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COMPACTNESS OF COMPOSITION OPERATORS ON BMOA

WAYNE SMITH

(Communicated by Albert Baernstein II)

Abstract. A function theoretic characterization is given of when a compo-
sition operator is compact on BMOA, the space of analytic functions on the
unit disk having radial limits that are of bounded mean oscillation on the unit
circle. When the symbol of the composition operator is univalent, compactness
on BMOA is shown to be equivalent to compactness on the Bloch space, and
a characterization in terms of the geometry of the image of the disk under the
symbol of the operator results.

§1. Introduction

Let ϕ : D → D be an analytic self-map of the unit disk D = {z : |z| < 1}. The
composition operator Cϕ induced by such a ϕ is the linear map on the space of
all analytic functions on the unit disk defined by Cϕ(f) = f ◦ ϕ. A fundamental
problem concerning composition operators is to relate function theoretic properties
of ϕ to operator theoretic properties of the restrictions of Cϕ to various Banach
spaces of analytic functions. This problem is addressed here for the Banach space
BMOA of analytic functions on D that are of bounded mean oscillation on the unit
circle.

There are many ways to define BMOA; see Chapter 6 of [G]. For the purposes
of this paper, it will be defined as a Möbius invariant version of the Hardy space
H2; see [Ba]. Recall that an analytic function f on D belongs to Hp, 0 < p < ∞,
provided

‖f‖pHp = lim
r→1

1
2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

For a ∈ D, let σa(z) = (a − z)/(1 − az), so that σa is an automorphism of D that
exchanges the points 0 and a. Then f ∈ H2 belongs to BMOA provided

‖f‖∗ = sup
a∈D

‖f ◦ σa − f(a)‖H2 <∞.

It is clear that ‖ · ‖∗ does not distinguish between functions differing by a constant,
but with the norm ‖f‖BMOA = |f(0)|+ ‖f‖∗, BMOA is a Banach space.

The main goal of this paper is to provide a function theoretic characterization
of when Cϕ is compact on BMOA. Recall that an operator is said to be compact
provided it takes bounded sets to sets with compact closure. P. S. Bourdon, J.
A. Cima and A. L. Matheson have recently shown that compactness of Cϕ on
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2716 WAYNE SMITH

BMOA is equivalent to a little-oh Carleson measure condition holding uniformly
for all functions in the unit ball of BMOA; see Theorem 3.1 in [BCM]. M. Tjani
[Tj, Theorem 3.11] had previously shown that a similar condition is equivalent
to compactness of Cϕ on the closed subspace VMOA (defined below) of BMOA.
The characterization of compactness given below involves only the symbol ϕ of the
operator.

Some background is required before we can state our characterization of com-
pactness of Cϕ on BMOA. It is clear that if σ is any automorphism of D and f ∈
BMOA, then ‖f ◦ σ‖∗ = ‖f‖∗, and so σ induces a bounded composition operator
on BMOA. It is well known that in fact ‖f ◦ϕ‖∗ ≤ ‖f‖∗ for every analytic self-map
ϕ of D, and so Cϕ is bounded on BMOA. This appears in section 4 of [St], where
it was shown to be a consequence of Littlewood’s Subordination Principle; see also
[AFP, Theorem 12] for another proof. To motivate our characterization of com-
pactness of Cϕ on BMOA, we sketch a slightly different proof that uses a formula
for the H2 norm of Cψ(f) from [Sh1].

The Nevanlinna counting function of an analytic self-map ψ of D is defined by

N(ψ,w) =
∑

z∈ψ−1{w}
log(1/|z|), w ∈ D \ {ψ(0)}.

