing result: for any 0 < ν < 1/2, there exists Cν > 0 such that

ui ≤ Cνµ
(n−2)(1−ν)−2/(qi−2)
i dg

(
xi, ·

)−(n−2)(1−ν)
in Bxi

(
ri
)
\
{
xi

}
, (2.43)

for all i. We claim now that the following assertion implies Claim 2.2:

(A) for any sequence (si), 0 ≤ si ≤ ri, si → 0 as i → +∞,

ψi

(
si
)( si
µi

)n−2−2/(qi−2)

= O(1). (2.44)

Indeed, let (yi) be a sequence of points in Bxi
(ri)\Bxi

(2R0µi). Thanks to (2.24), we have

that

ui

(
yi

) ≤ C2dg

(
xi, yi

)−2/(qi−2)
ψi

(
dg

(
xi, yi

))
. (2.45)
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We let 0 ≤ si ≤ dg(xi, yi), si → 0 as i → +∞, to be chosen later. Then definition (2.21) of

ri implies that

ui

(
yi

) ≤ C2dg

(
xi, yi

)−2/(qi−2)
ψi

(
si
)
. (2.46)

Applying (A), we get that

µ
−(n−2)+2/(qi−2)
i dg

(
xi, yi

)n−2
ui

(
yi

)
= O

((
dg

(
xi, yi

)
si

)n−2−2/(qi−2)
)
. (2.47)

Assume by contradiction that the left-hand side of this equation goes to +∞ as i → +∞.

Then it will always be possible to choose a sequence (si), 0 ≤ si ≤ dg(xi, yi), si → 0 as

i → +∞, which violates the above equation. Just take, for instance, si such that

s
n−2−2/(qi−2)
i =

dg

(
xi, yi

)n−2−2/(qi−2)√
µ

−(n−2)+2/(qi−2)
i dg

(
xi, yi

)n−2
ui

(
yi

) . (2.48)

Thus we have proved that

µ
−(n−2)+2/(qi−2)
i dg

(
xi, yi

)n−2
ui

(
yi

)
= O(1) (2.49)

for all sequences (yi) of points in Bxi
(ri)\Bxi

(2R0µi). Since the first estimate of Claim 2.2

obviously holds in Bxi
(2R0µi)\{0} thanks to Claim 2.1, we have proved that assertion (A)

implies the first estimate of Claim 2.2 in Bxi
(ri)\{0}. Then Harnack’s inequality gives,

thanks to (H2), that the first estimate of Claim 2.2 holds in Bxi
((5/2)ri)\{0}, while stan-

dard elliptic theory leads then to the second estimate of Claim 2.2. The rest of the proof

is devoted to the proof of (A). Let (si) be a sequence of real numbers, 0 ≤ ri ≤ si, si → 0

as i → +∞. We assume that

si

µi
−→ +∞ as i −→ +∞. (2.50)

Otherwise, (A) obviously holds for (si) thanks to (2.20). We set for x ∈ B0(1) the Euclidean

ball of center 0 and radius 1,
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ūi(x) = s
2/(qi−2)
i ui

(
expxi

(
six
))
, ḡi(x) = exp�

xi
g
(
six
)
. (2.51)

Then

∆ḡi
ūi + s2iai

(
expxi

(
six
))
ūi = ϕ

(
expxi

(
six
))2�−qi

ū
qi−1
i in B0(1). (2.52)

Thanks to (2.43) and (2.50), we have that

ūi −→ 0 in C0
loc

(
B0(1)\{0}

)
. (2.53)

Then standard elliptic theory gives the existence of some λi → +∞ such that

λiūi −→ H in C2
loc

(
B0(1)\{0}

)
, (2.54)

where H �≡ 0 verifies ∆ξH = 0 in B0(1)\{0}. Note here that si → 0 as i → +∞ and that, as a

consequence, ḡi → ξ in C2(B0(1)). By definition (2.21) of ri, we also have that

rn/2−1

∫
∂B0(r)

Hdσξ∫
∂B0(r)

dσξ

(2.55)

is nonincreasing in (0; 1] so thatHmust be singular at the origin. Thus we can writeH as

H =
λ

|x|n−2
+ h, (2.56)

where h ∈ C2(B0(1)) is harmonic and λ > 0 is some constant. We let η ∈ C∞ (B0(1)) be

the first positive eigenfunction of the Euclidean Laplacian in the unit ball with Dirichlet

boundary condition, that is, ∆ξη = λ1η, η > 0 in B0(1), with λ1 the first Dirichlet eigen-

value of ∆ξ. We multiply equation (2.52) by η and integrate on B0(δ), 0 < δ < 1. This leads

after integration by parts to the following:[ ∫
∂B0(δ)

ūi∂νηdσḡi
−

∫
∂B0(δ)

η∂νūidσḡi

]
=

∫
B0(δ)

ϕ
(

expxi

(
six
))2�−qi

ū
qi−1
i ηdvḡi

−

∫
B0(δ)

(
∆ḡi

η + s2iai

(
expxi

(
six
))
η
)
ūidvḡi

.

(2.57)

Since ḡi → ξ in C2(B0(1)) and si → 0 as i → +∞, we obtain that

∆ḡi
η + s2iai

(
expxi

(
six
))
η > 0 (2.58)
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in B0(δ) for i large. Thus the above equation leads, thanks to (2.54) and to the fact that

qi → 2� as i → +∞ (Claim 2.1), to

1

λi

[ ∫
∂B0(δ)

H∂νηdσξ −

∫
∂B0(δ)

η∂νHdσξ + o(1)
]
≤ (1 + o(1)

) ∫
B0(δ)

ū
qi−1
i ηdvḡi

.

(2.59)

It is easily checked, thanks to Claim 2.1 and (2.43) (applied with ν > 0 small enough),

that

∫
B0(δ)

ū
qi−1
i ηdvḡi

=

(
µi

si

)n−2−2/(qi−2)
(
η(0)

(
n(n − 2)

)n/2

n
ωn−1 + o(1)

)
, (2.60)

while

lim
δ→0

[ ∫
∂B0(δ)

H∂νηdσξ −

∫
∂B0(δ)

η∂νHdσξ

]
= λ(n − 2)ωn−1η(0), (2.61)

whereωn−1 is the volume of the standard unit sphere in R
n. We thus obtain that

1

λi
= O

((
µi

si

)n−2−2/(qi−2)
)
. (2.62)

This leads with (2.54) to the estimate (A) for the sequence (si/2). Then it holds for (si)

thanks to (2.21). This ends the proof of assertion (A). As already said, this also ends the

proof of Claim 2.2. �

Lack of compactness can occur only if the equation is almost critical as proved

in Claim 2.1 (qi → 2� as i → +∞). Here we prove that qi must go to 2� quite fast. More

precise information on this speed of convergence may be deduced from Claim 2.6 but the

following claim is easier to prove and sufficient for the moment.

Claim 2.3. We have that

2� − qi =




O

(
µi

ri

)
, if n = 3,

O

(
µ2

i

r2i

)
+O

(
µ2

i ln

(
ri

µi

))
, if n = 4,

O
(
µ2

i

)
+O

((
µi

ri

)n−2
)
, if n ≥ 5.

(2.63)

�
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Proof of Claim 2.3. We write the Pohozaev identity (see the appendix) applied to ui in

Bxi
(ri) with test function fi = (1/2)dg(xi, x)2:

(
n − 2

2
−
n

qi

) ∫
Bxi

(ri)
ϕ2�−qiu

qi

i dvg

= −

∫
Bxi

(ri)

(
ai +

1

2

(∇fi,∇ai

)
g

+
1

4

(
∆2

g

)
fi

)
u2

idvg

+

(
1

2
−
1

qi

) ∫
Bxi

(ri)

(
∆gf + n

)
ϕ2�−qiu

qi

i dvg

+
1

qi

∫
Bxi

(ri)

(∇f,∇(ϕ2�−qi
))

g
u

qi

i dvg

+

∫
Bxi

(ri)

(∇2f − g
)(∇ui,∇ui

)
dvg +Ai,

(2.64)

where Ai is the boundary term:

Ai =
1

2

∫
∂Bxi

(ri)

(∇fi, ν)g∣∣∇ui

∣∣2
g
dσg

−

∫
∂Bxi

(ri)

(∇fi, ν)g( 1qi
ϕ2�−qiu

qi

i −
1

2
aiu

2
i

)
dσg

−
n − 2

2

∫
∂Bxi

(ri)

(∇ui, ν
)
g
uidσg

−

∫
∂Bxi

(ri)

(∇ui,∇fi
)
g

(∇ui, ν
)
g
dσg

+
1

2

∫
∂Bxi

(ri)

(
∆gfi + n

)(∇ui, ν
)
g
uidσg

−
1

4

∫
∂Bxi

(ri)

(∇(∆gfi
)
, ν
)
g
u2

idσg.

(2.65)

Thanks to Claim 2.2, we have that

Ai = O
(
µ

2(n−2)−4/(qi−2)
i r2−n

i

)
. (2.66)

It is also easily checked that

∆gfi + n = O
(
dg

(
xi, x

)2)
,(

∆2
g

)
fi = O(1),(∇2fi − g

)(∇ui,∇ui

)
= O

(
dg

(
xi, x

)2∣∣∇ui

∣∣2
g

)
,

(2.67)
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so that, since qi → 2� as i → +∞, (2.64) becomes

(
1 + o(1)

)(
2� − qi

) ∫
Bxi

(ri)
u

qi

i dvg

= O
(
µ

2(n−2)−4/(qi−2)
i r2−n

i

)
+O

( ∫
Bxi

(ri)
dg

(
xi, x

)2∣∣∇ui

∣∣2
g
dvg

)
+O

( ∫
Bxi

(ri)
u2

idvg

)
+O

( ∫
Bxi

(ri)
dg

(
xi, x

)2
u

qi

i dvg

)
+O

((
2� − qi

) ∫
Bxi

(ri)
dg

(
xi, x

)
u

qi

i dvg

)
.

