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Abstract—This paper introduces the COMPANION frame-
work: a Constraint-Optimizing Method for Person–Acceptable
NavigatION. In this framework, human social conventions, such
as personal space and tending to one side of hallways, are
represented as constraints on the robot’s navigation. These
constraints are accounted for at the global planning level. In
this paper, we present the rationale for, and implementation
of, this framework, and we describe the experiments we have
run in simulation to verify that the method produces human-
like behavior in a mobile robot. Our approach is novel in that
it can express an arbitrary number of social conventions and
explicitly accounts for these conventions in the planning phase.

I. INTRODUCTION

Mobile robots that encounter people on a regular basis

must react to them in some way. Traditional robot control

algorithms for path planning and obstacle avoidance treat all

unexpected sensor readings identically: as objects that must

be avoided. For a mobile robot that operates near and with

people, however, these traditional methods may not follow

human social norms. Even a simple convention, such as

passing oncoming people in a hallway on the right, might not

be honored by a naı̈ve obstacle avoidance algorithm. How-

ever, people generally perceive robots—particularly assistive

robots, which must move around people—as human-like,

even when the robots are non-anthropomorphic [1]. When

such robots behave counter to what is socially expected,

breakdowns in human–robot interaction occur (see e.g. [2]).

While some algorithms have been developed to produce

social behavior around people, they typically do so in a local,

reactive way, which may not be human-like.

In contrast, we have developed a framework for navi-

gational algorithms for human–robot physical social inter-

action, such as navigating through crowds or standing in

line. We call our framework COMPANION: a Constraint-

Optimizing Method for Person–Acceptable NavigatION.

COMPANION is a generalized framework for representing

social conventions as components of a constraint optimiza-

tion problem, which is used for path planning and navigation.

Social conventions, such as personal space and tending to the

right, are described as mathematical cost functions that can

be used by a heuristic path planner.

The remainder of this paper addresses related work and

describes the COMPANION framework and implementation.
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We present results from our simulation experiments that

demonstrate that our approach produces socially acceptable

behaviors. Finally, we present our conclusions and future

work.

II. RELATED WORK

Several methods have been developed to allow robots

to navigate around people during specific, typically non-

generalizable, tasks. Some of these tasks include tending

toward the right side of a hallway, particularly when passing

people [3], [4], standing in line [5], and approaching people

to join conversational groups [6]. Museum tour guide robots

are often given the capability to detect and attempt to deal

with people who are blocking their paths on a case-by-case

basis (e.g. [7]). Algorithms developed for the robot Grace

allowed it to navigate a conference hall, ride an elevator, and

stand in line to register for a conference, each as an individual

behavioral module [8]. In contrast, we present a generalized

framework for integrating multiple social conventions into a

robot’s behavior, thus producing natural and understandable

robot movement without programming individual behaviors

for every possible scenario.

Several groups have begun to address questions relat-

ing to planning complete paths around people, rather than

relying on solely reactive behaviors. Shi and colleagues

have developed a method for a robot to change its velocity

near people [9]. While this method begins to address ideas

of planning around people, it does not directly consider

social conventions. In contrast, the Human–Aware Motion

Planner (HAMP) [10] considers the safety and reliability of

the robot’s movement as well as “human comfort,” which

attempts to keep the robot in front of people and visible at

all times. However, the paths that the planner generates may

be very unnatural due to its attempts to stay visible to people.

Our approach is unique in that it is capable of expressing

an arbitrary number of social conventions, it explicitly ac-

counts for these conventions in the planning phase, and it is

intended to produce sociable, human-like paths.

III. DESIGN

Human social conventions are tendencies, rather than strict

rules. For example, people do not always maintain a specific

buffer space around each other (i.e. personal space). Rather,

social conventions are flexible and are followed opportunis-

tically. By modeling social conventions as costs to a path

planner, the robot is able to generate paths that tend to

observe human social conventions, similar to the way that

people tend to follow them.