In [Sh1], J. H. Shapiro used N(ψ, ·) to give a formula for the essential norm of
Cψ on H2. The importance of N(ψ, ·) in the study of Cψ on H2 comes from the
fundamental formula

‖f ◦ ψ − f(ψ(0))‖2
H2 = 2

∫
D
|f ′(w)|2N(ψ,w)dA(w),(1.1)

where dA = dx dy/π is two-dimensional Lebesgue measure on D, normalized so that
A(D) = 1; see Corollary 4.4 in [Sh1]. That Cϕ is always bounded on BMOA can
be seen from this and what is known as Littlewood’s Inequality (see, for example,
[Sh1, p. 380]), which asserts that

N(ψ,w) ≤ log(1/|σψ(0)(w)|) = N(σψ(0), w), w ∈ D \ {ψ(0)},
for every analytic self-map ψ of D. Then, for f ∈ BMOA, we have

‖f ◦ ϕ‖2
∗ = sup

a∈D
‖f ◦ ϕ ◦ σa − f(ϕ(a))‖2

H2 = 2 sup
a∈D

∫
D
|f ′(w)|2N(ϕ ◦ σa, w)dA(w).

(1.2)

Since N(ϕ◦σa, w) ≤ N(σϕ(a), w) by Littlewood’s Inequality, using (1.1) again gives
that

‖f ◦ ϕ‖2
∗ ≤ sup

a∈D
‖f ◦ σϕ(a) − f(ϕ(a))‖2

H2 ≤ ‖f‖2
∗.(1.3)

A general principle in operator theory is that if a big-oh condition such as Lit-
tlewood’s Inequality determines boundedness of an operator, then a corresponding
little-oh condition should determine compactness. As will be seen in Lemma 2.1,
Theorem 1.1 (i) below can be viewed as a conformally invariant little-oh version of
Littlewood’s Inequality. It will be used to control ‖f ◦ ϕ ◦ σa − f(ϕ(a))‖H2 when
|ϕ(a)| is near 1.

A second condition is required to handle points a with |ϕ(a)| bounded away from
1. For ϕ an analytic self-map of D and t ∈ (0, 1), define

E(ϕ, t) = {eiθ : |ϕ(eiθ)| > t}.
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Here ϕ(eiθ) represents the radial limit of ϕ at eiθ, which exists for almost all θ.
We use m(A) to denote the Lebesgue one-dimensional measure of a measurable set
A ⊂ ∂D.

Theorem 1.1. Let ϕ be an analytic self-map of D. Then Cϕ is compact on BMOA
if and only if

(i) lim
|ϕ(a)|→1

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0

and, for all R < 1,

(ii) lim
t→1

sup
{a:|ϕ(a)|≤R}

m(σa(E(ϕ, t))) = 0.

Bourdon, Cima and Matheson [BCM, Theorem 4.3] have shown that compact-
ness of Cϕ on BMOA implies compactness on H2. Hence Theorem 1.1 (i) and (ii)
imply that N(ϕ,w) = o(log(1/|w|)) as |w| → 1, since this is Shapiro’s criterion for
Cϕ to be compact on H2; see [Sh1, Theorem 2.3]. I do not know a direct proof of
this.

Condition (ii) can be motivated by taking the viewpoint of Cϕ as a mapping of
BMOA into H2. Since BMOA is a Möbius invariant version of H2, it is reasonable
to expect that a Möbius invariant version of compactness criteria for Cϕ : BMOA
→ H2 will be relevant to the compactness problem for Cϕ : BMOA → BMOA.
This was the viewpoint taken by the author and R. Zhao in studying composition
operators from the Bloch space to various Möbius invariant spaces in [SZ].
Cϕ : BMOA → Hp is always bounded, 0 < p < ∞, since Cϕ is bounded on

BMOA and BMOA ⊂ Hp. It is not, however, always compact. This can be seen by
taking ϕ(z) = z, so that Cϕ is the identity operator, and considering fn(z) = zn.
Then ‖fn‖∗ ≤ ‖fn‖H2 = 1 but Cϕfn has no convergent subsequence in Hp, and so
Cϕ : BMOA → Hp is not compact.