(2.68)

Thanks to Claims 2.1 and 2.2, we have that

∫
Bxi

(ri)
u

qi

i dvg ≥ (K−n/2
n + o(1)

)
µ

n−2−4/(qi−2)
i ,

∫
Bxi

(ri)
dg

(
xi, x

)
u

qi

i dvg = o
(
µ

n−2−4/(qi−2)
i

)
,

∫
Bxi

(ri)
u2

idvg =




O
(
riµ

2−4/(qi−2)
i

)
, if n = 3,

O

(
µ

4−4/(qi−2)
i ln

(
ri

µi

))
, if n = 4,

O
(
µ

n−4/(qi−2)
i

)
, if n ≥ 5,∫

Bxi
(ri)
dg

(
xi, x

)2
u

qi

i dvg = O
(
µ

n−4/(qi−2)
i

)
,

∫
Bxi

(ri)
dg

(
xi, x

)2∣∣∇ui

∣∣2
g
dvg =




O
(
riµ

2−4/(qi−2)
i

)
, if n = 3,

O

(
µ

4−4/(qi−2)
i ln

(
ri

µi

))
, if n = 4,

O
(
µ

n−4/(qi−2)
i

)
, if n ≥ 5.

(2.69)

Coming back to (2.68) with all these estimates, we obtain Claim 2.3. �

We project ui on a set of bubbles (defined below). Let η ∈ C∞ (R) be such that

η ≡ 1 on [0; 1/4] and η ≡ 0 on [1/2; +∞). We consider the function

Ji : M× R
�
+ × R �−→ R (2.70)

defined by

Ji(y, ν, θ) =

∫
M

∣∣∣∣∇(η(dg(y, ·)
ri

)(
ui − (1 + θ)Bi

y,ν

))∣∣∣∣2
g

dvg, (2.71)
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where

Bi
y,ν(x) = ν(n−2)/2−2/(qi−2)

 ν

ν2 +
1

n(n − 2)
dg(y, x)2


(n−2)/2

(2.72)

for y ∈M and ν > 0. We define the set Λi by

Λi =

{
(y, ν, θ) ∈M× R

�
+ × R :

1

2
≤ ν

µi
≤ 2, −1 ≤ θ ≤ 1, dg

(
xi, y

) ≤ µi

}
. (2.73)

Since Λi is compact and Ji is continuous, there exists (yi, νi, θi) ∈ Λi such that

min
(y,ν,θ)∈Λi

Ji(y, ν, θ) = Ji
(
yi, νi, θi

)
. (2.74)

Claim 2.4. We have that

θi −→ 0,
µi

νi
−→ 1,

dg

(
xi, yi

)
µi

−→ 0, as i −→ +∞. (2.75)
�

Proof of Claim 2.4. First, we note that (xi, µi, 0) ∈ Λi. Moreover, we can write with (2.22)

that

Ji
(
xi, µi, 0

)
=

∫
M

∣∣∣∣∇(η(dg(y, ·)
ri

)(
ui − Bi

xi,µi

))∣∣∣∣2
g

dvg

=

∫
Bxi

(Rµi)

∣∣∇(ui − Bi
xi,µi

)∣∣2
g
dvg

+

∫
M\Bxi

(Rµi)

∣∣∣∣∇(η(dg(y, ·)
ri

)(
ui − Bi

xi,µi

))∣∣∣∣2
g

dvg

(2.76)

for all R > 0. Thanks to Claim 2.1, we have that, for all R > 0,

∫
Bxi

(Rµi)

∣∣∇(ui − Bi
xi,µi

)∣∣2
g
dvg = o

(
µ

n−2−4/(qi−2)
i

)
, (2.77)

while, thanks to Claim 2.2, to (2.22), and to some computations, we have that

∫
M\Bxi

(Rµi)

∣∣∣∣∇(η(dg(y, ·)
ri

)(
ui − Bi

xi,µi

))∣∣∣∣2
g

dvg ≤ (εR + o(1)
)
µ

n−2−4/(qi−2)
i ,

(2.78)
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where εR → 0 as R → +∞. Thus we obtain that

Ji
(
xi, µi, 0

)
= o
(
µ

n−2−4/(qi−2)
i

)
. (2.79)

By definition (2.74) of (yi, νi, θi), we thus have that

Ji
(
yi, νi, θi

)
= o
(
µ

n−2−4/(qi−2)
i

)
. (2.80)

We set

ηi = η

(
dg

(
yi, ·

)
ri

)
(2.81)

and we write that

Ji
(
yi, νi, θi

)
=

∫
M

∣∣∇(ηiui

)∣∣2
g
dvg +

(
1 + θi

)2 ∫
M

∣∣∇(ηiB
i
yi,νi

)∣∣2
g
dvg

− 2
(
1 + θi

) ∫
M

(∇(ηiui

)
,∇(ηiB

i
yi,νi

))
g
dvg.

(2.82)

This leads first to

Ji
(
yi, νi, θi

) ≥ [( ∫
M

∣∣∇(ηiui

)∣∣2
g
dvg

)1/2

−
(
1 + θi

)( ∫
M

∣∣∇(ηiB
i
yi,νi

)∣∣2
g
dvg

)1/2
]2

.

(2.83)

It is easily checked, thanks to Claims 2.1 and 2.2 and to (2.22), that

µ
2/(qi−2)−(n−2)/2
i

( ∫
M

∣∣∇(ηiui

)∣∣2
g
dvg

)1/2

−→ K−n/4
n as i −→ +∞, (2.84)

while direct computations give also that

µ
2/(qi−2)−(n−2)/2
i

( ∫
M

∣∣∇(ηiB
i
yi,νi

)∣∣2
g
dvg

)1/2

−→ K−n/4
n as i −→ +∞. (2.85)

Thanks to (2.80) and (2.83), we can conclude that θi → 0 as i → +∞. Coming back to

(2.82) with (2.80) and these last results, we also obtain that

µ
4/(qi−2)−(n−2)
i

∫
M

(∇(ηiui

)
,∇(ηiB

i
yi,νi

))
g
dvg −→ K−n/2

n as i −→ +∞, (2.86)
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which leads, thanks to (2.79), to

µ
4/(qi−2)−(n−2)
i

∫
M

(∇(ηiB
i
xi,µi

)
,∇(ηiB

i
yi,νi

))
g
dvg −→ K−n/2

n as i −→ +∞.
(2.87)

It is easily checked to be possible if and only if the two remaining assertions of Claim 2.4

hold. This ends the proof of Claim 2.4. �

We set for x ∈ B0(2) the Euclidean ball of center 0 and radius 2,

vi(x) = r
2/(qi−2)
i ui

(
expyi

(
rix
))
,

hi(x) = exp�
yi
g
(
rix
)
,

ãi(x) = ai

(
expyi

(
rix
))
,

ϕ̃i(x) = ϕ
(

expyi

(
rix
))
.

(2.88)

Then

∆hi
vi + r2i ãivi = ϕ̃

2�−qi

i v
qi−1
i in B0(2). (2.89)

We let

γi =
νi

ri
. (2.90)

As a consequence of Claims 2.1 and 2.4, we have

γ
2/(qi−2)
i vi

(
γix
) −→ U(x) in C2

loc

(
R

n
)

as i −→ +∞, (2.91)

while Claim 2.2 together with (2.22), and Claims 2.3 and 2.4 give

vi(x) ≤ Cγ(n−2)/2
i |x|2−n in B0(2)\{0}, (2.92)∣∣∇vi(x)

∣∣ ≤ Cγ(n−2)/2
i |x|1−n in B0(2)\{0}, (2.93)

for some C > 0 independent of i. Thanks to standard elliptic theory (see, e.g., [12]), equa-

tions (2.89) and (2.92) give that

(B) (γ−(n−2)/2
i vi) is bounded in C2

loc(B0(2)\{0}).

We set

Ri = η
(
vi −

(
1 + θi

)
Bi

)
, (2.94)
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where

Bi(x) = γ
(n−2)/2−2/(qi−2)
i

 γi

γ2
i +

|x|2

n(n − 2)


(n−2)/2

. (2.95)

The first variation formula associated to (2.74) gives after some computations that∫
B0(1)

(∇(ηBi

)
,∇Ri

)
hi
dvhi

= 0, (2.96)

∫
B0(1)

(
∇
(
η|x|2

(
1 +

1

n(n − 2)
|x|2

γ2
i

)−n/2
)
,∇Ri

)
hi

dvhi
= 0, (2.97)

and, thanks to Claim 2.3,

∫
B0(1)

(
∇
(
η
∂Bi

∂xα

)
,∇Ri

)
hi

dvhi
= O

(
γn−2

i

)
(2.98)

for all α = 1, . . . , n.

The next claim provides fine integral estimates on Ri. We state this claim only for

dimensions n = 3, 4, 5. Similar estimates hold, and follow from the proof given here, in

higher dimensions. These kinds of estimates were first obtained by Druet and Hebey [8].

Claim 2.5. The following estimates hold:∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

= O
(
γn−2

i

)
, (2.99)

θi =




O

(
γi ln

1

γi

)
, if n = 3,

O

(
γ2

i ln
1

γi

)
+O

(
r2iγ

2
i

(
ln
1

γi

)2)
, if n = 4,

O

(
γ3

i ln
1

γi

)
+O

(
r2iγ

2
i ln

1

γi

)
, if n = 5.

(2.100)

�

Proof of Claim 2.5. We write with (2.94) and (2.96) that∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

=

∫
B0(1)

(∇Ri,∇
(
ηvi

))
hi
dvhi

=

∫
B0(1)

Ri∆hi

(
ηvi

)
dvhi

, (2.101)

which leads with (2.89) and (B) to∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

=

∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi−1
Ridvhi

+O
(
γn−2

i

)
− r2i

∫
B0(1)

Si

(
ηvi

)
Ridvhi

.

