
COMPARABILITY, SEPARATIVITY,
AND EXCHANGE RINGS.

E.Pardo∗

Departament de Matemàtiques,
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Abstract
There are several long-standing open problems which ask whether

regular rings, and C∗-algebras of real rank zero, satisfy certain module
cancellation properties. Ara, Goodearl, O’Meara and Pardo recently
observed that both types of rings are exchange rings, and showed that
separative exchange rings have these good cancellation properties, thus
answering the questions affirmatively in the separative case. In this ar-
ticle, we prove that, for any positive integer s, exchange rings satisfying
s-comparability are separative, thus answering the questions affirma-
tively in the s-comparable case.

We also introduce the weaker, more technical, notion of generalized
s-comparability, and show that this condition still implies separativity
for exchange rings. On restricting to directly finite regular rings, we
recover results of Ara, O’Meara and Tyukavkin.

Introduction.

Throughout this article, let s be a positive integer, let R be a ring (asso-
ciative, with 1), and let M be a monoid (commutative, with operation +, and
neutral 0).
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Recall that the monoid M is said to satisfy s-comparability if for any
p, q ∈ M , either p is a summand of sq (in M), or q is a summand of sp.
Also, M is separative if it satisfies the weak cancellation condition that for
all a, b in M , a + a = a + b = b + b only if a = b. (In 1956, Hewitt and
Zuckerman [11] defined M to be separative if its elements were separated by
its characters, and showed that these two conditions were equivalent; see [7,
Theorem 5.59]. Hewitt and Zuckerman further showed that separativity was
a “local” cancellation condition in the sense that it was equivalent to every
archimedean component of M being cancellative; see [7, Theorem 4.13].) We
say that M is strongly separative if for all a, b in M , a+a = a+b only if a = b.

Let V (R) denote the monoid of isomorphism classes of finitely generated
projective right R-modules, with the operation induced by the direct sum.

We say that R satisfies s-comparability, resp. is separative, resp. is strongly
separative, if the monoid V (R) has the corresponding property. The definition
of an “exchange” ring will be recalled in Section 2.

Although the foregoing terminology seems natural, it is not used univer-
sally. In [8, page 275], a (von Neumann) regular ring R is said to satisfy
s-comparability if, for each pair of elements x, y of R, either xR is isomorphic
to a summand of s(yR), or yR is isomorphic to a summand of s(xR); for
regular rings this is equivalent to the above usage, by Proposition 2.1(1) of
[3]. Also, “strongly separative” for rings is referred to as “has Cancellation of
Small Projectives (CSP)” in [1],[3], and, for monoids, as “has Cancellation of
Small Elements (CSE)” in [1]; see [1, Lemma 5.5].

There are many open problems concerning cancellation in V (R). For ex-
ample, if R is regular, or a C∗-algebra of real rank zero, it would be interesting
to know whether the property of being directly finite is inherited by all ma-
trix rings, whether simplicity or direct finiteness implies stable rank one, and
whether the stable rank lies in {1, 2,∞}; see [8], [5]. Ara, Goodearl, O’Meara
and Pardo [1] proved several cancellation results for the class of separative
exchange rings, and observed that regular rings and unital C∗-algebras of real
rank zero are exchange rings, thus solving the foregoing problems in the sep-
arative case. This leaves open the question of whether an exchange ring is
separative.

Comparability concepts have proven to be particularly fruitful in the devel-
opment of the theory of regular rings. The strongest condition, 1-comparability,
in the guise of “the comparability axiom”, was introduced by Goodearl and
Handelman [9], [8, page 80], while s-comparability, and slight generalizations
theoreof, were used by the same authors [10], [8, Chapter 18] to characterize
uniqueness of rank functions on certain regular rings. A regular ring R satisfies
general s-comparability if, for all finitely generated projective right R-modules
P , Q, there exists a central idempotent e in R such that Pe is isomorphic to a
summand of s(Qe), and Q(1− e) is isomorphic to a summand of s(P (1− e)).



General 1-comparability coincides with “general comparability” for regular
rings, by [8, Proposition 8.8], and general comparability is important in the
theories of operator algebras, Baer rings [12, Theorem 57], and regular right
self-injective rings [15], [8, Chapter 9].