For ϕ an analytic self-map of D, define

E(ϕ) = {eiθ : |ϕ(eiθ)| = 1}.
H. Jarchow has recently shown that the compactness of Cϕ : Hp → Hq, where
0 < q < p ≤ ∞, is equivalent to m(E(ϕ)) = 0; see Theorem 1 in [J]. It is easy to
see that the same condition determines compactness of Cϕ : BMOA → Hp.

Proposition 1.2. Let ϕ be an analytic self-map of D and let 0 < p < ∞. Then
Cϕ : BMOA → Hp is compact if and only if m(E(ϕ)) = 0.

For completeness, we sketch the proof. First suppose that m(E(ϕ)) = 0. Then
Cϕ : H2p → Hp is compact by Jarchow’s theorem, and compactness of Cϕ : BMOA
→ Hp follows from the continuity of the inclusion BMOA ⊂ H2p. The proof of the
converse is essentially the same as that in [J]. If Cϕ : BMOA → Hp is compact,
then

m(E(ϕ)) = lim
n→∞ ‖ϕn‖pHp = 0,

since Cϕz
n = ϕn and the sequence {zn} is bounded and tends weakly to 0 in

BMOA. This completes the sketch of the proof of the proposition.
Note that if m(E(ϕ)) = 0, then limt→1m(E(ϕ, t)) = 0, and so Theorem 1.1 (ii)

can be viewed as a Möbius invariant version of the compactness criteria for Cϕ :
BMOA → H2.
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We say f ∈ BMOA has vanishing mean oscillation, and write f ∈ VMOA if

lim
|a|→1

‖f ◦ σa − f(a)‖H2 = 0.

VMOA is the closure in BMOA of the analytic polynomials, and is a Banach space
with the norm it inherits from BMOA. Also, BMOA = VMOA∗∗; see Chapter 6 of
[G].

A characterization of when Cϕ is compact on VMOA is an easy corollary to
Theorem 1.1. Indeed, if ϕ ∈ VMOA, then CϕP ∈ VMOA for every polynomial P ,
and so Cϕ maps VMOA into itself. Hence Cϕ will be compact on VMOA if it is
compact as an operator on BMOA. Conversely, if Cϕ is compact on VMOA, then
ϕ, being the image of the identity function under Cϕ, is in VMOA. Further, it is
easily checked that the second adjoint of Cϕ, viewed as an operator on VMOA, is
Cϕ on BMOA. Hence Cϕ is also compact on BMOA. The following corollary results
from these observations and Theorem 1.1.

Corollary 1.3. Let ϕ be an analytic self-map of D. Then Cϕ is compact on VMOA
if and only if ϕ ∈ VMOA and Theorem 1.1 (i) and (ii) hold.

Background is given in the next section, and then Theorem 1.1 will be proved
in §3. Finally, it is known that if Cϕ is compact on BMOA, then it is also compact
on the Bloch space B. In §4 we will specialize to the symbol ϕ being univalent, and
show that in this case the converse holds. Thus, when ϕ is univalent, a geometric
characterization of the compactness of Cϕ on B due to K. Madigan and A. Matheson
applies to BMOA as well.

Finally, I thank Paul Bourdon for his careful reading of and comments on a
preliminary version of this paper.

§2. Background

In the proof of Theorem 1.1, we will need to use a refinement of the estimates
for the counting functions implicit in Theorem 1.1 (i). This refinement is based
on the fact that while N(ψ, ·) need not be subharmonic, it is an increasing limit
of subharmonic functions. For 0 < r < 1, define the partial Nevanlinna counting
function for ψ by

Nr(ψ,w) =
∑

z∈ψ−1{w}
log+(r/|z|), w ∈ D \ {ψ(0)},

where log+ x = max{logx, 0}, so only z with |z| < r contribute to the sum. Then
Nr(ψ, ·) is subharmonic in D \ {ψ(0)}, and N(ψ,w) = limr→1Nr(ψ,w). See §4 of
[Sh1] or Chapter 10 of [Sh2] for these facts about the partial Nevanlinna counting
functions.

