
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000 1389

Comparametric Equations with Practical Applications
in Quantigraphic Image Processing

Steve Mann

Abstract—It is argued that, hidden within the flow of signals
from typical cameras, through image processing, to display media,
is a homomorphic filter. While homomorphic filtering is often de-
sirable, there are some occasions where it is not. Thus, cancellation
of this implicit homomorphic filter is proposed, through the intro-
duction of an antihomomorphic filter. This concept gives rise to
the principle of quantigraphic image processing, wherein it is ar-
gued that most cameras can be modeled as an array of idealized
light meters each linearly responsive to a semi-monotonic function
of the quantity of light received, integrated over a fixed spectral
response profile. This quantity is neither radiometric nor photo-
metric, but, rather, depends only on the spectral response of the
sensor elements in the camera. A particular class of functional
equations, called comparametric equations, is introduced as a basis
for quantigraphic image processing. Comparametric equations are
fundamental to the analysis and processing of multiple images dif-
fering only in exposure. The well-known “gamma correction” of
an image is presented as a simple example of a comparametric
equation, for which it is shown that the underlying quantigraphic
function does not pass through the origin. For this reason it is ar-
gued that exposure adjustment by gamma correction is inherently
flawed, and alternatives are provided. These alternatives, when ap-
plied to a plurality of images that differ only in exposure, give rise
to a new kind of processing in the “amplitude domain” (as opposed
to the time domain or the frequency domain). While the theoret-
ical framework presented in this paper originated within the field
of wearable cybernetics (wearable photographic apparatus) in the
1970s and early 1980s, it is applicable to the processing of images
from nearly all types of modern cameras, wearable or otherwise.
This paper is a much revised draft of a 1992 peer-reviewed but
unpublished report by the author, entitled “Lightspace and the
Wyckoff principle.”

Index Terms—Comparametric equation, comparametric plot,
image processing, lightspace, personal imaging, photography,
quantigraphic imaging, wearable cybernetics, Wyckoff principle.

I. INTRODUCTION

T
HE theory of quantigraphic image processing, with com-

parametric equations, arose out of the field of wearable cy-

bernetics, within the context of so-called mediated reality (MR)

[1] and personal imaging [2]. However, it has potentially much

more widespread applications in image processing than just the

wearable photographic personal assistant for which it was de-

veloped. Accordingly, a general formulation that does not nec-

essarily involve a wearable photographic system will be given.
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II. WYCKOFF PRINCIPLE AND THE RANGE OF LIGHT

The quantity of light falling on an image sensor array, or the

like, is a real valued function of two real variables and

. An image is typically a degraded measurement of this func-

tion, where degredations may be divided into two categories,

those that act on the domain and those that act on the

range . Sampling, aliasing, and blurring act on the domain,

while noise (including quantization noise) and the nonlinear re-

sponse function of the camera act on the range .

Registering and combining multiple pictures of the same sub-

ject matter will often result in an improved image of greater def-

inition. There are four classes of such improvement:

1) increased spatial resolution (domain resolution);

2) increased spatial extent (domain extent);

3) increased tonal fidelity (range resolution);

4) increased dynamic range (range extent).

A. What is Good for the Domain is Good for the Range

The notion of producing a better picture by combining mul-

tiple input pictures has been well-studied with regards to the

domain of these pictures. Horn and Schunk, for example,

provide means of determining optical flow [3], and many re-

searchers have then used this result to spatially register mul-

tiple images in order to provide a single image of increased spa-

tial resolution and increased spatial extent. Subpixel registration

methods such as those proposed by [4] and [5] attempt to in-

crease domain resolution. These methods depend on slight (sub-

pixel) shift from one image to the next. Image compositing (mo-

saicking) methods such as those proposed by [6]–[8] attempt to

increase domain extent. These methods depend on large shifts

from one image to the next.