(2.102)
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Thanks to (2.91), (2.92), (2.94), and (2.95), it is easily checked that

r2i

∫
B0(1)

Si

(
ηvi

)
Ridvhi

−→ 0 as i −→ +∞. (2.103)

Independently, we write that∣∣∣∣ ∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi−1
Ridvhi

∣∣∣∣ ≤ 2 ∫
B0(Rγi)

v
qi−1
i

∣∣vi −
(
1 + θi

)
Bi

∣∣dvhi

+ 2

∫
B0(1)\B0(Rγi)

(
ηvi

)qi−1
η
(
Bi + vi

)
dvhi

(2.104)

for all R > 0 and i large. It is easily checked, thanks to Claims 2.3 and 2.4 and to (2.91),

that

∫
B0(Rγi)

v
qi−1
i

∣∣vi −
(
1 + θi

)
Bi

∣∣dvhi
−→ 0 as i −→ +∞, (2.105)

for all R > 0. Thanks to (2.92) and to Claim 2.3, we also have that

lim
R→+∞ lim sup

i→+∞
∫
B0(1)\B0(Rγi)

(
ηvi

)qi−1
η
(
Bi + vi

)
dvhi

= 0. (2.106)

Coming back to (2.102) with all these relations, we obtain that

∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

−→ 0 as i −→ +∞. (2.107)

Let us be more precise now. We write, thanks to not only (2.94) and (2.107) but also

Claims 2.3 and 2.4, that

∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi−1
Ridvhi

=
(
1 + θi

)qi−1
∫
B0(1)

(
ηBi

)qi−1
Ridvhi

+
n + 2

n − 2

∫
B0(1)

(
ηBi

)2�−2
R2

idvhi

+O

(
γ

(n−2)/2
i

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)

+ o

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)
.

(2.108)

Relations (B), (2.94), and (2.96) together with Claim 2.3 lead to

0 =

∫
B0(1)

(∇(ηBi

)
,∇Ri

)
hi
dvhi

=

∫
B0(1)

η∆hi
BiRidvhi

+O
(
γn−2

i

)
. (2.109)
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Since

∆hi
Bi = γ

(2/(qi−2)−(n−2)/2)(2�−2)
i B2�−1

i +O
(
r2i |x|

∣∣∇Bi

∣∣)
= B

qi−1
i +O

((
2� − qi

)(
ln
1

γi

)
B

qi−1
i

)
+O

(
r2i |x|

∣∣∇Bi

∣∣) (2.110)

thanks to Claim 2.3, we obtain with Hölder’s and Sobolev’s inequalities that∫
B0(1)

(
ηBi

)qi−1
Ridvhi

= O

(
r2i

( ∫
B0(1)

|x|2
�/(2�−1)

∣∣∇Bi

∣∣2�/(2�−1)
dvhi

)(2�−1)/2�

×
( ∫

B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)

+O

((
2� − qi

)(
ln
1

γi

) ∫
B0(1)

B
qi−1
i

∣∣Ri

∣∣dvhi

)
+O

(
γn−2

i

)
,

(2.111)

which leads after computations, thanks once again to Claim 2.3, and to Hölder’s and

Sobolev’s inequalities, to

∫
B0(1)

(
ηBi

)qi−1
Ridvhi

= O

(
γ

(n−2)/2
i

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)

+O
(
γn−2

i

)
.

(2.112)

Using Hölder’s and Sobolev’s inequalities, one also gets after some computations

r2i

∫
B0(1)

Si

(
ηvi

)
Ridvhi

= O

(
r2iγ

(n−2)/2
i

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)
. (2.113)

Coming back to (2.102) with (2.108), (2.112), and this last relation, we obtain the follow-

ing:

(
1 + o(1)

) ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

=
n + 2

n − 2

∫
B0(1)

(
ηBi

)2�−2
R2

idvhi
+O

(
γn−2

i

)
+O

(
γ

(n−2)/2
i

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)
.

(2.114)

We now consider the following eigenvalue problem:

∆hi
ζi,α = τi,α

(
ηBi

)2�−2
ζi,α in B0(1),

ζi,α = 0 on ∂B0(1),∫
B0(1)

(
ηBi

)2�−2
ζi,αζi,βdvhi

= K−n/2
n δαβ,

(2.115)
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with τi,1 ≤ · · · ≤ τi,α ≤ · · · . By the result of [7, Appendix 1], we know that

lim
i→+∞ τi,α = τα ∀α ∈ N

�, (2.116)

and that

lim
i→+∞

∫
B0(1)

∣∣∇(ζi,α − ζ̃i,α

)∣∣2
hi
dvhi

= 0 ∀α ∈ N
�, (2.117)

where

ζ̃i,α = γ
1−n/2
i ζα

(
x

γi

)
(2.118)

with (ζα, τα) the solutions of the following eigenvalue problem:

∆ξζα = ταU
2�−2ζα in R

n,∫
Rn

U2�−2ζαζβdvξ = K−n/2
n δαβ,

(2.119)

where U(x) = (1 + |x|2/n(n − 2))1−n/2.

Thanks to the work of Bianchi and Egnell [4], we know that

ζ1 = U, τ1 = 1,

ζα = λα
∂U

∂xα−1
, τα =

n + 2

n − 2
, for α = 2, . . . , n + 1,

ζn+2 = λn+2

(
U −

2

n(n − 2)
|x|2Un/(n−2)

)
, τn+2 =

n + 2

n − 2
,

(2.120)

where λ2, . . . , λn+2 are some positive real numbers, and that

τn+3 >
n + 2

n − 2
. (2.121)

We now write that

Ri =

n+2∑
α=1

Di,αζi,α + R̃i (2.122)

with

Di,α =

∫
B0(1)

(∇Ri,∇ζi,α

)
hi
dvhi∫

B0(1)

∣∣∇ζi,α

∣∣2
hi
dvhi

(2.123)
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so that

∫
B0(1)

(∇R̃i,∇ζi,α

)
hi
dvhi

= 0 (2.124)

for α = 1, . . . , n + 2. In particular, we obtain, thanks to (2.116), that

∫
B0(1)

∣∣∇R̃i

∣∣2
hi
dvhi

≥ (τn+3 + o(1)
) ∫

B0(1)

(
ηBi

)2�−2
R̃2

idvhi
. (2.125)

We also have

∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

= K−n/2
n

n+2∑
α=1

τi,αD
2
i,α +

∫
B0(1)

∣∣∇R̃i

∣∣2
hi
dvhi

(2.126)

thanks to (2.115). At last, we can write that

∫
B0(1)

(
ηBi

)2�−2
R2

idvhi
= K−n/2

n

n+2∑
α=1

D2
i,α +

∫
B0(1)

(
ηBi

)2�−2
R̃2

idvhi
. (2.127)

We now estimate theDi,α’s. We write, thanks to (2.115), (2.117), and (2.123), that

K−n/2
n τi,αDi,α =

∫
B0(1)

(∇Ri,∇
(
ζi,α − ζ̃i,α

))
hi
dvhi

+

∫
B0(1)

(∇Ri,∇ζ̃i,α

)
hi
dvhi

=

∫
B0(1)

(∇Ri,∇ζ̃i,α

)
hi
dvhi

+ o

(( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)1/2
)
.

(2.128)

It is then easily checked that

∫
B0(1)

(∇Ri,∇ζ̃i,α

)
hi
dvhi

= O
(
γn−2

i

)
(2.129)

for α = 1, . . . , n + 2, thanks to (2.96), (2.97), (2.98), (2.118), (2.120), and Claim 2.3. Thus

we obtain that

D2
i,α = o

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)
+ o
(
γn−2

i

)
. (2.130)

Then (2.126) becomes

(
1 + o(1)

) ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

=

∫
B0(1)

∣∣∇R̃i

∣∣2
hi
dvhi

+ o
(
γn−2

i

)
(2.131)
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and (2.127) becomes

∫
B0(1)

(
ηBi

)2�−2
R2

idvhi

=

∫
B0(1)

(
ηBi

)2�−2
R̃2

idvhi
+ o

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)
+ o
(
γn−2

i

)
.

(2.132)

Using (2.114), (2.121), and (2.125), we deduce (2.99). It remains to prove (2.100). For that

purpose, we first write that

∫
B0(1)

∣∣∇(ηvi

)∣∣2
hi
dvhi

=
(
1 + θi

)2 ∫
B0(1)

∣∣∇(ηBi

)∣∣2
hi
dvhi

+

∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

(2.133)

thanks to (2.94) and (2.96). Direct computations lead then with the Cartan expansion of

the metric hi around 0 and with Claim 2.3 to

∫
B0(1)

∣∣∇(ηBi

)∣∣2
hi
dvhi

= K−n/2
n +O

(
γn−2

i

)

+




O

(
γi ln

1

γi

)
, if n = 3,

O

(
r2iγ

2
i

(
ln
1

γi

)2
)

+O

(
γ2

i ln
1

γi

)
, if n = 4,

O

(
r2iγ

2
i ln

1

γi

)
+O

(
γ3

i ln
1

γi

)
, if n = 5.

(2.134)

We thus obtain, thanks to (2.99), that

∫
B0(1)

∣∣∇(ηvi

)∣∣2
hi
dvhi

= K−n/2
n

(
1 + θi

)2
+O

(
γn−2

i

)

+




O

(
γi ln

1

γi

)
, if n= 3,

O

(
r2iγ

2
i

(
ln
1

γi

)2
)

+O

(
γ2

i ln
1

γi

)
, if n= 4,

O

(
r2iγ

2
i ln

1

γi

)
+O

(
γ3

i ln
1

γi

)
, if n= 5.

(2.135)
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Independently, using equation (2.89) satisfied by vi and the estimate (B), we have, thanks

to Claim 2.3, that

∫
B0(1)

∣∣∇(ηvi

)∣∣2
hi
dvhi

=

∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi
dvhi

+O
(
γn−2

i

)
− r2i

∫
B0(1)

Si

(
ηvi

)2
dvhi

.