The 18th IEEE International Symposium on
Robot and Human Interactive Communication
Toyama, Japan, Sept. 27-Oct. 2, 2009

WeA4.2

978-1-4244-5081-7/09/$26.00 ©2009 IEEE 607



A. Global Planner

We believe that, for a robot to navigate in a human-like

manner, it must account for human social conventions not

just at a reactive level, but at a global planning level. To

understand why, consider walking down an office hallway

and encountering someone walking toward you. In the United

States, social convention dictates that you should move to

the right side of the hallway; the other person will do

similarly, thus allowing you to pass each other without

incident. Consider, however, if your goal is an office down

an intersecting hallway to your left. You may now choose

to walk across the hallway in front of the oncoming person,

effectively passing them on the left of the corridor. Doing

so is not anti-social; rather, it represents a personal trade-off

between social conventions and what we might call “task

conventions”—namely, the desire to reach your goal in as

little time as possible.

Thus, to produce human-like navigation in a mobile robot,

the robot must use a global planner that is capable of

optimizing among multiple constraints. For this, we use the

heuristic planner A* with a cost function that accounts for

both task and social conventions. We discuss details of our

planner implementation in Section IV-A.

B. Constraints and Objective Functions

Constraints and objective functions are related mathe-

matical concepts. Constraints limit the allowable range of

a variable (e.g. “x is constrained to be less than 100”).

Constraints may be hard or soft; hard constraints provide

an absolute limit, whereas soft constraints allow a variable

to pass a given limit, but at an associated cost. A cost or

objective function is a mathematical function that can be

optimized—that is, maximized or minimized. Soft constraints

and objective functions can be mathematically transformed

into each other [11]; in the following, we will use the terms

interchangeably.

We have identified the following constraints as particularly

important for social behavior in hallway situations. The

first two, minimizing distance and obstacle avoidance, relate

to the task of traveling to a goal, whereas the remaining

constraints of person avoidance, default velocity, and inertia

all relate to the social aspects of traveling around people.

1) Minimize Distance: When walking to some goal, peo-

ple tend to choose paths that minimize their energy expendi-

ture [12], [13], taking shortcuts when available [14]. That is,

at some level, people plan to take the shortest possible path

to their destination. Thus, one part of the robot’s objective

function should be to minimize the overall path length.

2) Obstacle Avoidance: Obstacle avoidance is comprised

of two components: a hard constraint against trying to pass

through obstacles, and an optimization function to avoid

traveling too close to things.

a) Hard Avoidance: The robot has a hard constraint

against collisions with static obstacles in the world. This is

a standard constraint in robot path-planning algorithms.
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(a) Obstacle buffer cost region for a given map and robot velocity
of 0.5 m/s at θ = π/2 (i.e. upward).
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(b) Obstacle buffer cost region for a given map and robot velocity
of 1.5 m/s at θ = 0 (i.e. to the right).

Fig. 1. Obstacle buffer cost regions for two robot velocities and directions,
shown as contour lines. For a faster speed (1(b)), the cost regions cover
a larger portion of the map. Furthermore, the robot’s direction of travel
influences the width of the cost region, so that the robot incurs a higher
cost when driving directly toward an obstacle rather than along side one.

b) Buffer Space: The robot also attempts to keep a

buffer space around static obstacles. It does this by incur-

ring a cost when it approaches obstacles. The cost varies

according to the robot’s speed and direction. The buffer is

computed in advance, according to obstacles known on the

map. While this cost is primarily for the robot’s safety, it also

mimics human behavior. Figure 1 shows the cost regions for

a given map and various speeds and directions of the robot.

3) Person Avoidance: As with static obstacle avoidance,

the robot’s person avoidance is composed of both a hard

constraint and several objective functions.

a) Hard Avoidance: While certain circumstances may

arise in which a robot may be allowed to contact a person,

the robot must never plan a path that would attempt to

drive through a person. In planning, this can be achieved

by rejecting robot actions that would cause the robot’s path

and the person’s path to intersect.
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Fig. 2. Personal space cost function for a person moving along the positive
Y-axis, with a relative velocity of 1 m/s toward the robot. Greatest cost is
centered over the person at point (0,0). Cost is computed by composing two
Gaussian functions. Below the X-axis, the function is a symmetric Gaussian
with σx = σy = 3v where v is the relative velocity between the person
and robot; above the X-axis, σy = 1.5σx.

b) Personal Space: Personal space, or more broadly

proxemics, is the “bubble” of space that people attempt to

keep around themselves and others [15]–[17]. The shape

of personal space is asymmetric—greatest to the front of a

person—but its exact size is not constant and differs across

cultures and familiarity groups [18]. Furthermore, the size of

personal space can change based on walking speed as well

as other factors [19].