Methods that are aimed at increasing domain resolution and

domain extent tend to also improve tonal fidelity, to a limited

extent, by virtue of a signal averaging and noise reducing ef-

fect. However, we shall see in what follows, a generalization of

the concept of signal averaging called quantigraphic signal av-

eraging. This generalized signal averaging allows images of dif-

ferent exposure to be combined to further improve upon tonal

fidelity (range resolution), beyond improvements possible by

traditional signal averaging. Moreover, the proposed method-

ology drastically increases dynamic range (range extent). Just

as spatial shifts in the domain improve the image, we will

also see how exposure shifts (shifts in the range, ) can, with the

proposed methodology, result in even greater improvents to the

image.

1057–7149/00$10.00 © 2000 IEEE
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B. Extending Dynamic Range and Improvement of Range

Resolution by Combining Differently Exposed Pictures of the

Same Subject Matter

The principles of quantigraphic image processing and the no-

tion of using differently exposed pictures of the same subject

matter to make a picture composite of extended dynamic range

was inspired by the pioneering work of Charles Wyckoff who

invented so-called “extended response film” [9], [10].

Most everyday scenes have a far greater dynamic range than

can be recorded on a photographic film or electronic imaging

apparatus. However, a set of pictures, that are identical except

for their exposure, collectively show us much more dynamic

range than any single picture from that set, and also allow the

camera’s response function to be estimated, to within a single

constant scalar unknown [6], [11], [12].

A set of functions

(1)

where are scalar constants, is known as a Wyckoff set [6],

[12]. A Wyckoff set of functions, describes a set of im-

ages differing only in exposure, when is the con-

tinuous spatial coordinate of the focal plane of an electronic

imaging array (or piece of film), is the quantity of light falling

on the array (or film), and is the unknown nonlinearity of

the camera’s (or combined film’s and scanner’s) response func-

tion. Generally, is assumed to be a pointwise function, e.g.,

invariant to .

C. Photoquantity

The quantity, , in (1), is called the photoquantigraphic

quantity [13], or just the photoquantity (or photoq) for short.

This quantity is neither radiometric (e.g. neither radiance

nor irradiance) nor photometric (e.g. neither luminance nor

illuminance). Most notably, since the camera will not neces-

sarily have the same spectral response as the human eye, or,

in particular, that of the photopic spectral luminous efficiency

function as determined by the CIE and standardized in 1924,

is neither brightness, lightness, luminance, nor illuminance.

Instead, quantigraphic imaging measures the quantity of light

integrated over the spectral response of the particular camera

system

(2)

where is the actual light falling on the image sensor and

is the spectral sensitivity of an element of the sensor array. It

is assumed that the spectral sensitivity does not vary across the

sensor array.

D. Camera as an Array of Lightmeters

The quantity reads in units that are quantifiable (e.g. lin-

earized or logarithmic), in much the same way that a photo-

graphic light meter measures in quantifiable (linear or loga-

rithmic) units. However, just as the photographic light meter im-

parts to the measurement its own spectral response (e.g., a light

meter using a selenium cell will impart the spectral response

of selenium cells to the measurement) quantigraphic imaging

accepts that there will be a particular spectral response of the

camera, which will define the quantigraphic unit . Each camera

will typically have its own quantigraphic unit. In this way, the

camera may be regarded as an array of lightmeters, each being

responsive to the quantigral

(3)

where is the spatially varying spectral distribution of light

falling on the image sensor.

Thus, varying numbers of photons of lesser or greater energy

(frequency times Planck’s constant) are absorbed by a given el-

ement of the sensor array, and, over the temporal quantigration

time of a single frame in the video sequence (or the exposure

time of a still image) result in the photoquantity given by (3).

In the case of a color camera, or other color processes,

is simply a vector quantity. Color images may arise from as

little as two channels, as in the old bichromatic (orange and

blue) motion pictures, but more typically arise from three chan-

nels, or sometimes more as in the four color offset printing, or

even the high quality Hexachrome printing process. A typical

color camera might, for example, include three channels, e.g.,

, , , where each component is derived

from a separate spectral sensitivity function. Alternatively, an-

other space such as YIQ, YUV, or the like, may be used, in

which, for example, the Y (luminance) channel has full reso-

lution and the U and V channels have reduced (e.g., half in each

linear dimension giving rise to one quarter the number of pixels)

spatial resolution and reduced quantizational definition. In this

paper, the theory will be developed and explained for greyscale

images, where it is understood that most images are color im-

ages, for which the procedures are applied either to the sepa-

rate color channels, or by way of a multichannel quantigrahic

analysis. Thus in both cases (greyscale or color) the continuous

spectral information is lost through conversion to a single

number or to typically three numbers, , , . Although it is

easiest to apply the theory of this paper to color systems having

distinct spectral bands, there is no reason why it cannot also

be applied to more complicated polychromatic, possibly tensor,

quantigrals.