Lemma 2.1. Let ψ be an analytic self-map of D with ψ(0) = 0. If

sup
0<|w|<1

|w|2N(ψ,w) < ε,

then

N(ψ,w) ≤


log(1/|w|), 0 < |w| < ε1/4;
ε1/2, ε1/4 ≤ |w| < 1

2 ;
4ε

log 2 log(1/|w|), 1
2 ≤ |w| < 1.
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Proof. The estimate for ε1/4 ≤ |w| < 1
2 is immediate from the assumption, and for

0 < |w| < ε1/4, it is just Littlewood’s Inequality. In the remaining case, for each
r ∈ (0, 1) we have that Nr(ψ,w) is subharmonic on D \ {0}. By assumption this
function is bounded above by 4ε when |w| = 1/2, and by Littlewood’s Inequality
tends uniformly to 0 as |w| → 1. Since it is subharmonic, it is bounded above by
the harmonic function on the annulus {w : 1/2 < |w| < 1} having these boundary
values, and so

N(ψ,w) = lim
r→1

Nr(ψ,w) ≤ 4ε
log 2

log
1
|w| ,

1
2
< |w| < 1.

The next lemma shows how the counting functions transform under composition.
It is a simple consequence of the definitions and the fact that σ−1

a = σa.

Lemma 2.2 ([Sh2, p.192]). Let ψ be an analytic self-map of D and let a ∈ D.
Then

N(ψ, σa(w)) = N(σa ◦ ψ,w), w ∈ D.

A final fact required in the proof of Theorem 1.1 is that Nevanlinna counting
functions satisfy a submean value property.

Lemma 2.3 ([ESS, §2], [Sh1, §4]). Let ψ be an analytic self-map of D. If ψ(0) 6= 0
and 0 < r < |ψ(0)|, then

N(ψ, 0) ≤ 1
r2

∫
rD
N(ψ,w)dA(w).

§3. Proof of Theorem 1.1

Proof of necessity. Suppose that (i) fails. Then there exists ε > 0, and an, wn ∈ D
such that |ϕ(an)| → 1 and

|wn|2N(σϕ(an) ◦ ϕ ◦ σan , wn) ≥ ε.

Since N(σϕ(an) ◦ ϕ ◦ σan , wn) ≤ log(1/|wn|), it follows that there exists R such
that |wn| ≤ R < 1, for all n. Thus |bn| → 1, where bn = σϕ(an)(wn). Define
fn(z) = (1 − |bn|2)/(1− bnz). Then {fn} converges uniformly on compact subsets
of D to 0 and it is easy to check that ‖fn‖BMOA ≤ C. Throughout the paper C
will be used to denote an absolute constant whose value may change from line to
line. If Cϕ were compact on BMOA, it would follow that Cϕfn → 0 in BMOA.
From (1.2),

‖fn ◦ ϕ‖2
∗ ≥ ‖fn ◦ ϕ ◦ σan − fn(ϕ(an))‖2

H2 = 2
∫

D
|f ′n|2N(ϕ ◦ σan , w)dA(w).

We now introduce the notation

D(a, r) = {z ∈ D : |σa(z)| < r}
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for the pseudohyperbolic disk with center a and radius r, where r ∈ (0, 1) and
a ∈ D. For n sufficiently large, 2|f ′n(z)|2 = 2|bn|2|σ′bn

(z)|2 ≥ |σ′bn
(z)|2, and so

‖fn ◦ ϕ‖2
∗ ≥

∫
D(bn,|wn|/2)

|σ′bn
|2N(σbn ◦ ϕ ◦ σan , σbn(w))dA(w)

=
∫
D(0,|wn|/2)

N(σbn ◦ ϕ ◦ σan , z)dA(z).