Because of the importance of comparability and separativity, it is natural to
examine which comparability hypotheses on exchange rings imply separativity.
Goodearl and Handelman showed that directly finite regular rings satisfying
general 1-comparability have stable rank one [8, Theorem 8.12], so are strongly
separative by Theorem 4.14 of [8]. Ara, O’Meara and Tyukavkin [3] showed
that a directly finite regular ring satisfying s-comparability need not have
stable rank one (thus answering [8, Open Problem 4] in the negative), but is
necessarily strongly separative. This left open the question of what happens
in the case of exchange rings, or even directly infinite regular rings.

The main purpose of this article is to show that an exchange ring is sepa-
rative if it satisfies s-comparability, or even a certain technical generalization
thereof called “generalized s-comparability”, defined and studied in Section
3, and agreeing with the above definition in the case of regular rings. Our
techniques, which are different from those of [3], are monoid-theoretic; some
of the tools needed were developed in [1] and [4].

In outline the paper is as follows. In Section 1, we recall the necessary
definitions, and prove our main monoid-theoretical result, that every conical
refinement monoid satisfying s-comparability is separative. In Section 2, we
deduce that every exchange ring satisfying s-comparability is separative, which
was proved for directly finite regular rings in [3, Theorem 4.6]. In Section 3, we
extend the definition of generalized s-comparability to refinement monoids and
exchange rings, by considering decompositions of refinement monoids, and we
determine the relationship with central idempotents in rings. We then show
that the results of the previous two sections remain valid when the hypotheses
of s-comparability are weakened to generalized s-comparability.

1 Refinement monoids and s-comparability.

In the introduction, we defined the concepts of separativity, strong sep-
arativity, and s-comparability for M , and mentioned their connections with
ring theory. We now develop a certain amount of theory about monoids, and
postpone to the next section the explanation of its relevance to ring theory.

Definitions 1.1 We write M∗ to denote the set of nonzero elements of M .
We say that M is conical if, for all x, y in M , x+y = 0 only when x = y = 0.
An element x of M is said to be directly finite in M , if, for all y ∈ M∗,

x + y 6= x; otherwise, x is directly infinite in M . Also x is said to be stably
finite if nx is directly finite for all positive integers n.



For x ∈ M , the stable rank of x in M , denoted srM(x), is the minimum
positive integer n which has the property that, for all y, z in M such that
nx + y = x + z, there exists w ∈ M such that nx = x + w and y + w = z;
if no positive integer n has this property, the minimum is understood to be
∞. Where there is no ambiguity, we shall write sr(x) in place of srM(x).
This concept was defined in [1, Section 6], and was originally inspired by [17,
Theorem 1.3].

Following [18], for example, we say that M is a refinement monoid if, for
all a, b, c, d in M such that a+ b = c+d, there exist w, x, y, z in M such that
a = w + x, b = y + z, c = w + y and d = x + z. It will usually be convenient
to present this situation in the form of a diagram, as follows:

c d
a w x
b y z

.

If x, y in M , we write x ≤ y, resp. x < y, if there exists z ∈ M , resp.
z ∈ M∗, such that x + z = y. Here ≤ is a translation-invariant pre-order on
M . Notice that x < x if and only if x is directly infinite.

An element u of M is said to be an order-unit for M if, for each x ∈ M ,
there exists a positive integer n such that x ≤ nu.

If u is an order-unit of M , then we call the pair (M,u) a monoid with
order-unit, and we say that (M,u) is directly finite, resp. directly infinite,
resp. stably finite, if u has the corresponding property.

As in [4], we say that (M,u) satisfies weak comparability if, for each x ∈M∗

such that x ≤ u, there exists a positive integer n such that for all y ∈ M ,
ny ≤ u only if y ≤ x.

A subset S of a monoid M is called an order-ideal, or simply an ideal, if S
is a subset of M containing 0, closed under taking sums and summands within
M ; that is, S is a submonoid such that, for all x ∈M and e ∈ S, if x ≤ e then
x ∈ S.