Ordinarily cameras give rise to noise, e.g., there is noise from

the sensor elements and further noise within the camera (or

equivalently noise due to film grain and subsequent scanning of

a film, etc.). Thus a goal of quantigraphic imaging is to attempt

to estimate the photoquantity , in the presence of noise. Since

is destroyed, the best we can do is to estimate . Thus

is the fundamental or “atomic” unit of quantigraphic image pro-

cessing.

E. Accidentally Discovered Compander

Most cameras do not provide an output that varies linearly

with light input. Instead, most cameras contain a dynamic range

compressor, as illustrated in Fig. 1. Historically, the dynamic

range compressor in video cameras arose because it was found

that televisions did not produce a linear response to the video

signal. In particular, it was found that early cathode ray screens

provided a light output approximately equal to voltage raised

to the exponent of 2.5. Rather than build a circuit into every
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Fig. 1. Typical camera and display: light from subject matter passes through lens (typically approximated with simple algebraic projective geometry, e.g. an
idealized “pinhole”) and is quantified in units “q” by a sensor array where noise n is also added, to produce an output which is compressed in dynamic range
by a typically unknown function f . Further noise n is introduced by the camera electronics, including quantization noise if the camera is a digital camera and
compression noise if the camera produces a compressed output such as a JPEG image, giving rise to an output image f (x; y). The apparatus that converts light
rays into f (x; y) is labeled CAMERA. The image f is transmitted or recorded and played back into a DISPLAY system where the dynamic range is expanded
again. Most cathode ray tubes exhibit a nonlinear response to voltage, and this nonlinear response is the expander. The block labeled “expander” is generally a side
effect of the display, and is not usually a separate device. It is depicted as a separate device simply for clarity. Typical print media also exhibit a nonlinear response
that embodies an implicit “expander.”

television to compensate for this nonlinearity, a partial compen-

sation (exponent of 1/2.22) was introduced into the television

camera at much lesser total cost since there were far more tele-

visions than television cameras in those days before widespread

deployment of video surveillance cameras and the like. Indeed,

the original model of television is suggested by the names of

some of the early players: ABC (American Broadcasting Corpo-

ration); NBC (National Broadcasting Corporation); etc.. Names

like this suggest that they envisioned a national infrastructure in

which there would be one or two television cameras and mil-

lions of television receivers.

Through a very fortunate and amazing coincidence, the log-

arithmic response of human visual perception is approximately

the same as the inverse of the response of a television tube (e.g.

human visual response turns out to be approximately the same as

the response of the television camera) [14], [15]. For this reason,

processing done on typical video signals will be on a perceptu-

ally relevant tone scale. Moreover, any quantization on such a

video signal (e.g. quantization into 8 bits) will be close to ideal

in the sense that each step of the quantizer will have associated

with it a roughly equal perceptual change in perceptual units.

Fig. 2 shows plots of the compressor (and expander) used

in video systems together with the corresponding logarithm

, and antilogarithm , plots of the human

visual system and its inverse. (The plots have been normalized

so that the scales match.)

With images in print media, there is a similarly expansive ef-

fect in which the ink from the dots bleeds and spreads out on

the printed paper, such that the mid tones darken in the print. For

this reason printed matter has a nonlinear response curve similar

in shape to that of a cathode ray tube (e.g., the nonlinearity ex-

pands the dynamic range of the printed image). Thus cameras

designed to capture images for display on video screens have

approximately the same kind of built-in dynamic range com-

pression suitable for print media as well.