The inequality used the identity N(ϕ ◦ σan , w) = N(σbn ◦ ϕ ◦ σan , σbn(w)) from
Lemma 2.2, and the next step was just the change of variable z = σbn(w).

Note that |σbn ◦ ϕ ◦ σan(0)| = |σϕ(an)(bn)| = |wn|, and so Lemma 2.3 gives

‖fn ◦ ϕ‖2
∗ ≥

1
4
|wn|2N(σbn ◦ ϕ ◦ σan , 0) =

1
4
|wn|2N(σϕ(an) ◦ ϕ ◦ σan , wn) ≥ ε

4
.

For the equality, we used Lemma 2.2 again and the definition of bn. Hence Cϕfn 9 0
in BMOA, and it follows that (i) is necessary for Cϕ to be compact on BMOA.

To prove the necessity of (ii), suppose there exist R < 1, ε > 0, tn → 1,
and an ∈ D such that |ϕ(an)| ≤ R and m(σan(E(ϕ, tn))) ≥ ε. By passing to
a subsequence if necessary, we may assume that tnn → 1. Let fn(z) = zn, so
that ‖fn‖∗ ≤ ‖zn‖H2 = 1 and the sequence {fn} converges uniformly on compact
subsets of D to 0. Once again, it suffices to show that Cϕfn 9 0 in BMOA. Now,

‖fn ◦ ϕ‖2
∗ ≥ ‖fn ◦ ϕ ◦ σan − fn(ϕ(an))‖2

H2

=
1
2π

∫ π

−π
|ϕn ◦ σan(eiθ)|2dθ − |ϕn(an)|2

≥ 1
2π

∫
σan (E(ϕ,tn))

|ϕn ◦ σan(eiθ)|2dθ −R2n

≥ t2nn ε−R2n.

The last step used that σan is its own inverse. Hence lim infn→∞ ‖fn ◦ ϕ‖2
∗ ≥ ε,

and it follows that (ii) is necessary for Cϕ to be compact on BMOA.

Proof of sufficiency. Suppose (i) and (ii) hold, ‖fn‖BMOA ≤ 1 and {fn} converges
to 0 uniformly on compact subsets of D. Since the unit ball in BMOA is a normal
family, compactness of Cϕ on BMOA will follow by a standard argument from
showing that fn ◦ ϕ→ 0 in BMOA as n→∞. Let ε ∈ (0, 1) and use (i) to choose
R such that

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) < ε(3.1)

whenever |ϕ(a)| > R.
First consider a ∈ D such that |ϕ(a)| ≤ R. Use (ii) to choose t0 ∈ (0, 1) such

that m(σa(E(ϕ, t0))) < ε for all such a. Then there exists N(ε) such that n ≥ N(ε)
implies ∫

∂D\σa(E(ϕ,t0))

|fn ◦ ϕ ◦ σa(eiθ)− fn(ϕ(a))|2dθ < ε,

since |ϕ ◦ σa| ≤ t0 a.e. on the set of integration, and {fn} converges to 0 uniformly
on t0D. Also, from the John-Nirenberg Theorem (see [G, p. 233]) and (1.3) we
have

‖fn ◦ ϕ ◦ σa − fn(ϕ(a))‖2
H4 ≤ C‖fn ◦ ϕ ◦ σa‖2

∗ ≤ C‖fn‖2
∗ ≤ C.
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Hence we get from the Schwarz inequality that∫
σa(E(ϕ,t0))

|fn ◦ ϕ ◦ σa(eiθ)− fn(ϕ(a))|2dθ

≤ ‖fn ◦ ϕ ◦ σa(eiθ)− fn(ϕ(a))‖2
H4m(σa(E(ϕ, t0)))1/2 < Cε1/2.