We denote the set of ideals of M by L(M). If M is a refinement monoid
then, by [1, Lemma 2.1], L(M) forms a lattice under sum and intersection.

For any a ∈M , the smallest ideal of M containing a is denoted M(a); thus
M(a) = {x ∈ M | x ≤ na for some positive integer n}, and a is an order-unit
for M(a). It is clear that an ideal S of M is of this form if and only if there
exists an order-unit for S.

We say that M is a simple monoid if M is nonzero, conical, and every
nonzero element is an order-unit, or equivalently, there are exactly two ideals,
M and {0}.

For any ideal S of M , the factor monoid of M modulo S, denoted M/S, is
the monoid with the sum induced on the set of equivalence classes with respect
to the equivalence relation ∼ defined by setting x ∼ y whenever there exist



e, f ∈ S such that x+ e = y + f . The equivalence class of x in S will usually
be denoted [x].

We begin with two useful results about the stable rank. The first is a
monoid-theoretic analogue of Theorem 1.2 of Warfield’s paper [17].

Lemma 1.2 Let M be a monoid, n a positive integer, and x, y, z ∈ M . If
x+ z = y + z, and sr(z) ≤ n, and nz ≤ x, then x = y.

Proof. Since nz ≤ x, there exists w ∈M such that x = nz+w, so nz+ (w+
z) = (nz+w) + z = x+ z = y+ z. As sr(z) ≤ n, there exists v ∈M such that
nz = z + v and w + z + v = y. Thus, x = nz + w = w + z + v = y. 2

Lemma 1.3 If M is a conical refinement monoid, and a an element of M ,
then srM(a) = srM(a)(a).

Proof. It is clear that srM(a)(a) ≤ srM(a). To prove the reverse inequality, we
may assume that n = srM(a)(a) is finite. Suppose we have b, c ∈ M such that
na+ b = a+ c. Applying refinement we obtain

a c
na w y
b x z

.

Notice that w, x and y all lie in M(a). Now na + x = w + y + x = a + y in
M(a). Since n = srM(a)(a), there exists e ∈ M(a) such that na = a + e and
x+ e = y. Thus, b+ e = z+x+ e = z+ y = c, and we have found e ∈M such
that na = a+ e and b+ e = c. This shows srM(a) ≤ n, as desired. 2

We next record two elementary, but useful, results about ideals.

Lemma 1.4 The following hold for any ideal S of M .
(1) M/S is conical.
(2) If M is a refinement monoid, then so are S and M/S.
(3) If M satisfies s-comparability, then so do S and M/S.
(4) If S is an ideal in M , then there is a natural bijection between the set

of ideals of M/S and the set of ideals of M containing S.
(5) If J ⊆ K are ideals of M , then (M/J)/(K/J) ∼= (M/K).

Proof. (1) Suppose x, y are elements of M such that [x] + [y] = 0 in M/S.
This means that there exist e, f ∈ S such that x + y + e = f . Since S is an
ideal, x, y ∈ S, so [x] = [y] = 0. It is straightforward to prove (2), (3), (4) and
(5). 2

Lemma 1.5 If M satisfies s-comparability then L(M) is totally ordered by
inclusion. If, moreover, M is nonzero, and has an order unit, then M has a
unique maximal proper ideal, denoted max(M).



Proof. Suppose that J , K are ideals of M such that J 6⊆ K. Then there
exists x ∈ J \ K, and for all y ∈ K, sy ∈ K so x 6≤ sy. Hence y ≤ sx by
s-comparability, and sx ∈ J , so y ∈ J . Thus K ⊆ J , which shows that L(M)
is totally ordered.

If M is nonzero and has an order unit u, then the union of all ideals of M
not containing u is the unique maximal proper ideal of M . 2

Proposition 1.6 Let M be a conical refinement monoid satisfying s-compa-
rability, and let a and b be elements of M .

(1) If (s+ 1)a ≤ 2b then a ≤ b.
(2) If M(a) ⊂ M(b), then a < b, and, moreover, na < b for each positive

integer n.
(3) If S is an ideal of M , and [a] < [b] in M/S, then a < b.
(4) If a is directly finite in M , then the image of a is directly finite in any

factor monoid of M .