It is interesting to compare this naturally occurring (and

somewhat accidental) development in video and print media

with the deliberate introduction of companders (compressors

Fig. 2. The power law dynamic range compression implemented inside
most cameras has approximately the same shape of curve as the logarithmic
function, over the range of signals typically used in video and still photography.
Similarly, the power law response of typical cathode ray tubes, as well as
that of typical print media, is quite similar to the antilog function. Therefore,
the act of doing conventional linear filtering operations on images obtained
from typical video cameras, or from still cameras taking pictures intended for
typical print media, is, in effect, homomorphic filtering with an approximately
logarithmic nonlinearity.

and expanders) in audio. Both the accidentally occurring com-

pression and expansion of picture signals and the deliberate

use of logarithmic (or mu-law) compression and expansion of

audio signals serve to allow 8 bits to be used to often encode

these signals in a satisfactory manner. (Without dynamic

range compression, 12 to 16 bits would be needed to obtain

satisfactory reproduction.)

Most still cameras also provide dynamic range compression

built into the camera. For example, the Kodak DCS-420 and

DCS-460 cameras capture internally in 12 bits (per pixel per

color) and then apply dynamic range compression, and finally

output the range-compressed images in 8 bits (per pixel per

color).

F. Why Stockham was Wrong

When video signals are processed, using linear filters, there is

an implicit homomorphic filtering operation on the photoquan-

tity. As should be evident from Fig. 1, operations of storage,
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Fig. 3. The anti-homomorphic filter: Two new elements ^f and ^f have been inserted, as compared to Fig. 1. These are estimates of the the inverse and forward
nonlinear response function of the camera. Estimates are required because the exact nonlinear response of a camera is generally not part of the camera specifications.
(Many camera vendors do not even disclose this information if asked.) Because of noise in the signal f , and also because of noise in the estimate of the camera
nonlinearity f , what we have at the output of ^f is not q, but, rather, an estimate, ~q. This signal is processed using linear filtering, and then the processed result

is passed through the estimated camera response function, ^f , which returns it to a compressed tone scale suitable for viewing on a typical television, computer, or
the like, or for further processing.

transmission, and image processing take place between approx-

imately reciprocal nonlinear functions of dynamic range com-

pression and dynamic range expansion.

Many users of image processing methodology are unaware of

this fact, because there is a common misconception that cam-

eras produce a linear output, and that displays respond linearly.

In fact there is a common misconception that nonlinearities in

cameras and displays arise from defects and poor quality cir-

cuits, when in actual fact these nonlinearities are fortuitously

present in display media and deliberately present in most cam-

eras.

Thus, the effect of processing signals such as in Fig. 1 with

linear filtering is, whether one is aware of it or not, homomor-

phic filtering.

Stockham advocated a kind of homomorphic filtering opera-

tion in which the logarithm of the input image was taken, fol-

lowed by linear filtering (e.g. linear space invariant filters), fol-

lowed by taking the antilogarithm [16].

In essence, what Stockham didn’t appear to realize, is that

such homomorphic filtering is already manifest in simply doing

ordinary linear filtering on ordinary picture signals (whether

from video, film, or otherwise). In particular, the compressor

gives an image (ignoring noise

and ) which has the approximate effect of

(e.g., roughly the same shape of curve, and roughly

the same effect, e.g., to brighten the mid-tones of the image prior

to processing), as shown in Fig. 2. Similarly a typical video dis-

play has the effect of undoing (approximately) this compression,

e.g. darkening the mid-tones of the image after processing with

.

Thus in some sense what Stockham did, without really re-

alizing it, was to apply dynamic range compression to already

range compressed images, then do linear filtering, then apply

dynamic range expansion to images being fed to already expan-

sive display media.

G. On the Value of Doing the Exact Opposite of What

Stockham Advocated

There exist certain kinds of image processing for which it is

preferable to operate linearly on the photoquantity . Such op-

erations include sharpening of an image to undo the effect of the

point spread function (PSF) blur of a lens. It is interesting to note

that many textbooks and papers that describe image restoration

(e.g. deblurring an image) fail to take into account the inherent

nonlinearity deliberately built into most cameras.