(2.136)

Using (2.94), (2.95), and (2.99), some computations give that

r2i

∫
B0(1)

Si

(
ηvi

)2
dvhi

=



O
(
r2iγi

)
, if n = 3,

O
(
r2iγ

2
i

∣∣ lnγi

∣∣), if n = 4,

O
(
r2iγ

2
i

)
, if n = 5,

(2.137)

so that

∫
B0(1)

∣∣∇(ηvi

)∣∣2
hi
dvhi

=

∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi
dvhi

+O
(
γn−2

i

)

+




O
(
r2iγi

)
, if n = 3,

O
(
r2iγ

2
i

∣∣ lnγi

∣∣), if n = 4,

O
(
r2iγ

2
i

)
, if n = 5.

(2.138)

We now write with (2.94) that

∫
B0(1)

(
ηvi

)qi
dvhi

=
(
1 + θi

)qi

∫
B0(1)

(
ηBi

)qi
dvhi

+ qi

(
1 + θi

)qi−1
∫
B0(1)

(
ηBi

)qi−1
Ridvhi

+O

( ∫
B0(1)

∣∣∇Ri

∣∣2
hi
dvhi

)
.

(2.139)

This leads, thanks to (2.99), (2.112), Claim 2.3, and direct computations, to

∫
B0(1)

ϕ̃
2�−qi

i

(
ηvi

)qi
dvhi

=
(
1 + θi

)qi
K−n/2

n +O
((
2� − qi

)∣∣ lnγi

∣∣) +O
(
γn−2

i

)
+O

(
r2iγ

2
i

)
.

(2.140)

Combining (2.135), (2.138), and (2.140), we obtain (2.100) thanks to Claim 2.3. This ends

the proof of Claim 2.5. �
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We let 0 < δ < 1/2. We apply the Pohozaev identity to vi inB0(δ) with test function

f = (1/2)|x|2 (see the appendix):

Mi =

(
n − 2

2
−
n

qi

) ∫
B0(δ)

ϕ̃
2�−qi

i v
qi

i dvhi

+

∫
B0(δ)

(
r2i ãi +

1

2
r2i
(∇f,∇ãi

)
hi

+
1

4

(
∆2

hi

)
f

)
v2

idvhi

−

(
1

2
−
1

qi

) ∫
B0(δ)

(
∆hi

f + n
)
ϕ̃

2�−qi

i v
qi

i dvhi

−
1

qi

∫
B0(δ)

(∇f,∇ϕ̃2�−qi

i

)
hi
v

qi

i dvhi

−

∫
B0(δ)

(∇2f − hi

)(∇vi,∇vi

)
dvhi

,

(2.141)

whereMi is the boundary term

Mi =
1

2

∫
∂B0(δ)

(∇f, ν)hi

∣∣∇vi

∣∣2
hi
dσhi

−

∫
∂B0(δ)

(∇f, ν)hi

(
ϕ̃

2�−qi

i

qi
v

qi

i −
1

2
r2i ãiv

2
i

)
dσhi

−
n − 2

2

∫
∂B0(δ)

(∇vi, ν
)
hi
vidσhi

−

∫
∂B0(δ)

(∇vi,∇f
)
hi

(∇vi, ν
)
hi
dσhi

+
1

2

∫
∂B0(δ)

(
∆hi

f + n
)(∇vi, ν

)
hi
vidσhi

−
1

4

∫
∂B0(δ)

(∇(∆hi
f
)
, ν
)
hi
v2

idσhi
.

(2.142)

In the next claim, we estimate Mi thanks to (2.141). In Claim 2.7 and Section 3, we will

estimateMi thanks to (2.142) in order to get contradictions (in different settings).

Claim 2.6. We have that

Mi = −

(
(n − 2)2

4n
K−n/2

n + o(1)
)(
2� − qi

)
+O

(
δr2iγ

n−2
i

)
+ o
(
γn−2

i

)
+
(
ai

(
xi

)
− cnSg

(
xi

))
64ω3r

2
iγ

2
i

∣∣ lnγi

∣∣, if n = 4,

16K
−5/2
5 r2iγ

2
i , if n = 5,

(2.143)

where

lim
i→+∞

o
(
Xi

)
Xi

= 0,
∣∣O(Xi,δ

)∣∣ ≤ C∣∣Xi,δ

∣∣ (2.144)

for some C > 0 independent of i and δ. �
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Proof of Claim 2.6. Thanks to (2.140), we have that(
n − 2

2
−
n

qi

) ∫
B0(δ)

ϕ̃
2�−qi

i v
qi

i dvhi
=

(
(n − 2)2

4n
K−n/2

n + o(1)
)(
qi − 2�

)
, (2.145)

while (2.91) and (2.92) lead to

∫
B0(δ)

(∇f,∇ϕ̃2�−qi

i

)
hi
v

qi

i dvhi
= o
(
2� − qi

)
. (2.146)

Since Bi is radially symmetrical and η ≡ 1 in B0(δ), we have that

∫
B0(δ)

(∇2f − hi

)(∇vi,∇vi

)
dvhi

=

∫
B0(δ)

(∇2f − hi

)(∇Ri,∇Ri

)
dvhi

= O

(
r2i

∫
B0(δ)

|x|2
∣∣∇Ri

∣∣2
hi
dvhi

) (2.147)

thanks to the Cartan expansion of hi around 0. We get then, thanks to Claim 2.5, that

∫
B0(δ)

(∇2f − hi

)(∇vi,∇vi

)
dvhi

= O
(
δ2r2iγ

n−2
i

)
. (2.148)

Since ∆hi
f + n = O(r2i |x|2), using (2.94), we write that

∫
B0(δ)

(
∆hi

f + n
)
v

qi

i dvhi
=
(
1 + θi

)qi

∫
B0(δ)

(
∆hi

f + n
)
B

qi

i dvhi

+O

(
r2i

∫
B0(δ)

|x|2B
qi−1
i

∣∣Ri

∣∣dvhi

)
+O

(
r2i

∫
B0(δ)

|x|2
∣∣Ri

∣∣qi
dvhi

)
.

(2.149)

By Hölder’s and Sobolev’s inequalities, thanks to Claims 2.3 and 2.5, we get after some

computations that

∫
B0(δ)

(
∆hi

f + n
)
v

qi

i dvhi
=
(
1 + θi

)qi

∫
B0(δ)

(
∆hi

f + n
)
B

qi

i dvhi
+ o
(
γn−2

i

)
. (2.150)

We write now, with the Cartan expansion of hi around 0, and since Bi is radially symmet-

rical, that

∫
B0(δ)

(
∆hi

f + n
)
B

qi

i dvhi
=
1

3
Richi

(0)αβ

∫
B0(δ)

xαxβB
qi

i dvξ

+Aαβγ

∫
B0(δ)

xαxβxγB
qi

i dvξ

+O

(
r4i

∫
B0(δ)

|x|4B
qi

i dvξ

) (2.151)
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which gives after some computations, and thanks to Claim 2.3, that

∫
B0(δ)

(
∆hi

f + n
)
B

qi

i dvhi
=
n

3
K−n/2

n Shi
(0)γ2

i + o
(
γn−2

i

)
=
n

3
K−n/2

n Sg

(
yi

)
r2iγ

2
i + o

(
γn−2

i

)
.

(2.152)

Coming back to (2.150) with this last relation and Claims 2.3 and 2.5, we get that

(
1

2
−
1

qi

) ∫
B0(δ)

(
∆hi

f + n
)
ϕ̃

2�−qi

i v
qi

i dvhi

=
1

3
K−n/2

n Sg

(
yi

)
r2iγ

2
i + o

(
γn−2

i

)
+ o
(
2� − qi

)
.

(2.153)

We write now, thanks to the expansion of the metric hi around 0, that

(
r2i ãi +

1

2
r2i
(∇f,∇ãi

)
hi

+
1

4

(
∆2

hi

)
f

)
dvhi

=

(
r2i

(
ai

(
yi

)
−
1

6
Sg

(
yi

))
+ Bαx

α +O
(
r4i |x|2

))
dvξ,

(2.154)

where Bα = ((3/2)r2i∂αãi(0)+(1/4)∂α(∆2
hi
f)(0)). Using the fact that Bi is radially symmet-

rical, we get then with (2.94) that

∫
B0(δ)

(
r2i ãi +

1

2
r2i
(∇f,∇ãi

)
hi

+
1

4

(
∆2

hi

)
f

)
v2

idvhi

= r2i

(
ai

(
yi

)
−
1

6
Sg

(
yi

))(
1 + θ2

i

) ∫
B0(δ)

B2
idvξ +O

(
r2i

∫
B0(δ)

R2
idvξ

)
+O

(
r4i

∫
B0(δ)

|x|2B2
idvξ

)
+O

(
r2i

∫
B0(δ)

∣∣Ri

∣∣Bidvξ

)
.

(2.155)

This leads after some computations, thanks to Hölder’s and Sobolev’s inequalities and to

Claim 2.5, to

∫
B0(δ)

(
r2i ãi +

1

2
r2i
(∇f,∇ãi

)
hi

+
1

4

(
∆2

hi

)
f

)
v2

idvhi

=

(
ai

(
yi

)
−
1

6
Sg

(
yi

))
64ω3r

2
iγ

2
i

∣∣ lnγi

∣∣, if n = 4,

16K
−5/2
5 r2iγ

2
i , if n = 5,

+ o
(
γn−2

i

)
+O

(
δr2iγ

n−2
i

)
.

(2.156)

Combining (2.141) with (2.145), (2.146), (2.148), (2.153), and this last estimate, we ob-

tain, thanks to Claim 2.4, the estimate of Claim 2.6. �
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The next step is crucial in order to prove during Section 3 that concentration

points are isolated and thus the energy of solutions of (2.2) is a priori bounded.