Proof. (1) is proved by the same argument used to prove [3, Lemma 2.2].
(2) Suppose M(a) ⊂ M(b). In particular, b 6∈ M(a), so b 6≤ s(s+ 1)sa, so

by s-comparability, (s+ 1)sa ≤ sb ≤ 2sb. Now, by s applications of (1), a ≤ b,
so a < b.

For every positive integer n, M(na) = M(a) ⊂M(b), so, by the foregoing,
na < b.

(3) The hypotheses imply there exist c ∈ M \ S, and d, e ∈ S such that
a+ c+ d = b+ e. Since M is a refinement monoid we have

a c d
b u v w
e x y z

.

Since d, e ∈ S, we see that x, y, z, w ∈ S. Since v + y = c 6∈ S we see that
v 6∈ S. Thus M(x) ⊆ S and M(v) 6⊆ S. By Lemma 1.5, the ideals of M are
totally ordered, so M(x) ⊆ S ⊂M(v). By (2), x < v, so a = u+ x < u+ v ≤
u+ v + w = b.

(4) is the case b = a of (3). 2

In the foregoing proposition, (1), (2), and (3) are similar to Lemma 2.2,
and Propositions 2.3, 2.5, of [1], respectively, while (4) is similar to Corollary
2.7 of [3].

Proposition 1.7 If (M,u) is a simple conical refinement monoid with or-
der-unit satisfying s-comparability, then the following hold.

(1) M satisfies weak comparability.
(2) If u is directly finite, then M is cancellative.
(3) If u is directly infinite, then M∗ is cancellative, and for all x, y ∈ M∗,

x < y.
(4) M is separative.



Proof. (1) Consider any x ∈ M∗ such that x ≤ u. Since u is an order-unit,
there exists a positive integer k such that u ≤ 2kx. Let n = (s + 1)k. If
y ∈ M such that ny ≤ u, then (s + 1)ky = ny ≤ 2kx, so, by k applications of
Proposition 1.6(1), y ≤ x. This proves weak comparability.

(2), resp. (3), follows immediately from (1) and [14, Corollary 2] (or [4,
Proposition 1.4(a)]), resp. [4, Proposition 1.4(b)].

(4) follows immediately from (2) and (3). 2

We will not need to use part (4) of the foregoing proposition, but include it
out of interest, since it is the “simple” case of the main result of this section.
We now come to a crucial step.

Lemma 1.8 Let M be a conical refinement monoid satisfying s-comparability,
and suppose that a is a nonzero element of M such that (M(a)/max(M(a)), [a])
is directly finite. Then srM(b) ≤ 2 for all b ∈M(a) \max(M(a)).

Proof. Since (M(a)/max(M(a)), [a]) is a simple conical refinement monoid
with directly finite order-unit, and it satisfies s-comparability, M(a)/max(M(a))
is cancellative, by Proposition 1.7(2).

Let b ∈ M(a) \ max(M(a)). Thus M(a) = M(b), so M(b)/max(M(b)) is
cancellative. We want to show that srM(b) ≤ 2, and by Lemma 1.3 it suffices to
show that srM(b)(b) ≤ 2. Suppose we have c, d in M(b) such that 2b+c = b+d.
We want to find e ∈M(b) such that 2b = b+e and c+e = d. By the refinement
condition, we have the following situation:

2b c
b w x
d y z

.

Thus 2b+x = w+y+x = b+y. In the cancellative monoid M(b)/max(M(b)),
2[b]+ [x] = [b]+ [y], so [b]+ [x] = [y]. Since [b] is nonzero, we have [x] < [y], so,
by Proposition 1.6(3), x < y. Hence there exists e ∈M(b) such that x+e = y.
Now b + e = w + x + e = w + y = 2b and c + e = x + z + e = y + z = d, as
desired. 2

We can now prove our main monoid-theoretic result.

Theorem 1.9 If M is a conical refinement monoid satisfying s-comparability,
then M is separative, and, moreover, for all a, b in M , if 2a = a+b then either
M(b) ⊂M(a) or a = b.