Some attempts have been made to measure the robotic

equivalent of personal space [5], [20]. In general, people

tend to keep a similar space around the robot as if it were

human, so the constraint to our planner should also respect

human-like tendencies.

The personal space constraint can be modeled as two

halves of 2D Gaussian functions: an elliptical function to

the front of the person, and a symmetrical function behind.

The size of the function is dependent on the relative velocity

between the person and the robot. Figure 2 shows the cost

function for a person moving along the positive Y-axis, with a

relative velocity of 1 m/s toward the robot. This cost function

was designed to roughly match the personal space kept in the

United States. If future research indicates that people prefer

a different amount of space between themselves and a robot,

the cost function can be grown or shrunk accordingly.

c) Pass on the Right: When approaching a person who

is traveling in the opposite direction, people typically avoid

collision by moving to one particular side. In the United

States, people tend to move to their right [13]. This tendency

can be modeled by adding a region of increased cost to the

right-hand side of people in the environment. In a head-on

encounter, this will cause the robot to prefer to stay to its

right (the person’s left). Modeling this convention in this way

also accounts for the tendency of people to pass a slower-

moving person headed in the same direction on the left. As

with personal space, the convention to pass on the right can

Fig. 3. Pass-on-the-right cost function for a person moving along the
positive Y-axis, with a relative velocity of 1 m/s toward the robot. The
person is shown at point (0,0). Cost is composed of two Gaussian functions;
to the right of the Y-axis, σx = v and σy = 4v where v is the relative
velocity between the person and robot; to the left of the Y-axis, σx = v
and σy = 0.01.

be modeled as a mixture of Gaussian functions, as shown in

Figure 3.

4) Default Velocity: Just as people tend to keep a set

pace (to minimize energy expenditure) [12], the robot should

prefer to keep a constant velocity. Changes to the default

velocity should result in a cost to the robot, so that, for

example, the robot would have a cost trade-off between

slowing down versus traveling a greater distance around an

obstacle or person. We model this objective as proportional

to the absolute difference between the chosen velocity and

the default velocity; that is, both increases and decreases in

speed incur a cost, and greater changes cause greater costs.

5) Inertia: The inertia constraint is similar to the default

velocity constraint, except that it applies to rotational veloc-

ity. Again, just as people prefer to move in a straight line,

the robot also should prefer to keep the same heading, rather

than turning.

IV. IMPLEMENTATION DETAILS

In implementing our framework, we made several design

decisions regarding the planner, person-tracking method, and

robot navigation. In the following, we provide details of these

decisions.

A. Planning

Robots that operate in the real world need to respond

rapidly to changes in the environment. A plan to the robot’s

goal, generated at the robot’s starting location, quickly be-

comes invalidated as the environment changes or the robot

receives new information. Because sensors are imperfect,

robots navigating in dynamic environments must replan

whenever they receive new sensory data in order to ensure

a safe, low-cost path.

We use the heuristic planner A* [21] to produce paths.

However, A* alone typically cannot run repeatedly in real-

time, which is necessary for a mobile robot operating in the
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real world. While many variants of A* have been developed

to operate in real-time (e.g. D* [22]), none are capable of

replanning for a moving robot amongst dynamic obstacles,

particularly when those obstacles have associated costs (e.g.

personal space). Instead, our planning algorithm makes the

following modifications to a vanilla A* planner: use of a

variable-sized grid, and an objective function that accounts

for multiple constraints.