Claim 2.7. If ri → 0 as i → +∞, then we necessarily have that ri = ρi for i large. Moreover,

we have that

γ
−(n−2)/2
i vi −→ H in C2

loc

(
B0(2)\{0}

)
as i −→ +∞, (2.157)

where

H(x) =
λ

|x|n−2
+ h(x) (2.158)

with

λ =
(
n(n − 2)

)−(n+2)/2
(2.159)

and h some smooth harmonic function in B0(2) such that h(0) ≤ 0. �

Proof of Claim 2.7. Assume that ri → 0 as i → +∞. Thanks to (2.88), (2.89), and (B), after

passing to a subsequence, we have (2.157), whereH satisfies

∆ξH = 0 in B0(2)\{0}. (2.160)

The classification of singularities of harmonic functions then gives the existence of some

λ ∈ R and of some smooth harmonic function h such that

H(x) =
λ

|x|n−2
+ h(x) in B0(2)\{0}. (2.161)

In order to compute λ, we integrate equation (2.89) on B0(1) to obtain

γ
−(n−2)/2
i

∫
B0(1)

ϕ̃
2�−qi

i v
qi−1
i dvhi

= −

∫
∂B0(1)

∂νHdσξ + r2iγ
−(n−2)/2
i

∫
B0(1)

ãividvhi
+ o(1).

(2.162)

Thanks to (2.91), (2.92), and Claim 2.3, we get that

γ
−(n−2)/2
i

∫
B0(1)

ϕ̃
2�−qi

i v
qi−1
i dvhi

=
(n − 2)ωn−1(
n(n − 2)

)(n+2)/2
+ o(1),

r2iγ
−(n−2)/2
i

∫
B0(1)

ãividvhi
= o(1).

(2.163)
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Thus we obtain that

−

∫
∂B0(1)

∂νHdσξ =
(n − 2)ωn−1(
n(n − 2)

)(n+2)/2
, (2.164)

which leads to

λ =
1(

n(n − 2)
)(n+2)/2

. (2.165)

Thanks to (2.157), we can estimate Mi, given by (2.142): since ri → 0 as i → +∞,we

obtain that

lim
i→+∞ γ

2−n
i Mi =

∫
∂B0(δ)

(
δ

2
|∇H|2ξ − δ

(
∂νH

)2
−
n − 2

2
H∂νH

)
dσξ

=
(n − 2)2

2
λωn−1h(0).

(2.166)

Claim 2.6 independently gives that

Mi ≤ O
(
δr2iγ

n−2
i

)
+ o
(
γn−2

i

)
= o
(
γn−2

i

)
(2.167)

since ai ≤ cnSg, qi ≤ 2�, and ri → 0 as i → +∞. Thus we obtain that

h(0) ≤ 0. (2.168)

It remains to prove that ri = ρi for i large. Assume that, on the contrary, there is a subse-

quence such that ri < ρi for i large. Then, by definition (2.21) of ri, we have that

ψ ′
i

(
ri
)

= 0, (2.169)

where ψi is defined by (2.19). Thanks to Claim 2.4, to (2.22), and to (2.157), this leads to


∫
∂B0(r)

Hdσξ

ωn−1rn/2


′

(1) = 0. (2.170)

Thanks to (2.161), we have that

∫
∂B0(r)

Hdσξ

ωn−1rn/2
=

λ

r(n−2)/2
+ h(0)r(n−2)/2 (2.171)

so that we obtain h(0) = λ which is in contradiction with (2.168). This ends the proof of

Claim 2.7. �
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3 Proof of Theorem 1.1

We prove the theorem in this section. The notations of this section are independent of

those of the previous one. We use the results of Section 2 with different sequences (xi)

and (ρi) satisfying assumptions (H1) and (H2) at the beginning of Section 2. We let (M,g)

be a smooth compact Riemannian manifold of dimension 3 ≤ n ≤ 5 and we let (ai),

(qi), and (ui) be as in the theorem. If (ui) is bounded in L∞ (M), then (ui) is bounded

in C2(M) thanks to standard elliptic theory (see, e.g., [12]), and the conclusion of the

theorem holds. We assume by contradiction that

max
M

ui −→ +∞ as i −→ +∞. (3.1)

We claim first the following.

Claim 3.1. We have that qi → 2� as i → +∞. �

Proof of Claim 3.1. We let xi ∈M be a point where ui achieves its maximum. By (3.1), we

have that

ui

(
xi

)
= max

M
ui −→ +∞ as i −→ +∞. (3.2)

Fix 0 < δ < inj(M). We set for x ∈ B0(δui(xi)(qi−2)/2) the Euclidean ball of center 0 and

radius δui(xi)(qi−2)/2,

ũi(x) = ui

(
xi

)−1
ui

(
expxi

(
ui

(
xi

)−(qi−2)/2
x
))
,

gi(x) = exp�
xi
g
(
ui

(
xi

)−(qi−2)/2
x
) (3.3)

so that

∆gi
ũi + ui

(
xi

)2−qi
ai

(
expxi

(
ui

(
xi

)−(qi−2)/2
x
))
ũi = ũ

qi−1
i

in B0

(
δui

(
xi

)(qi−2)/2
)
.

(3.4)

Moreover, we have that

ũi ≤ ũi(0) = 1 in B0

(
δui

(
xi

)(qi−2)/2
)
. (3.5)

Standard elliptic theory (see, e.g., [12]) then gives that, up to a subsequence,

ũi −→ Ũ in C2
loc

(
R

n
)

as i −→ +∞, (3.6)
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where

∆ξŨ = Ũq0−1 in R
n. (3.7)

Here, q0 = limi→+∞ qi, which does exist up to extracting a new subsequence. Thanks to

[11], this is possible if and only if q0 = 2�. This ends the proof of Claim 3.1. �

Claims 3.2 and 3.3 are a way to exhaust roughly some of the concentration points

of ui together with a weak pointwise estimate. These claims should be compared with

[10, Theorem 4.1] where the exhaustion of concentration points in that way is precise

and complete when the energy of the ui’s is bounded.

Claim 3.2. Fix R > 0. There exists D0 > 2R and i0 ∈ N such that for any i ≥ i0, for any

compact set Si ⊂M, if

max
M

(
dg

(
x, Si

)
ui(x)(qi−2)/2

) ≥ D0, (3.8)

then ui possesses a local maximum yi ∈M\Si which satisfies

dg

(
yi, Si

)
ui

(
yi

)(qi−2)/2 ≥ 3D0

4
,

dg

(
yi, x

)
ui(x)(qi−2)/2 ≤ D0

4
in Byi

(
2Rui

(
yi

)−(qi−2)/2
)
,∫

Byi
(Rui(yi)−(qi−2)/2)

u
qi

i dvg ≥ 1

D0
.

(3.9)

We allow Si to be the empty set with the convention that dg(y,∅) = 1 for all y ∈M. �

Proof of Claim 3.2. Fix R > 0. We prove the claim by contradiction. We assume that, for

some subsequence, there exists Di → +∞ as i → +∞ and there exists a compact set

Si ⊂M, possibly empty, such that

max
M

(
dg

(
x, Si

)
ui(x)(qi−2)/2

) ≥ Di (3.10)

and such that there is no local maximum point ofui satisfying the conclusion of the claim

withDi and Si. We let zi ∈M\Si be such that

dg

(
zi, Si

)
ui

(
zi
)(qi−2)/2

= max
M

(
dg

(
x, Si

)
ui(x)(qi−2)/2

)
(3.11)

and we set

ui

(
zi
)

= ε
−2/(qi−2)
i . (3.12)
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SinceM is compact, we get, thanks to (3.10) and (3.11), that

εi −→ 0 as i −→ +∞. (3.13)

We also have, thanks to (3.10) and (3.11), that

dg

(
zi, Si

)
εi

−→ +∞ as i −→ +∞. (3.14)

Fix δ > 0 small. We set for x ∈ B0(δε−1
i ) the Euclidean ball of center 0 and radius δε−1

i ,

ūi(x) = ε
2/(qi−2)
i ui

(
expzi

(
εix
))
, ḡi(x) = exp�

zi
g
(
εix
)
, (3.15)

so that

∆ḡi
ūi + ε2

iai

(
expzi

(
εix
))
ūi = ū

qi−1
i in B0

(
δε−1

i

)
. (3.16)

Thanks to (3.13), we also have that

ḡi −→ ξ in C2
loc

(
R

n
)

as i −→ +∞. (3.17)

We let R > 0 and we let (z̄i) be a sequence of points in B0(R). Since

dg

(
zi, expzi

(
εiz̄i

)) ≤ Rεi, (3.18)

we get, thanks to (3.14), that

dg

(
expzi

(
εiz̄i

)
, Si

)
= dg

(
zi, Si

)(
1 + o(1)

)
. (3.19)

This leads, thanks to (3.11), to

ūi

(
z̄i
) ≤ ūi(0)

(
1 + o(1)

)
= 1 + o(1). (3.20)

This proves that (ūi) is locally uniformly bounded in R
n. Standard elliptic theory (see,

e.g., [12]) then gives that, after passing to a subsequence,

ūi −→ Ū in C2
loc

(
R

n
)

as i −→ +∞, (3.21)

with ∆ξŪ = Ū2�−1 (since qi → 2� by Claim 3.1) and Ū(0) = maxRn Ū = 1. Thanks to [5],

we have that

Ū =

(
1 +

|x|2

n(n − 2)

)−(n−2)/2

. (3.22)
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This clearly proves that for i large, ui possesses a local maximum point yi satisfying that

dg(zi, yi) = o(εi). One then easily checks that yi ∈M\Si,

dg

(
yi, Si

)
ui

(
yi

)(qi−2)/2
= Di

(
1 + o(1)

) ≥ 3Di

4
,

dg

(
yi, x

)
ui(x)(qi−2)/2 ≤

 max
s∈[0,R]

s

1 +
s2

n(n − 2)