Recall from [1, Proposition 6.4] that all elements in a separative monoid
have stable rank 1, 2 or ∞.
Proof. Let a, b be elements of M such that 2a = a + b. Here b ∈ M(a), so
M(b) ⊆ M(a). Thus we assume that M(b) = M(a), and we will show that



a = b. By the refinement condition we have the following situation:

a b
a w x
a y z

.

By Lemma 1.5 one of the ideals M(w), M(y) contains the other, and since the
two rows of this diagram are interchangeable, we may assume that M(w) ⊆
M(y). If w = 0 then x = a = y and a = y + z = x + z = b. Thus we may
assume that M(w) is nonzero.

We divide the argument into four cases, corresponding to the four possibili-
ties as to whether M(w) = M(a) or not, and whether (M(w)/max(M(w)), [w])
is directly finite or not.

(1) Consider the case where M(w) ⊂M(a), so M(w) ⊆ max(M(a)). Since
w+x = a and w+y = a do not lie in max(M(a)) we see that M(w) ⊂M(x) =
M(y) = M(a) = M(b). By Proposition 1.6(2), w ≤ 2w < x, y.

(1a) Consider the subcase where (M(w)/max(M(w)), [w]) is directly infi-
nite. Here 2[w] < [w] in M(w)/max(M(w)) by Proposition 1.7(3), so 2w < w
in M(w) by Proposition 1.6(3). Thus 2w < w < x, y in M , so there exist w′,
x′, y′ in M such that x = w+x′, y = w+y′, w = 2w+w′. Hence x = w+x′ =
2w+w′+ x′ = w+w′+ x = a+w′ = w+ y+w′ = 2w+w′+ y′ = w+ y′ = y.
Hence a = y + z = x+ z = b.

(1b) Consider the subcase where (M(w)/max(M(w)), [w]) is directly finite.
Here srM(w) ≤ 2 by Lemma 1.8, taking a and b of that lemma to be w.
Also x + w = a = y + w, and 2w ≤ x. By Lemma 1.2, x = y. Hence
a = y + z = x+ z = b.

(2) This leaves the case where M(w) = M(a). Here M(w) = M(y) =
M(a) = M(b).

(2a) Consider the subcase where (M(w)/max(M(w)), [w]) is directly infi-
nite. Here 2[w] < [w] < [x], [y] in M(w)/max(M(w)) by Proposition 1.7(3),
so we have 2w < w < x, y in M(w) by Proposition 1.6(3). Exactly as in case
(1a), we deduce that a = b.

(2b) This leaves the subcase where (M(w)/max(M(w)), [w]) is directly
finite. Here we argue as in the proof of Theorem 1.7 of [4]. Since M(w) =
M(y), there exists a positive integer n such that w ≤ ny. By the refinement
condition there exist w1, . . . , wn in M such that w = w1 + · · · + wn and w1 ≤
y, . . . , wn ≤ y. All the wi lie in M(w) and their sum lies in M(w)\max(M(w)),
so some wi0 lies in M(w) \ max(M(w)) which means M(wi0) = M(w). Let
us denote this wi0 by c, so c ≤ w and c ≤ y, so 2c ≤ w + y = a. Also
M(c) = M(w) = M(a), so there exists a positive integer m such that a ≤ mc,
which means that there exists d ∈ M such that a+ d = mc. Hence a+mc =
a+ a+ d = a+ b+ d = b+mc. By Lemma 1.8, taking a and b of that lemma
to be w and c, respectively, we see that srM(c) ≤ 2. Thus a + mc = b + mc,



srM(c) ≤ 2, and 2c ≤ a. By m applications of Lemma 1.2, taking x, y, z of
that Lemma to be a + ic, b + ic, c, respectively, for i = m − 1, . . . , 0, we see
that a = b.

Finally, to see that M is separative, suppose that 2a = a + b = 2b. Then
M(a) = M(b), and, by the foregoing, a = b. 2

Remarks 1.10 (1) To see that the refinement hypothesis cannot be deleted
in Theorem 1.9, consider the commutative monoid presented on two generators
a, b with relations saying that a + a = a + b = b + b. This monoid is conical
and satisfies 2-comparability, but is not separative.