1) Variable Grid: Rather than planning on a single resolu-

tion grid, our approach uses a variable grid that is composed

of regions of regular grids of decreasing resolution, spanning

outward from the robot’s position. The key idea behind this

method is that, if the search can be done quickly enough,

then the robot can regenerate plans at each timestep (as it

gets new sensor information). Thus, the plan needs to be at a

high resolution only near the robot; a rough path is sufficient

further from the robot because it will generate a new plan

before reaching those areas. The grid changes as the robot

moves, keeping the finest-resolution cells centered over the

robot’s position. This approach is described in detail in [23].

At each grid cell, the robot’s available actions will move

it straight ahead one cell or drive diagonally to the left

or right (ending at 45◦ angles). In addition, each action

can be performed at any of three possible speeds: the

default speed (0.5m/s), 50% faster (0.75m/s), or 25% slower

(0.375m/s). Thus, in total, the robot can choose between nine

possible actions (direction x speed). Though these actions are

discretized, the robot’s navigation algorithm converts them to

continuous arcs, allowing for smooth motion (see Sec. IV-C).

2) Objective Function: Given a set of constraints, they

must be combined into a single objective function for the

A* planner. We combine the various cost functions linearly,

with a weighting for each constraint. That is, the total cost

of some action a can be defined as:

a =
∑

wi · ci(a) (1)

where ci(a) is the action cost of constraint i and wi is the

weight associated with that constraint. Additional constraints

can be added in a similar fashion.

The relative weighting of constraints creates an implicit

trade-off between potentially conflicting conventions. For

example, the desires to pass oncoming people on the right

and to maintain a buffer around obstacles may conflict if an

oncoming person is not walking along the expected side of

a hallway. The planner examines the spaces on either side of

the person and chooses the side with the lower overall cost.

In our current implementation, the constraints of “shortest

distance,” “default velocity,” and “inertia” each have a weight

of wi = 1; the “obstacle buffer,” “personal space,” and “pass

on the right” constraints each have a weight of wi = 3. These
weights were chosen as values that produce relatively human-

like behavior. More on the parameter selection is discussed

in Section VI.

B. Person Tracking

We use a laser-based person-tracking method similar to

that used in [24]. However, we modified the tracker in two

key ways: first, to use a map of the environment, and second,

to better smooth the tracked velocities.

1) Map-based tracking: For this work, we make the

simplifying assumption that the robot has an accurate a priori

map of the environment.1 The robot uses the map to match

a given laser scan to its location in the environment. Non-

matching segments of scans are segmented into person-sized

blobs, which are tracked continuously using particle filters.

2) Velocity smoothing: Because several of the social con-

straints in our framework depend on the person’s direction of

travel, the robot needs to have an accurate estimation of the

person’s velocity. We do this by performing a linear least-

squares regression on the person’s tracked position over time.

In planning, the robot uses the most current estimation of the

person’s velocity to predict his or her future location.

C. Navigation

Plans are generated rapidly, and the robot must be able to

navigate along the paths as they change. The robot follows

the generated plans using the Pure Pursuit path-following

algorithm [25], which guides the robot back onto the path if

it strays or if a new path is planned. Each plan is followed

until a new plan is received. Since the planner typically runs

as fast as new sensor data is received, the navigator will

always have a high-resolution plan to follow.

V. RESULTS

Currently, all of our work has been done in simulation,

using the Carmen simulator2, though we have recently begun

experiments on a physical robot. We simulate a circular robot

with a diameter of 36 cm that uses a Hokuyo URG scan-

ning laser rangefinder. People are generated in simulation

by adding sets of “legs” to the simulated laser readings.

The simulator intentionally adds noise to the readings to

approximate a real-world sensor.

Two experiments were run in simulation to verify the

behavior of the algorithm. Both experiments were run with

the constraint weightings presented in Section III-B.