(1 + o(1)
) ≤ Di

4

(3.23)

in Byi
(Rui(yi)−(qi−2)/2), and

∫
Byi

(Rui(yi)−(qi−2)/2)
u

qi

i dvg ≥ (1 + o(1)
)( ∫

B0(R)
Ū2�

dx

)
ε

n−2−4/(qi−2)
i

≥ (1 + o(1)
)( ∫

B0(R)
Ū2�

dx

)
≥ 1

Di

(3.24)

for i large. We thus constructed a local maximum of ui satisfying the conclusion of the

claim withDi and Si. This is a contradiction. Claim 3.2 is proved. �

Claim 3.3. There exist D1 > 0 and D2 > 0 such that for all i large enough, there exist

N(i) ∈ N
� andN(i) local maxima of ui, x1,i, . . . , xN(i),i such that

dg

(
xα,i, xβ,i

)
ui

(
xα,i

)(qi−2)/2 ≥ D1 ∀α,β = 1, . . . ,N(i), α �= β,(
min

α=1,...,N(i)
dg

(
xα,i, x

))
ui(x)(qi−2)/2 ≤ D2

(3.25)

for all i large and all x ∈M. �

Proof of Claim 3.3. We fix R > 0. We let D0 > 2R and i0 ∈ N be given by Claim 3.2. We fix

i ≥ i0 large enough such that

(
max

M
ui

)(qi−2)/2

≥ D0. (3.26)

Note that this is always possible thanks to (3.1). For (x1, . . . , xk), k ∈ N, a family of local

maxima of ui, we consider the following assertions:
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(Pk)

Bxα

(
Rui

(
xα

)−(qi−2)/2
)
∩ Bxβ

(
Rui

(
xβ

)−(qi−2)/2
)

= ∅

∀α,β = 1, . . . , k, α �= β;
(3.27)

∫
Bxα (Rui(xα)−(qi−2)/2)

u
qi

i dvg ≥ 1

D0
∀α = 1, . . . , k; (3.28)

dg

(
xα, x

)
ui(x)(qi−2)/2 ≤ D0

4
in Bxα

(
2Rui

(
xα

)−(qi−2)/2
)

∀α = 1, . . . , k.

(3.29)

We say that (Pk) holds for ui if there exists a family (x1, . . . , xk) of local maxima of ui

such that the above assertions (3.27), (3.28), and (3.29) hold for this family.

We note first that (P1) holds for (ui). This is a consequence of Claim 3.2: thanks

to (3.26), we can apply Claim 3.2 with Si = ∅. Let k ≥ 1 be such that (Pk) holds for some

family (x1, . . . , xk) of local maxima of ui. Then either (Pk+1) holds for ui or

dg

(
x,

k⋃
α=1

Bxα

(
Rui

(
xα

)−(qi−2)/2
))
ui(x)(qi−2)/2 ≤ D0 inM. (3.30)

We now prove (3.30) For that purpose, we assume that

dg

(
y,

k⋃
α=1

Bxα

(
Rui

(
xα

)−(qi−2)/2
))
ui(y)(qi−2)/2 ≥ D0 (3.31)

for some y ∈M. Thus we can apply Claim 3.2 with

Si =

k⋃
α=1

Bxα

(
Rui

(
xα

)−(qi−2)/2
)
. (3.32)

This gives a local maximum xk+1 ∈M\Si of ui which satisfies

dg

(
xk+1, Si

)
ui

(
xk+1

)(qi−2)/2 ≥ 3D0

4
,

dg

(
xk+1, x

)
ui(x)(qi−2)/2 ≤ D0

4
in Bxk+1

(
2Rui

(
xk+1

)−(qi−2)/2
)
,∫

Bxk+1
(Rui(xk+1)−(qi−2)/2)

u
qi

i dvg ≥ 1

C0
.

(3.33)

We prove that assertions (3.27), (3.28), and (3.29) of (Pk+1) hold for the family (x1, . . . ,

xk+1). Assertions (3.28) and (3.29) hold for x1, . . . , xk thanks to (Pk), while they also hold
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for xk+1 thanks to (3.33). Thanks to assertion (3.27), it just remains to prove that for any

α ∈ {1, . . . , k},

Bxα

(
Rui

(
xα

)−(qi−2)/2
)⋂

Bxk+1

(
Rui

(
xk+1

)−(qi−2)/2
)

= ∅. (3.34)

Thanks to (3.33), sinceD0 > 2R, we have

dg

(
xk+1, Si

) ≥ 3

2
Rui

(
xk+1

)−(qi−2)/2
. (3.35)

Definition (3.32) of Si then clearly gives the equation we were looking for. This ends the

proof of (3.30).

We apply now (3.30) by induction of k. The process will necessarily stop for some

k = N(i) since assertions (3.27) and (3.29) imply that

∫
M

u
qi

i dvg ≥ k

D0
. (3.36)

Then we have the existence of (x1, . . . , xN(i)), a family of local maxima of ui, such that

assertions (3.27), (3.28), and (3.29) of (PN(i)) hold for this family and that

dg

(
x,

k⋃
α=1

Bxα

(
Rui

(
xα

)−(qi−2)/2
))
ui(x)(qi−2)/2 ≤ D0 inM. (3.37)

Thanks to assertion (3.27) of (PN(i)), we have that

dg

(
xα, xβ

)
ui

(
xα

)(qi−2)/2 ≥ R ∀α,β = 1, . . . ,N(i), α �= β. (3.38)

Let x ∈M. If

x ∈
N(i)⋃
α=1

Bxα

(
2Rui

(
xα

)−(qi−2)/2
)
, (3.39)

then

(
min

α=1,...,N(i)
dg

(
xα, x

))
ui(x)(qi−2)/2≤D0

4
(3.40)

thanks to assertion (3.29) of (PN(i)). If

x �∈
N(i)⋃
α=1

Bxα

(
2Rui

(
xα

)−(qi−2)/2
)
, (3.41)
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we let β ∈ {1, . . . ,N(i)} be such that

dg

(
x,

k⋃
α=1

Bxα

(
Rui

(
xα

)−(qi−2)/2
))

= dg

(
x, Bxβ

(
Rui

(
xβ

)−(qi−2)/2
))

(3.42)

and we write(
min

α=1,...,N(i)
dg

(
xα, x

))
ui(x)(qi−2)/2 ≤ dg

(
xβ, x

)
ui(x)(qi−2)/2

≤ 2dg

(
x, Bxβ

(
Rui

(
xβ

)−(qi−2)/2
))
ui(x)(qi−2)/2

≤ 2D0

(3.43)

thanks to (3.37). Thus we have proved that Claim 3.3 holds with D1 = R and D2 = 2D0.

�

Now let di > 0 be defined by

di = min
α,β=1,...,N(i), α�=β

dg

(
xα,i, xβ,i

)
. (3.44)

Claim 3.5 will assert that di ≥ d > 0, that is, that the concentration points are isolated.

The next claim is a technical step toward this result.

Claim 3.4. We let 1 ≤ αi ≤ N(i). If

diui

(
xαi,i

)(qi−2)/2
= O(1), (3.45)

then

di

(
sup

Bxαi,i
(di/2)

ui

)(qi−2)/2

= O(1). (3.46)
�

Proof of Claim 3.4. Up to reordering the xi,α’s, we may assume that αi = 1 for all i. We

assume that

diui

(
x1,i

)(qi−2)/2
= O(1). (3.47)

We let yi ∈ Bx1,i
(di/2) be such that

sup
Bx1,i

(di/2)
ui = ui

(
yi

)
(3.48)
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and assume by contradiction that

diui

(
yi

)(qi−2)/2 −→ +∞ as i −→ +∞. (3.49)

By Claim 3.3 and thanks to definition (3.44) of di, we have that

dg

(
x1,i, yi

)
ui

(
yi

)(qi−2)/2 ≤ D2 (3.50)

so that

dg

(
x1,i, yi

)
= o
(
di

)
. (3.51)

We set

µ̂i = ui

(
yi

)−(qi−2)/2
(3.52)

and we set for x ∈ B0(δµ̂−1
i ) the Euclidean ball of center 0 and radius δµ̂−1

i , with δ > 0

small fixed,

ûi(x) = µ̂
2/(qi−2)
i ui

(
expyi

(
µ̂ix
))
,

ĝi(x) = exp�
yi
g
(
µ̂ix
)
,

âi(x) = ai

(
expyi

(
µ̂ix
))
.

(3.53)

Since µ̂i → 0 as i → +∞ (thanks to (3.49)), we obtain that ĝi → ξ in C2
loc(R

n) as i → +∞.

Thanks to (3.48), (3.49), and (3.51), we also have that (ûi) is uniformly bounded in all

compact subsets of R
n. Since ûi verifies

∆ĝi
ûi + µ̂2

i âiûi = û
qi−1
i in B0

(
δµ̂−1

i

)
, (3.54)

we get by standard elliptic theory that ûi → Û in C2
loc(R

n) as i → +∞, where Û is a

solution of ∆ξÛ = Û2�−1 in R
n, Û(0) = 1. Then Û > 0 in R

n. By (3.50), ((1/µ̂i) exp−1
yi

(x1,i))

is a bounded sequence of points in R
n so that

lim inf
i→+∞

ui

(
x1,i

)
ui

(
yi

) > 0. (3.55)

This is in contradiction with (3.47) and (3.49). This proves Claim 3.4. �

Claim 3.5. There exists d > 0 such that di ≥ d for all i. �
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Proof of Claim 3.5. Up to reordering the xα,i’s, we may assume that

di = dg

(
x1,i, x2,i

)
. (3.56)

We assume by contradiction that

di −→ 0 as i −→ +∞. (3.57)

We set for x ∈ B0(δd−1
i ) the Euclidean ball of center 0 and radius δd−1

i , with δ > 0 small

fixed,

ǔi(x) = d
2/(qi−2)
i ui

(
expx1,i

(
dix
))
,

ǧi(x) = exp�
x1,i

g
(
dix
)
,

ǎi(x) = ai

(
expx1,i

(
dix
))
.