Combining these estimates, we see that if |ϕ(a)| ≤ R and n ≥ N(ε), then

‖fn ◦ ϕ ◦ σa − fn(ϕ(a))‖2
H2 < ε+ Cε1/2.(3.2)

Next, consider a ∈ D such that |ϕ(a)| > R. From (3.1) and Lemma 2.1,

N(ϕ ◦ σa, w) = N(σϕ(a) ◦ ϕ ◦ σa, σϕ(a)(w))

≤ 4ε
log 2

log
1

|σϕ(a)(w)| =
4ε

log 2
N(σϕ(a), w),

whenever 1/2 < |σϕ(a)(w)| < 1 or equivalently w ∈ D\D(ϕ(a), 1/2). (Recall that
D(z, r) is the pseudohyperbolic disk with center z and radius r.) Hence

∫
D\D(ϕ(a),1/2)

|f ′n(w)|2N(ϕ ◦ σa, w)dA(w) ≤ Cε

∫
|f ′n(w)|2N(σϕ(a), w)dA(w)

≤ Cε‖fn‖2
∗ ≤ Cε.

(3.3)

Now we use that |f ′n(w)| ≤ C(1− |w|2)−1, since ‖fn‖B ≤ C‖fn‖BMOA ≤ C; see
for example [P, p. 172]. Here ‖fn‖B = |fn(0)| + supw∈D(1 − |w|2)|f ′n(w)| is the
Bloch norm of fn. This gives∫

D(ϕ(a),1/2)

|f ′n(w)|2N(ϕ ◦ σa, w)dA(w)

≤ C

∫
D(ϕ(a),1/2)

N(ϕ ◦ σa, w)
dA(w)

(1 − |w|2)2

= C

∫
D(0,1/2)

N(σϕ(a) ◦ ϕ ◦ σa, z) dA(z)
(1− |z|2)2 .

(3.4)

The equality above used the change of variable w = σa(z), the conformal invari-
ance of the measure (1 − |w|2)−2dA(w), and the identity N(σϕ(a) ◦ ϕ ◦ σa, z) =
N(ϕ ◦ σa, σϕ(a)(z)) from Lemma 2.2. To estimate the last integral above, we first
use (3.1) and Lemma 2.1 to get that∫

ε1/4D
N(σϕ(a) ◦ ϕ ◦ σa, z)dA(z) ≤ C

∫ ε1/4

0

r log
1
r
dr ≤ Cε1/4,

and ∫
D(0,1/2)\ε1/4D

N(σϕ(a) ◦ ϕ ◦ σa, z)dA(z) ≤ ε1/2A(D) = ε1/2.

Since 1− |z|2 is comparable to 1 for z ∈ D(0, 1/2), from (3.4) we conclude that∫
D(ϕ(a),1/2)

|f ′n(w)|2N(ϕ ◦ σa, w)dA(w) ≤ Cε1/4 + Cε1/2 ≤ Cε1/4.

Together with (1.1) and (3.3), this shows that

‖fn ◦ ϕ ◦ σa − fn(ϕ(a))‖2
H2 = 2

∫
|f ′n(w)|2N(ϕ ◦ σa, w)dA(w) ≤ Cε1/4,
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2722 WAYNE SMITH

whenever |ϕ(a)| > R. With (3.2), this gives

‖fn ◦ ϕ‖2
∗ = sup

a∈D
‖fn ◦ ϕ ◦ σa − fn(ϕ(a))‖2

H2 ≤ Cε1/4,

whenever n ≥ N(ε). Since we also have that fn(ϕ(0)) → 0, this proves fn ◦ ϕ→ 0
in BMOA, and the proof is complete.

§4. Geometric characterization

In this section we specialize to the case that the symbol ϕ of the composition
operator is univalent. Compactness of Cϕ on BMOA in this case turns out to be
equivalent to Cϕ being compact on the Bloch space. Recall that the Bloch space B
consists of the analytic functions on D satisfying

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| <∞,

and that the little Bloch space B0 is the closed subspace of functions f ∈ B such
that

lim
|z|→1

(1 − |z|2)|f ′(z)| = 0.