A. Experiment 1: Different goal locations

The first experiment tested to see how the robot’s behavior

is influenced by the locations of the goal and of a person

in the vicinity. We ran this study as a 3 goal x 3 person

location experiment, as shown in Figure 4. In each trial, the

robot began centered in a hallway. The goal location required

the robot to either turn right or left down an intersecting

hallway, or to continue straight past the intersection. Each

trial simulated one person traveling in a straight line at 0.5m/s

toward the robot, with the person either left, right, or centered

in the hallway. The hallway was wide enough that the robot

could pass on either side of the person in all cases. One

hundred trials were run for each goal–person combination.

The results are summarized in Table I.

1This could be generalized by having the robot run a simultaneous
localization and mapping (SLAM) algorithm.

2Carmen software is available online at
http://carmen.sourceforge.net/home.html.
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Fig. 4. Scenario for the first experiment. The robot (blue circle labeled
“R”) starts centered in the hallway. Each trial selected one of three possible
goals (yellow circles)—right turn (“G1”), left turn (“G2”), or straight ahead
(“G3”)—and one of three person locations (orange circles)—somewhat to
the left (“P1”), somewhat to the right (“P2”), or centered in the hallway
(“P3”). The orange circles mark the approximate locations of the person at
the point when the robot passed; the person’s starting location is not shown.

TABLE I

TIMES THE ROBOT YIELDED TO THE PERSON BY MOVING TO THE RIGHT,

SO THAT THE PERSON PASSED ON THE ROBOT’S LEFT, IN EACH OF THE

SCENARIOS DEPICTED IN FIGURE 4. EACH TRIAL WAS RUN 100 TIMES.

Goal Person’s location in hallway

Location Left (P1) Right (P2) Centered (P3)

Right turn (G1) 85 100 100
Left turn (G2) 7 95 44
Straight (G3) 52 100 91

In general, when encountering an oncoming person, the

robot chose to move to its right, as is socially expected. This

behavior was dominant in six out of the nine conditions. In

the case where the person was traveling on the left (“wrong”)

side of the hallway and the robot needed to turn to its left,

the robot stayed to the left of the hallway to avoid the person.

More ambiguous behavior was seen in the final two cases:

first, where the robot was traveling straight ahead while the

person stayed toward the left of the hallway; and second,

where the robot needed to turn left while the person traveled

down the center of the hallway. In each of these cases, the

robot tended to move right approximately half of the time.

B. Experiment 2: Crossing a person’s path

All of the person–robot encounters in Experiment 1 oc-

curred at approximately the same location in the hallway,

just as the robot began to enter the hallway intersection.

This second experiment was designed to study how the

robot’s behavior changes given different encounter locations.

In particular, we studied the case where the robot must make

a left turn while a person walks toward it, on the right side

of the hallway. This scenario is shown in Figure 5. As in

the previous experiment, each person traveled at 0.5m/s in a

straight line, and each condition was run one hundred times.

The results of this experiment are summarized in Table II.

Fig. 5. Scenario for the second experiment. The robot (blue circle) starts
centered in the hallway, with a goal (yellow circle) around a corner to the
robot’s left. A person travels toward the robot, on the right side of the
hallway. The person’s starting location is manipulated so that the person
passes the robot when it is somewhere within the encounter region, depicted
as an orange rectangle.

TABLE II

TIMES THE ROBOT TURNED ACROSS THE HALLWAY IN FRONT OF THE

PERSON, CROSSING TO THE LEFT SIDE OF THE CORRIDOR, FOR VARIOUS

ENCOUNTER LOCATIONS. EACH RESULT IS OUT OF 100 TRIALS.

Approximate Encounter Times Robot
Location (w.r.t. Robot) Turned in Front

Beyond the goal 99
Even with goal 78
Just before goal 40

Edge of intersection 13
Before intersection 8

As the results show, the person’s position does influence

the robot’s behavior. Even though in all cases the robot had

space to cross in front of the person to pass on the person’s

right (which was the shortest path), the robot typically did so

only when the encounter occurred in the intersection, rather

than within the main hallway. In the hallway section, the

robot more often chose to travel a greater distance in order

to pass the person on the right side of the hallway.