(2) In the terminology introduced by Wehrung [19], M is a separative pos-
itively ordered monoid if, for all a, b in M , if a+ a = a+ b then b ≤ a; this lies
between separativity and strong separativity.

If M is a conical refinement monoid satisfying s-comparability, then we can
show that M is a separative positively ordered monoid, as follows. Suppose
a + a = a + b in M . Theorem 1.9 shows that a = b, or M(b) ⊂ M(a), and in
the latter case, b < a by Proposition 1.6(2).

Let us record the following consequence of Theorem 1.9.

Corollary 1.11 If (M,u) is a conical directly finite refinement monoid satis-
fying s-comparability, then every element of M is directly finite and has stable
rank at most 2, and M is strongly separative.

Proof. By Theorem 1.9, M is separative. Let a, b be elements of M . To
see that a is directly finite, we suppose that a + b = a and proceed as in the
proof of [1, Theorem 7.1] to show that b = 0. Thus, there exists a positive
integer n such that a + c = nu, so b + nu = b + a + c = a + c = nu, and thus
b+u+(n−1)u = u+(n−1)u. A classical result of Hewitt and Zuckerman [11],
reproduced in [1, Lemma 3.1], states that since b+ u, u are order-units in the
separative monoid M , the summand (n− 1)u can be cancelled, so b + u = u.
Since u is directly finite, b = 0, as desired.

Since a is directly finite in M(a), if a is nonzero then [a] is directly finite in
M(a)/max(M(a)), by Proposition 1.6(4). By Lemma 1.8, we see that the
stable rank of every element of M is at most two.

Now suppose that 2a = a + b. We want to show that a = b, and we may
assume that a 6= 0. In M(a)/max(M(a)), 2[a] = [a] + [b], we see that [b] 6= 0
since [a] is directly finite, so M(b) = M(a). By Theorem 1.9, a = b. 2

Remark 1.12 Conical strongly separative refinement monoids need not be
directly finite. For example, let M be the commutative monoid presented on
two generators a, b, with a single relation, saying that a+ b = a. It is not diffi-
cult to check that M is a conical refinement monoid satisfying 1-comparability.
Then M(b) is a free monoid freely generated by b, and M/M(b) is a free monoid



freely generated by [a], and these are strongly separative, so by [1, Theorem
5.7], M is strongly separative.

2 Exchange rings and s-comparability.

Recall that R is a ring, and V (R) is the monoid of isomorphism classes of
finitely generated projective right R-modules. Thus each element of V (R) is
the isomorphism class [P ] of a finitely generated projective right R-module P ,
which is, of course, unique up to isomorphism.

Definition 2.1 We say that R is an exchange ring if, for every right module
AR, and all decompositions

A = B ⊕ C =
⊕
i∈I

Ai

with B ∼= R as right R-modules, there exist submodules A′i ⊆ Ai such that

A = B ⊕
(⊕

i∈I
A′i

)
.

For example, all semiregular rings (i.e., rings which modulo the Jacob-
son radical are regular, and such that idempotents lift modulo the Jacobson
radical), all π-regular rings, and all unital C∗-algebras of real rank zero are
exchange rings; see [17], [16], [1].

We list the monoid-theoretic aspects of V (R) which allow us to translate
Theorem 1.9 into a ring-theoretic result. Clearly, V (R) is conical. If R is an
exchange ring then V (R) is a refinement monoid by [1, Proposition 1.1]. By
[1, Theorem 6.3], if R is an exchange ring and [P ] ∈ V (R), then srV (R)([P ])
agrees with sr(EndR(P )), as defined by Bass; see [17].

Combining the above facts with Theorem 1.9 we get our first main result.

Theorem 2.2 If R is an exchange ring satisfying s-comparability, then R is
separative, so has stable rank 1, 2 or ∞. 2

To see what Corollary 1.11 says about rings, we recall more information
about V (R). Clearly [R] is an order-unit in V (R), and (V (R), [R]) is directly
finite, resp. directly infinite, resp. stably finite, if and only if R has the
corresponding property. If I is an ideal of R, then the set V (I, R) = {[P ] ∈
V (R) | P = PI} is an ideal of V (R). By [1, Proposition 2.2], if R is an
exchange ring, then V (R/I) ∼= V (R)/V (I, R), and, by [1, Theorem 2.3], the
map L(R) −→ L(V (R)), I 7→ V (I, R), is a surjective lattice homomorphism.