(3.58)

By (3.57), we have that ǧi → ξ in C2
loc(R

n) as i → +∞. Independently, we have that ǔi

verifies

∆ǧi
ǔi + d2

i ǎiǔi = ǔ
qi−1
i in B0

(
δd−1

i

)
. (3.59)

We let

x̌2,i =
1

di
exp−1

x1,i

(
x2,i

)
(3.60)

so that |x̌2,i| = 1. Up to a subsequence, x̌2,i → x̌2 as i → +∞. For R > 0, we set

ŠR,i =

{
x̌α,i =

1

di
exp−1

x1,i

(
xα,i

)
, α = 1, . . . ,N(i) : xα,i ∈ Bx1,i

(
Rdi

)}
. (3.61)

Thanks to the definition of di and to (3.56), we have that, up to a subsequence,

ŠR,i −→ ŠR as i −→ +∞, (3.62)

with ŠR a finite set which contains 0 and x̌2. Also let

Š =
⋃

R>0

ŠR. (3.63)

We assume that

there exists βi = 1, . . . ,N(i) such that


dg

(
x1,i, xβi,i

)
= O

(
di

)
,

ǔi

(
xβi,i

)
= O(1).

(3.64)
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We claim that

(3.64) =⇒ (
ǔi

)
is uniformly bounded in all compact subsets of R

n. (3.65)

In order to prove (3.65), we first note that, for a sequence αi = 1, . . . ,N(i) such that

dg(x1,i, xαi,i) = O(di), two situations can occur: either ǔi(x̌αi,i) is bounded and then,

thanks to Claim 3.4, (ǔi) is uniformly bounded in Bx̌αi,i
(1/2) or ǔi(x̌αi,i) → +∞ as i →

+∞ and then we can apply the results of Section 2 with xi = xαi,i and ρi = di/6 thanks to

Claim 3.3. Assume now that for someαi =1, . . . ,N(i), dg(x1,i, xαi,i)=O(di) and ǔi(x̌αi,i) →
+∞ as i → +∞. Applying Claim 2.7 with xi = xαi,i and ρi = di/6, we obtain that ǔi →
0 in C2

loc(Bx̌(1/9)\{x̌}), where x̌ = limi→+∞ x̌αi,i. We let R > 2|x̌|. We know, thanks to

Claim 3.3 and to definition (3.44) of di, that (ǔi) is uniformly bounded in all compact

subsets of B0(R)\ŠR. But, thanks to (3.64) and to Claim 3.4, (ǔi) is uniformly bounded on

By̌(1/2), where y̌ = limi→+∞ x̌βi,i. We thus obtain, thanks to Harnack’s inequality, that

ǔi(x̌βi,i) → 0 as i → +∞. This is in contradiction with the first assertion of Claim 3.3.

Thus we have proved that, for allαi = 1, . . . ,N(i) such that dg(x1,i, xαi,i) = O(di), ǔi(x̌αi,i)

= O(1). Thanks to Claim 3.4, this proves that (ǔi) is uniformly bounded in a neighbor-

hood of ŠR for all R > 0. Thanks to Claim 3.3, (ǔi) is also uniformly bounded in all com-

pact subsets of B0(R)\ŠR for all R > 0. This clearly proves (3.65). Then we can pass to

the limit in equation (3.59) thanks to standard elliptic theory: this gives that ǔi → Ǔ in

C2
loc(R

n) as i → +∞ with ∆ξǓ = Ǔ2�−1. Thanks to the first part of Claim 3.3, we know

that Ǔ(0) ≥ C
(n−2)/2
1 . Thanks to Claim 3.3, we also know that Ǔ possesses at least two

local maxima, namely 0 and x̌2. By the work of Caffarelli, Gidas, and Spruck [5], this is

impossible. Thus (3.64) leads to a contradiction.

Thus, for any αi = 1, . . . ,N(i) such that dg(x1,i, xαi,i) = O(di), ǔi(x̌αi,i) → +∞ as

i → +∞ and we can apply the results of Section 2 with xi = xαi,i and ρi = di/6. Applying,

in particular, Claim 2.7, we obtain that

ǔi(0)ǔi −→ Ȟ in C2
loc

(
R

n\Š
)

as i −→ +∞, (3.66)

where Š is as in (3.63) and

Ȟ =
λ1

|x|n−2
+

λ2∣∣x − x̌2

∣∣n−2
+ ȟ (3.67)

with ȟ a nonnegative harmonic function in R
n\{Š\{0, x̌2}}, λ1 > 0, and λ2 > 0. Then we can

write that

Ȟ =
λ1

|x|n−2
+A + o(1) (3.68)
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around 0 with A > 0. This is easily checked to be in contradiction with the last part of

Claim 2.7. Thus this second situation also leads to a contradiction. This clearly proves

that (3.57) is absurd. Claim 3.5 is proved. �

Now, that we know that di ≥ d > 0, we are ready to end the proof of the theorem.

The arguments are really similar to those used at the end of [7]. We recall them briefly

here. Up to a subsequence, we may assume thatN(i) = N for all i. We let (xα,i)α=1,...,N be

the family of local maxima of (ui) given by Claim 3.3. Let α ∈ {1, . . . ,N}. If ui(xα,i) = O(1),

then, by Claim 3.4, (ui) is uniformly bounded in Bxα,i
(δ/2). In this case, the assertions

of Claim 3.3 continue to hold even if we remove xα,i from the family {xβ,i}β=1,...,N, up to

changing the constantsD1 andD2. Thus we may assume without loss of generality that

ui

(
xα,i

) −→ +∞ as i −→ +∞ ∀α ∈ {1, . . . ,N}. (3.69)

Applying the results of Section 2 successively to xi = xα,i, α = 1, . . . ,N, with ρi = d/6, we

get then, thanks to standard elliptic theory, that there exists C > 1 such that

1

C
ui

(
x1,α

) ≤ ui

(
xα,i

) ≤ Cui

(
x1,α

) ∀α = 1, . . . ,N. (3.70)

Setting

xα = lim
i→+∞ xα,i for α = 1, . . . ,N, (3.71)

we get, by standard elliptic theory and thanks to the results of Section 2, that, after pass-

ing to a subsequence,

ui

(
x1,i

)
ui −→ H in C2

loc

(
M\

{
x1, . . . , xN

})
as i −→ +∞, (3.72)

where

H(x) =
(n − 2)ωn−1(
n(n − 2)

)(n+2)/2

N∑
α=1

λαG
(
xα, x

)
(3.73)

with

λα = lim
i→+∞

(
ui

(
x1,i

)
ui

(
xα,i

)). (3.74)

Here, G is the Green function of the limit operator ∆g + a∞ . Note also that λα > 0 for all

α = 1, . . . ,N thanks to (3.70). Now we let ϕ ∈ C∞ (M), ϕ > 0, be such that

ϕ
(
x1

)
= 0, ∇ϕ(x1

)
= 0, (3.75)
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and such that the metric h = ϕ−4/(n−2)g verifies

Rich

(
x1

)
= 0. (3.76)

It is always possible to find such a ϕ (see, e.g., [16]). We setwi = uiϕ so thatwi verifies

∆hwi + αiwi = ϕ2�−qiw
qi−1
i inM, (3.77)

with

αi = cnSh +
(
ai − cnSg

)
ϕ2�−2. (3.78)

Thanks to Claim 2.1 applied to ui (with xi = x1,i and ρi = d/8), it is clear that there exists

y1,i ∈M, a local maximum ofwi which satisfies

dg

(
x1,i, y1,i

)
ui

(
x1,i

)2/(qi−2)
= o(1). (3.79)

It is then easily checked that we can apply the results of Section 2 towi with xi = y1,i and

ρi = d/8. Note that (3.78) implies that αi ≤ cnSh since ai ≤ cnSg. Applying Claim 2.6, we

obtain, in particular, that

M∞ (δ)µn−2
i ≤ −

(
(n − 2)2

4n
K−n/2

n + o(1)
)(
2� − qi

)
+ Cδµn−2

i + o
(
µn−2

i

)
+
(
αi

(
xi

)
− cnSh

(
xi

))

(
64ω3 + o(1)

)
µ2

i ln
1

µi
, if n = 4,(

16K
−5/2
5 + o(1)

)
µ2

i , if n = 5,

(3.80)

wherewi(y1,i) = µ
−2/(qi−2)
i and

M∞ (δ) =
1

2

∫
∂Bx1

(δ)
(∇f, ν)h

∣∣∇(ϕH)
∣∣2
h
dσh

+
1

2

∫
∂Bx1

(δ)
(∇f, ν)hα∞ (ϕH)2dσh

−
n − 2

2

∫
∂Bx1

(δ)

(∇(ϕH), ν
)
h
ϕHdσh

−

∫
∂Bx1

(δ)

(∇(ϕH),∇f)
h

(∇(ϕH), ν
)
h
dσh

+
1

2

∫
∂Bx1

(δ)

(
∆hf + n

)(∇(ϕH), ν
)
h
ϕHdσh

−
1

4

∫
∂Bx1

(δ)

(∇(∆hf
)
, ν
)
h
(ϕH)2dσh.