VI. DISCUSSION

As our results show, the robot behaves in a predominantly

“social” manner, passing people on the appropriate side given

the situation. The generated paths differ based on many

factors, including the goal location and the location of the

person. Two sources of noise in the simulation can explain

the trial-to-trial differences within each scenario: first, from

the person tracking, and second, from the localization. Both

of these modules are highly probabilistic, creating uncer-

tainty in both the robot’s and the person’s positions. In

particular, this noise can explain the ambiguous cases in

Experiment 1. In both cases, social conventions allow the

robot to travel on the left or right of the hallway for similar

overall costs. As a result, minor discrepancies in the robot’s

or person’s position can significantly change the path.

While these experiments used one set of constraint

weights, we note that the robot’s behavior can be modified
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by using different weightings. For example, weighting the

“prefer right” cost significantly higher than others will result

in the robot nearly always passing people by moving to

the right side of the hallway, regardless of the robot’s final

goal. Reducing its weight would cause the robot to choose

the shortest path, instead. Tuning the weight parameters

may be difficult; however, since social behavior between

individual people varies widely, we expect that a wide range

of constraint weights will produce acceptable social behavior.

In addition, the constraints presented here show a distinct

North American bias. Personal space is very large, the robot

tends to the right side of hallways, and occasionally cutting in

front of people is acceptable behavior. However, modifying

these behaviors to match other cultural norms is not difficult,

and primarily involves modifying the size (but not basic

shape) of constraints such as personal space and altering the

relative weightings. More research would need to be done to

fully understand what changes would need to be made.

Finally, it is interesting to note that the simulated people

do not behave according to social norms, themselves. Rather,

they travel in straight lines, and do not yield to the robot or

respect its “personal space.” In the real world, this is likely to

be different. In particular, if a person moves out of the way

of the robot, the robot would be able to detect the person’s

movements and react appropriately. Furthermore, we note

that all of our tests presented here simulated exactly one

person; further studies must be done with varying numbers

of people moving around the robot.

VII. CONCLUSIONS AND FUTURE WORKS

We have introduced the COMPANION framework: a

Constraint-Optimizing Method for Person–Acceptable Nav-

igatION. In this framework, social conventions are repre-

sented as constraints on a robot’s navigation, generating

human-like paths. We have described the framework’s ratio-

nale and implementation, and we have presented the results

from several experiments that demonstrate the robot’s social

behaviors.

Currently, our work implements social conventions as if

the robot were a person. While some evidence indicates that

people do treat robots as human-like (see e.g. [2], [20], [24]),

more work needs to be done to fully understand these social

conventions as they relate to robots. To this end, we have

begun testing our system on a physical robot. This will allow

us to begin answering questions of how people expect and

prefer the robot to behave. We expect that appropriate social

behavior will be possible by simply adjusting the parameters

within the COMPANION framework.
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aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874–883, Oct. 2007.

[11] H. P. Williams, Model Building in Mathematical Programming, 4th ed.
New York: Wiley, 1999.

[12] W. A. Sparrow and K. M. Newell, “Metabolic energy expenditure
and the regulation of movement economy,” Psychonomic Bulletin and

Review, vol. 5, no. 2, pp. 173–196, 1998.
[13] S. Bitgood and S. Dukes, “Not another step! Econonmy of movement

and pedestrian choice point behavior in shopping malls,” Environment
and Behavior, vol. 38, no. 3, pp. 394–405, May 2006.

[14] W. H. Whyte, City: Rediscovering the Center. New York: Doubleday,
1988.

[15] E. T. Hall, The Hidden Dimension. New York: Doubleday, 1966.
[16] N. L. Ashton and M. E. Shaw, “Empirical investigations of a reconcep-

tualized personal space,” Bulletin of the Psychonomic Society, vol. 15,
no. 5, pp. 309–312, 1980.

[17] J. R. Aiello, “Human spatial behavior,” in Handbook of Environmental

Psychology, D. Stokols and I. Altman, Eds. New York: John Wiley
& Sons, 1987, vol. 1, pp. 389–504.

[18] J. C. Baxter, “Interpersonal spacing in natural settings,” Sociometry,
vol. 33, no. 4, pp. 444–456, Dec. 1970.
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