What is needed to do this deblurring and other kinds of

quantigraphic image processing is an anti-homomorphic filter.

The manner in which an anti-homomorphic filter is inserted

into the image processing path is shown in Fig. 3.

Consider an image acquired through an imperfect lens that

imparts a blurring to the image. The lens blurs the actual spa-

tiospectral (spatially varying and spectrally varying) quantity of

light , which is the quantity of light falling on the

sensor array just prior to being measured by the sensor array

(4)

This blurred spatiospectral quantity of light is

then photoquantified by the sensor array

(5)

which is just the blurred photoquantity .

Thus the antihomomorphic filter of Fig. 3 can be used to

better undo the effect of lens blur than traditional linear fil-

tering which simply applies linear operations to the signal

and therefore operates homomorphically rather than linearly on

the photoquantity .

Thus we see that in many practical situations, there is an ar-

ticulable basis for doing exactly the opposite of what Stockham

advocated (e.g., expanding the dynamic range of the image be-

fore processing and compressing it afterward as opposed to what

Stockham advocated which was to compress the dynamic range

before processing and expand it afterward).
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H. Using Differently Exposed Pictures of the Same Subject

Matter to Get a Better Estimate of

Because of the effects of noise (quantization noise, sensor

noise, etc.), in practical imaging situations, the Wyckoff set that

describes a plurality of pictures that differ only in exposure (1)

should be rewritten

(6)

where each image has associated with it a separate realization

of a quantigraphic noise process and an image noise process

which includes noise introduced by the electronics of the dy-

namic range compressor , and other electronics in the camera

that affect the signal after its dynamic range has been com-

pressed. In the case of a digital camera, also includes quan-

tization noise (applied after the image has undergone dynamic

range compression). Furthermore, in the case of a camera that

produces a data-compressed output, such as the Kodak DC260

which produces JPEG images, also includes data-compres-

sion noise (JPEG artifacts, etc., which are also applied to the

signal after it has undergone dynamic range compression). Refer

again to Fig. 1.

If it were not for noise, we could obtain the photoquantity

from any one of a plurality of differently exposed pictures of the

same subject matter, e.g. as

(7)

where the existence of an inverse for follows from the

semimonotonicity assumption. Semimonotonicity follows from

the fact that we expect pixel values to either increase or stay

the same with increasing quantity of light falling on the image

sensor.1 However, because of noise, we obtain an advantage

by capturing multiple pictures that differ only in exposure. The

dark (“underexposed”) pictures show us highlight details of the

scene that would have been overcome by noise (e.g., washed

out) had the picture been “properly exposed.” Similarly, the

light pictures show us some shadow detail that would not

have appeared above the noise threshold had the picture been

“properly exposed.”

Each image thus provides us with an estimate of the actual

photoquantity

(8)

where is the quantigraphic noise associated with image ,

and is the image noise for image . This estimate of ,

may be written

(9)

where is the estimate of based on considering image , and

is the estimate of the exposure of image based on consid-

ering a plurality of differently exposed images. The estimated

1Except in rare instances where the illumination is so intense as to damage the
imaging apparatus, as, for example, when the sun burns through photographic
negative film and appears black in the final print or scan.

is also typically based on an estimate of the camera response

function , which is also based on considering a plurality of

differently exposed images. Although we could just assume a

generic function , in practice, varies from camera

to camera. We can, however, make certain assumptions about

that are reasonable for most cameras, such as the fact that does

not decrease when is increased (that is semimonotonic), and

that it is usually smooth, and that . In what follows, it

will be shown how and are estimated from multiple differ-

ently exposed pictures. For the time being, let us suppose that

they have been successfully estimated, so that we can calculate

from each of the input images . Such calculations, for each

input image , give rise to a plurality of estimates of , which

in theory would be identical, were it not for noise. However, in

practice, because of noise, the estimates are each corrupted

in different ways. Therefore it has been suggested, that multiple

differently exposed images may be combined together to pro-

vide a single estimate of which can then be turned into an

image of greater dynamic range, greater tonal resolution, and

lesser noise [6], [12]. In particular, the criteria under which col-

lective processing of multiple differently exposed images of the

same subject matter will give rise to an output image which is

acceptable at every point in the output image, are sum-

marized below.