Combined with the above, Corollary 1.11 and Proposition 1.6(4) show the
following, which was proved for regular rings in [3, Theorem 4.6].



Theorem 2.3 If R is a directly finite exchange ring satisfying s-comparability,
then R is stably finite, strongly separative, and sr(R) is 1 or 2. Moreover, for
every ideal I of R, R/I is a directly finite exchange ring satisfying s-compara-
bility. 2

Remarks 2.4 (1) It is not known if all exchange rings are separative, but
[2, Example 3.8] gives an example of a regular ring which is not strongly
separative.

(2) It follows from Remark 1.10(2) that if R is an exchange ring satisfying
s-comparability then V (R) is a separative positively ordered monoid; it is not
known if this latter property holds for all exchange rings.

(3) Menal and Moncasi gave an example [13, Example 1] of a regular ring
which satisfies 1-comparability, is strongly separative and directly infinite.

3 Generalized s-comparability.

We now recall the decomposability definitions for monoids.

Definitions 3.1 Let M be a conical monoid. We write M = M1 ⊕M2 if M1

and M2 are submonoids of M such that each element of M can be written,
in a unique way, as the sum of an element of M1 and an element of M2. In
this event, we call the expression M = M1⊕M2 a decomposition; it is a trivial
decomposition if either of the monoids is zero. We denote by π1 : M → M1

the natural projection map, and similarly for π2. They are surjective monoid
morphisms. Moreover, the ideal ker (π1) is M2, M/M2

∼= M1.
If M has a nontrivial decomposition, then we say that M is decomposable,

and it is indecomposable if it is nonzero and not decomposable.

Lemma 3.2 Let M be a conical monoid, and let a and b be elements of M .
If in each indecomposable factor of M the images of a and b are equal, then
a = b.

Proof. Suppose a 6= b, and let C denote the set of those ideals S of M such
that [a] 6= [b] in M/S. Clearly {0} belongs to C. Let L be a nonempty chain
in C, and let L denote the union of the chain L. Then L is an ideal of M . If
L does not belong to C, then [a] = [b] in M/L, and thus there exist elements
e, f ∈ L such that a+e = b+f . Hence, there exists K ∈ L such that e, f ∈ K,
whence [a] = [b] in M/K, a contradiction. Thus, L ∈ C is an upper bound for
L.

By Zorn’s Lemma, C has a maximal element S. Since [a] 6= [b] in M/S,
M/S is not indecomposable, by hypothesis, and is clearly not zero, so it is
decomposable. By Lemma 1.4(4) there exist ideals M1, M2 in M properly



containing S, such that M/S = M1/S⊕M2/S. Since [a] 6= [b] in M/S, we see
that the images of [a] and [b] under the projections to M1/S, or to M2/S, do
not agree, and by symmetry, we may assume the former. Thus, the images of
[a] and [b] in (M/S)/(M2/S) do not agree. By Lemma 1.4(5), the images of a
and b in M/M2 do not agree. Thus M2 ∈ C. This contradicts the maximality
of S. Thus a = b. 2

Corollary 3.3 A conical refinement monoid M is separative, resp. strongly
separative, if and only if every indecomposable factor of M is separative, resp.
strongly separative. 2

To define generalized s-comparability in the context of monoids, we look at
their decompositions.

Definition 3.4 We say that a conical monoid M satisfies generalized s-com-
parability if, for all x, y ∈M , there exists a decomposition M = M1⊕M2 such
that π1(x) ≤ sπ1(y) and π2(y) ≤ sπ2(x).

Notice that ordinary s-comparability corresponds to taking trivial decom-
positions.

Theorem 3.5 Let M be a conical refinement monoid satisfying generalized
s-comparability.

(1) For every ideal S of M , M/S is a conical refinement monoid satisfying
generalized s-comparability.