It is well known that BMOA ⊂ B and that ‖f‖B ≤ C‖f‖BMOA; see for example
[P, p.172].

K. Madigan and A. Matheson have recently proved that Cϕ is compact on B if
and only if

lim
|ϕ(z)|→1

(1− |z|2)|ϕ′(z)|
1− |ϕ(z)|2 = 0,(4.1)

and Cϕ is compact on B0 if and only if

lim
|z|→1

(1− |z|2)|ϕ′(z)|
1− |ϕ(z)|2 = 0;(4.2)

see [MM]. The proof in [MM] that (4.1) is necessary for compactness of Cϕ on
B involved consideration of univalent test functions in B. A univalent function in
B is also in BMOA, and has comparable norm there; see for example section 6
of [ALXZ]. Thus it is a corollary to the proof in [MM] that if Cϕ is compact on
BMOA, then it also is compact on B. A different proof of this has been given by
M. Tjani [Tj, Proposition 3.2].

We say that an analytic self-map ϕ of D belongs to the hyperbolic little Bloch
class, and write ϕ ∈ Bh0 if (4.2) is satisfied by ϕ. In [Sm], the author constructed
inner functions that belong to Bh0 . Since the sequence {zn} converges weakly to
0 in VMOA, an inner function cannot induce a compact composition operator on
VMOA or on BMOA. Thus compactness of Cϕ on these spaces is strictly stronger
than compactness on B0 and on B, respectively. However, when ϕ is univalent, it
turns out to be equivalent.

It is well known that every bounded univalent function is in VMOA, and so by
Corollary 1.3 compactness of Cϕ on BMOA and on VMOA are equivalent when ϕ is
univalent. When ϕ is univalent, conditions (4.1) and (4.2) have a simple geometric
interpretation. We use δΩ(z) to denote the distance from a point z in a region Ω
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to the boundary of Ω, and we set δΩ(z) = 0 for z /∈ Ω. It is an easy consequence of
the Koebe distortion theorem that if ϕ is univalent, then

1
4
(1− |z|2)|ϕ′(z)| ≤ δϕ(D)(ϕ(z)) ≤ (1− |z|2)|ϕ′(z)|;(4.3)

see Corollary 1.4 in [P]. Thus the numerator of the expression in (4.1) and (4.2) is
comparable to δϕ(D)(ϕ(z)), while the denominator is comparable to δD(ϕ(z)). It is
immediate from this that (4.1) and (4.2) are equivalent when ϕ is univalent, and
can be restated as

lim
|w|→1

δϕ(D)(w)
δD(w)

= 0.

This says, in particular, that ϕ(D) can only reach the unit circle through a cusp.

Theorem 4.1. Let ϕ be a univalent self-map of D. Then the following are equiv-
alent:

(1) Cϕ is compact on BMOA;
(2) Cϕ is compact on VMOA;
(3) Cϕ is compact on B;
(4) Cϕ is compact on B0;

(5) lim
|w|→1

δϕ(D)(w)
δD(w)

= 0.

M. Tjani [Tj, Theorem 3.15] has shown that statements (1) through (4) are
equivalent when ϕ is boundedly valent and ϕ(D) is contained in a polygon inscribed
in the unit circle.

Proof. From the discussion above, we know that with ϕ univalent the first two
statements are equivalent and that they imply the last three statements, which we
also know to be equivalent when ϕ is univalent. Thus it suffices to prove that (1) is a
consequence of (3) and (5). We assume that (3) and (5) hold and show that Theorem
1.1 (i) and (ii) then hold. Let 0 < ε < 1/10. For a ∈ D let ψa = σϕ(a) ◦ ϕ ◦ σa. It

is easily checked that |ψ′a(0)| = (1−|a|2)|ϕ′(a)|
1−|ϕ(a)|2 , and so by the equivalence of (3) and

(4.1) there exists R < 1 such that |ϕ(a)| > R implies |ψ′a(0)| < ε. Now assume that
w = ψa(z) and 2ε < |w| < 1. By the Koebe distortion theorem [P, Theorem 1.3],

|w| = |ψa(z)| ≤ |ψ′a(0)|(1− |z|)−2 < ε(1− |z|)−2.