(3.81)
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Note that we used Claim 2.3, (3.72), and (3.75) to estimateMi given by (2.149). In (3.80),

C is some constant independent of i and δ. In (3.81), x1 = limi→+∞ x1,i and f(x) =

(1/2)dh(x1, x)2. Estimate (3.80) clearly implies that

α∞(x1

)
= cnSh

(
x1

)
, (3.82)

where

α∞ = cnSh +
(
a∞ − cnSg

)
ϕ2�−2. (3.83)

Using qi ≤ 2� and αi ≤ cnSg, we also get from (3.80) that

lim sup
δ→0

M∞ (δ) ≤ 0. (3.84)

We write that, in a neighborhood of x1,

ϕ(x)H(x) =
(n − 2)ωn−1(
n(n − 2)

)(n+2)/2
G̃
(
x1, x

)
+ β(x), (3.85)

where G̃ is the Green function of∆h+α∞ andβ,C2, in a neighborhood of x1, verifies∆hβ+

α∞β = 0 and β(x1) ≥ 0. Note that β(x1) = 0 if and only if x1,i is the only concentration

point of ui. We Let Ḡ be the Green function of ∆h + cnSh. Then

G̃ = Ḡ + β̃, (3.86)

where β̃ verifies that

∆hβ̃ + α∞ β̃ =
(
cnSh − α∞)Ḡ (3.87)

in M in the sense of distributions. Since α∞ ≤ cnSh and α∞ (x1) = cnSh(x1) with (2.1),

(3.78), and (3.82), we have by standard properties of Green’s functions that

0 ≤ (cnSh − α∞)Ḡ ≤ C



dh

(
x1, x

)−1
, if n = 3,

1, if n = 4,

dh

(
x1, x

)−1
, if n = 5,

(3.88)

so that β̃ ∈ C0,η(M) ∩ C2(M\{x1}) for all 0 < η < 1. It comes also from standard elliptic

estimates that

δ sup
∂Bx1

(δ)

∣∣∇β̃∣∣
h
−→ 0 as δ −→ 0. (3.89)
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At last, the maximum principle gives that either β̃ > 0 in M or β̃ ≡ 0 in M, and α∞ ≡
cnSh inM.

Thanks to the choice of hwe made, see (3.76), we know that (see [16]), in a neigh-

borhood of x,

Ḡ
(
x1, x

)
=

1

(n − 2)ωn−1dg

(
x1, x

)n−2
+ β̄(x) (3.90)

for some β̄ ∈ C0,η(M) ∩ C2(M\{x1}) for all 0 < η < 1 verifying that

δ sup
∂Bx1

(δ)

∣∣∇β̄∣∣
h
−→ 0 as δ −→ 0. (3.91)

Moreover, we have that β̄(x1) > 0 except if (M,h) is conformally diffeomorphic to the

standard sphere (Sn, can).

This result comes from the positive mass theorem and has been proved by [25,

26]. Summarizing, we arrive at

ϕH =
1(

n(n − 2)
)(n+2)/2

1

dh

(
x1, x

)n−2
+ R0(x) (3.92)

in a neighborhood of x1 with R0 = (n− 2)ωn−1(β̃+ β̄)+β. It is then rather easily checked,

thanks to the estimates on β, β̃, and β̄ above, that

lim
δ→0

M∞ (δ) =
1(

n(n − 2)
)(n+2)/2

(n − 2)2

2
ωn−1R0

(
x1

)
. (3.93)

Thanks to the above discussion, we have R0(x1) > 0 except if there is only one concen-

tration point, a∞ ≡ cnSg, and (M,g) is conformally diffeomorphic to (Sn, can). This ends

the proof of the theorem thanks to (3.84).

Remark 3.6. Note that the above proof gives the compactness of sequences (ui) of solu-

tions of equation (1.7) in all dimensions if a∞ < cnSg in (1.6). In other words, when the

limit of the linear term is strictly below the linear term of the Yamabe equation, compact-

ness holds for (1.7). This can be seen by noticing that the leading term in the formula of

Claim 2.6 will always be the term involving the scalar curvature in this case. And this is

true whatever the dimension is. With this remark, it is easily checked that the subsequent

arguments of the proof continue to hold in all dimensions and lead to a contradiction.
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Appendix

A Pohozaev identity

We prove the Pohozaev identity we repeatedly used in this paper. We let (M,g) be a com-

plete Riemannian manifold and let Ω be a compact subset of M with smooth boundary.

We let x0 ∈ M and R > 0 be such that Ω ⊂ Bx0
(R) and we assume that u is a smooth

positive function such that

∆gu + au = ψuq−1 (A.1)

in Bx0
(R) for some a ∈ C∞ (Bx0

(R)) and some 2 < q ≤ 2�. At last, we let f ∈ C∞ (Bx0
(R)).

Integrating by parts, we have that

∫
Ω

(∇u,∇f)g∆gudvg

=

∫
Ω

(∇((∇u,∇f)g

)
,∇u)

g
dvg −

∫
∂Ω

(∇u,∇f)g(∇u, ν)gdσg,

(A.2)

where ν denotes the unit outer normal of ∂Ω and dσg is the induced Riemannian measure

on ∂Ω. Noting that

(∇((∇u,∇f)g

)
,∇u)

g
= ∇2f(∇u,∇u) +

1

2

(∇f,∇(|∇u|2g
))

g
, (A.3)

we obtain by integration by parts that

∫
Ω

(∇u,∇f)g∆gudvg =
1

2

∫
Ω

∆gf|∇u|2gdvg +

∫
Ω

∇2f(∇u,∇u)dvg

+
1

2

∫
∂Ω

(∇f, ν)g|∇u|2gdσg −

∫
∂Ω

(∇u,∇f)g(∇u, ν)gdσg

(A.4)

so that

∫
Ω

(∇u,∇f)g∆gudvg +
n − 2

2

∫
Ω

|∇u|2gdvg

=
1

2

∫
∂Ω

(∇f, ν)g|∇u|2gdσg −

∫
∂Ω

(∇u,∇f)g(∇u, ν)gdσg

+
1

2

∫
Ω

(
∆gf + n

)
|∇u|2gdvg +

∫
Ω

(∇2f − g
)
(∇u,∇u)dvg.

(A.5)



1188 Olivier Druet

Now, we use the equation satisfied by u to get that

∫
Ω

|∇u|2gdvg =

∫
∂Ω

u(∇u, ν)gdσg +

∫
Ω

ψuqdvg −

∫
Ω

au2dvg,∫
Ω

(∇u,∇f)g∆gudvg =

∫
Ω

∆gf

(
1

q
ψuq −

1

2
au2

)
dvg +

1

2

∫
Ω

(∇f,∇a)gu
2dvg

−
1

q

∫
Ω

(∇f,∇ψ)gu
qdvg+

∫
∂Ω

(∇f, ν)g

(
1

q
ψuq−

1

2
au2

)
dσg,

(A.6)

which gives that

∫
Ω

(∇u,∇f)g∆gudvg +
n − 2

2

∫
Ω

|∇u|2gdvg

=

(
n − 2

2
−
n

q

) ∫
Ω

ψuqdvg −
1

q

∫
Ω

(∇f,∇ψ)gu
qdvg

+

∫
∂Ω

(∇f, ν)g

(
1

q
ψuq −

1

2
au2

)
dσg +

n − 2

2

∫
∂Ω

(∇u, ν)gudσg

+

∫
Ω

(
∆gf + n

)( 1
q
ψuq −

1

2
au2

)
dvg +

∫
Ω

(
a +

1

2
(∇a,∇f)g

)
u2dvg.

(A.7)

Thus we have obtained that

∫
B

(
a +

1

2
(∇a,∇f)g

)
u2dvg +

(
n − 2

2
−
n

q

) ∫
Ω

ψuqdvg

=

∫
Ω

(
∆gf + n

)(1
2
|∇u|2g +

1

2
au2 −

1

q
ψuq

)
dvg +

1

q

∫
Ω

(∇f,∇ψ)gu
qdvg

+

∫
Ω

(∇2f − g
)
(∇u,∇u)dvg −

∫
∂Ω

(∇f, ν)g

(
1

q
ψuq −

1

2
au2

)
dσg

+
1

2

∫
∂Ω

(∇f, ν)g|∇u|2gdσg −

∫
∂Ω

(∇u,∇f)g(∇u, ν)gdσg

−
n − 2

2

∫
∂Ω

u(∇u, ν)gdσg.

(A.8)

Integrating by parts and using the equation satisfied by u, we have that

∫
Ω

(
∆gf + n

)
|∇u|2gdvg

=

∫
Ω

(∇((∆gf + n
)
u
)
,∇u)

g
dvg −

1

2

∫
Ω

(∇(∆gf
)
,∇u2

)
g
dvg

=

∫
∂Ω

(
∆gf + n

)
(∇u, ν)gudσg −

1

2

∫
∂Ω

(∇(∆gf
)
, ν
)
g
u2dσg

+

∫
Ω

(
∆gf + n

)(
ψuq − au2

)
dvg −

1

2

∫
Ω

(
∆2

gf
)
u2dvg.

(A.9)
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Thus we get that

∫
Ω

(
∆gf + n

)(1
2
|∇u|2g +

1

2
au2 −

1

q
ψuq

)
dvg

=

(
1

2
−
1

q

) ∫
Ω

(
∆gf + n

)
ψuqdvg −

1

4

∫
Ω

(
∆2

gf
)
u2dvg

+
1

2

∫
∂Ω

(
∆gf + n

)
(∇u, ν)gudσg −

1

4

∫
∂Ω

(∇(∆gf
)
, ν
)
g
u2dσg.

(A.10)

This finally leads to the following:

∫
Ω

(
a +

1

2
(∇f,∇a)g +

1

4

(
∆2

g

)
f

)
u2dvg +

(
n − 2

2
−
n

q

) ∫
Ω

ψuqdvg

=

(
1

2
−
1

q

) ∫
Ω

(
∆gf + n

)
ψuqdvg +

∫
Ω

(∇2f − g
)
(∇u,∇u)dvg

+
1

q

∫
Ω

(∇f,∇ψ)gu
qdvg +A,

(A.11)

where A is the boundary term:

A =
1

2

∫
∂Ω

(∇f, ν)g|∇u|2gdσg −

∫
∂Ω

(∇u,∇f)g(∇u, ν)gdσg

−
n − 2

2

∫
∂Ω

(∇u, ν)gudσg −

∫
∂Ω

(∇f, ν)g

(
1

q
ψuq −

1

2
au2

)
dσg

+
1

2

∫
∂Ω

(
∆gf + n

)
(∇u, ν)gudσg −

1

4

∫
∂Ω

(∇(∆gf
)
, ν
)
g
u2dσg.

(A.12)

This is the relation we referred to as the Pohozaev identity, with test function f, applied

inΩ to a function uwhich verifies the above equation.
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