(2) M is separative
(3) If every indecomposable factor of M is directly finite, then M is strongly

separative.

Proof. (1) By Lemma 1.4(1),(2), it only remains to show that M/S satisfies
generalized s-comparability. But if M = M1 ⊕M2 is any decomposition of
M , then, since S is closed under summands in M , we have a corresponding
decompostion S = S1 ⊕ S2, so generalized s-comparability is easy to check.

(2) By (1), and Theorem 1.9, every indecomposable factor of M is separa-
tive, so by Corollary 3.3, M is separative.

(3) By (1), and Corollary 1.11, every indecomposable factor ofM is strongly
separative, so by Corollary 3.3, M is strongly separative. 2

We now want to translate this to exchange rings, and we need to be able
to relate indecomposable rings to indecomposable monoids. We write J(R) for
the Jacobson radical of R.

Proposition 3.6 If R is an exchange ring, then V (R) ∼= V (R/J(R)), and
V (R) is indecomposable if and only if R/J(R) is indecomposable.



Proof. Let J = J(R). By [1, Proposition 2.2], V (R/J) ∼= V (R)/V (J,R) and,
by Nakayama’s Lemma, V (J,R) = 0. This proves V (R/J) ∼= V (R). Results
of Bass shows that this condition holds in greater generality. Thus, to prove
the second part, we may assume that R is semiprimitive.

Suppose that R is decomposable. Then there is a non-trivial ring decom-
position R = R1 × R2, and it is well-known that V (R) = V (R1) ⊕ V (R2), so
V (R) is decomposable.

Suppose now that V (R) is decomposable, so V (R) = M1 ⊕M2 for some
nonzero ideals Mi of V (R). By [1, Theorem 2.3], since R is semiprimitive, there
exist ideals I1, I2 of R such that Mi = V (Ii, R), I1 ∩ I2 = 0 and I1 + I2 = R .
Hence, R is decomposable. 2

Example 3.7 The ring R =

(
F F
0 F

)
, where F is a field, is an indecom-

posable semiperfect ring, and hence an exchange ring, but R/J(R) ∼= F ×F is
decomposable. Observe that R satisfies generalized 1-comparability, but not
1-comparability.

Definition 3.8 We say that a ring R satisfies generalized s-comparability if
V (R) satisfies generalized s-comparability.

Notice that if R is regular, or even a semiprimitve exchange ring, then, by
the proof of Proposition 3.6, this usage coincides with the usage given in the
introduction.

Theorem 3.9 Let R be an exchange ring, and let I denote the set of those
ideals I of R such that R/I is indecomposable and I ⊇ J(R).

(1) R is separative if and only if R/I is separative for all I ∈ I.
(2) If R satisfies generalized s-comparability, then R is separative, so has

stable rank 1, 2 or ∞.
(3) If R satisfies generalized s-comparability, and R/I is directly finite for

all I ∈ I, then R is strongly separative.

Proof. By [1, Theorem 2.3] and Proposition 3.7, the indecomposable factors
of V (R) are those obtained by factoring out the ideals V (I, R), for I ∈ I. (1)
now follows from Corollary 3.3. (2) and (3) follow from Theorem 3.5 2

Remarks 3.10 (1) Theorem 3.9(2) generalizes Theorem 2.2, and Theorem 3.9
(3) generalizes Theorem 2.3.

(2) The case s = 1 of Theorem 3.9(2) says that any exchange ring satisfying
general comparability is separative, and hence any regular ring satisfying gen-
eral comparability is separative. This was well known for directly finite regular
rings (because they are unit-regular), but this generality is new. In particular,
right (or left) self-injective regular rings, and right (or left) continuous regular



rings are separative, since both types of rings satisfy general comparability;
see [8, Corollary 9.15], [8, Corollary 13.21].

(3) Menal and Moncasi [13, Corollary 7] showed that any regular ring
R satisfying general comparability, has stable range 1, 2 or ∞. Now Theo-
rem 3.9(2) shows that “regular” can be weakened to “exchange”, and “general
comparability” can be weakened to “general s-comparability”.
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