Note also that |z| is bounded away from 0, since (1 − |z|)−2 ≥ |w|/ε > 2, so
log(1/|z|) ≤ C(1− |z|) and

|w|2N(ψa, w) = |w|2 log(1/|z|) ≤ |w|2C(1 − |z|) ≤ Cε1/2, 2ε < |w| < 1.

Next we consider w satisfying 0 < |w| ≤ 2ε. From Littlewood’s Inequality, we have

|w|2N(ψa, w) ≤ |w|2 log(1/|w|) ≤ Cε2 log(1/ε), |w| ≤ 2ε.

Hence |w|2N(ψa, w) < Cε1/2, 0 < |w| < 1, whenever |ϕ(a)| > R, and we have
shown that Theorem 1.1 (i) holds.

The proof that Theorem 1.1 (ii) holds uses the notion of harmonic measure. We
use ω(z, F,G) to denote the harmonic measure of a set F contained in the closure
of a region G, evaluated at a point z ∈ G. Roughly speaking, it is the harmonic
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function on G \ F that is equal to 1 on F and equal to 0 on ∂G \ F . When ϕ is
univalent, conformal invariance of harmonic measure tells us that

m(σa(E(ϕ, t)))/2π = ω(0, σa(E(ϕ, t)),D)

= ω(a,E(ϕ, t),D) = ω(ϕ(a), ∂ϕ(D) \ tD, ϕ(D)).

Thus to prove Theorem 1.1 (ii) holds, we must show that for all R ∈ (0, 1),

lim
t→1

sup
{z0∈ϕ(D):|z0|≤R}

ω(z0, ∂ϕ(D) \ tD, ϕ(D)) = 0.

Fix R ∈ (0, 1) and let η > 0. Next, use (5) to choose t0 ∈ (R, 1) such that
δϕ(D)(w)/δD(w) < η whenever w ∈ ϕ(D) and |w| ≥ t0. If (1 + t0)/2 < t < 1, and
|z0| ≤ R, then the maximum principle for harmonic functions tells us that

ω(z0, ∂ϕ(D) \ tD, ϕ(D)) ≤ sup
{z1∈ϕ(D):|z1|=t0}

ω(z1, ∂ϕ(D) \ tD, ϕ(D)).

There are many ways to see that this is small. We will use the following lemma,
which is an easy consequence of the Carleman-Tsuji estimate for harmonic measure;
see Theorem III.67 in [Ts]. We use the notation B(z, r) = {w : |w− z| < r} for the
Euclidean ball with center z and radius r.

Lemma 4.2. Let Ω be a simply connected domain properly contained in the plane
and let z ∈ Ω. Then there exists an absolute constant C such that, for any M <∞,

ω(z, ∂Ω \B(z,MδΩ(z)),Ω) < C ·M−1/2.

Let η, t0 and t be as above. If z1 ∈ ϕ(D) and |z1| = t0, then

tD ⊃ B(z1, 2−1δD(z1)) ⊃ B(z1, 2−1η−1δϕ(D)(z1)),

and so from Lemma 4.2 we see that

ω(z1, ∂ϕ(D) \ tD, ϕ(D)) ≤ ω(z1, ∂ϕ(D) \B(z1, 2−1η−1δϕ(D)(z1)), ϕ(D)) ≤ Cη1/2.

Hence if |z0| ≤ R and (1 + t0)/2 < t < 1, then

ω(z0, ∂ϕ(D) \ tD, ϕ(D)) < Cη1/2,

and since η > 0 was arbitrary the proof is complete.
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