Wyckoff signal/noise criteria: ,

such that

1) ;

2) .

The first criterion indicates that for every pixel in the output

image, at least one of the input images provides sufficient ex-

posure at that pixel location to overcome sensor noise, . The

second criterion states that of those at least one input images, at

least one of them provides an exposure that falls favorably (e.g.

is neither overexposed nor underexposed) on the response curve

of the camera, so as not to be overcome by camera noise .

The manner in which differently exposed images of the same

subject matter are combined is illustrated, by way of an example

involving three input images, in Fig. 4.

Moreover, it has been shown [11] that the constants as well

as the unknown nonlinear response function of the camera can

be determined, up to a single unknown scalar constant, given

nothing more than two or more pictures of the same subject

matter, in which the pictures differ only in exposure. Thus the

reciprocal exposures used to tonally register (tonally align) the

multiple input images are estimates, , in Fig. 4. These ex-

posure estimates are generally made by applying an estimation

algorithm to the input images, either while simultaneously esti-

mating , or as a separate estimation process (since only has

to be estimated once for each camera but the exposure is es-

timated for every picture that is taken).

Owing to the large dynamic range that some Wyckoff sets

can cover, small errors in tend to have adverse effects on the

overall estimate . Thus it may be preferable to estimate as

a separate process (e.g. by taking hundreds of exposures with

the camera under computer program control). Once is known

(previously measured), then can be estimated for a particular

set of images.
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Fig. 4. Wyckoff principle: Multiple differently exposed images of the same subject matter are captured by a single camera. In this example there are three different
exposures. The first exposure (CAMERA set to exposure 1), gives rise to an exposure k q, the second to k q and the third to k q. Each exposure has a different
realization of the same noise process associated with it, and the three noisy pictures that the camera provides are denoted f , f , and f . These three differently

exposed pictures comprise a noisy Wyckoff set. In order to combine them into a single estimate, the effect of f is undone with an estimate, f̂ that represents our
best guess of what the function f is. While many video cameras use something close to the standard f = kq function, it is preferable to attempt to estimate

f for the specific camera in use. Generally this estimate is made together with an estimate of the exposures k . After re-expanding the dynamic ranges with f̂ ,
the inverse of the estimated exposures 1=k̂ are applied. In this way, the darker images are made lighter and the lighter images are made darker so that they all
(theoretically) match. At this point the images will all appear as if they were taken with identical exposure, except for the fact that the pictures that were brighter
to start with will be noisy in lighter areas of the image and those that had been darker to start with will be noisy in dark areas of the image. Thus rather than simply
applying ordinary signal averaging, a weighted average is taken. The weights are the spatially varying certainty functions, c (x; y). These certainty functions turn
out to be the derivative of the camera response function shifted up or down by an amount k . In practice, since f is an estimate, so is c , so it is denoted ĉ in
the figure. The weighted sum is q̂(x; y), the estimate of the photoquantity q(x; y). To view this quantity on a video display, it is first adjusted in exposure, and
may be adjusted to a different exposure level than any of the exposure levels used in taking the input images. In this figure, for illustrative purposes, it is set to the

estimated exposure of the first image, k̂ . The result is then range-compressed with f̂ for display on an expansive medium (DISPLAY).

The final estimate for , depicted in Fig. 4, is given by

(10)

where is given by

(11)

from which we can see that are just shifted versions

of , e.g. dilated versions of .

The intuitive significance of the certainty function is that

it captures the slope of the response function which indicates

how quickly the output (pixel value or the like) of the camera

varies for given input. In the case of a noisy camera, especially

a digital camera where quantization noise is involved, generally

the output of a camera will be most reliable where it is most

sensitive to a fixed change in input light level. This point where

the camera is most responsive to changes in input is at the

peak of the certainty function . The peak in tends to be

near the middle of the camera’s exposure range. On the other

hand, where the camera exposure input is extremely large or

small (e.g. the sensor is very much overexposed or very much

underexposed), the change in output for a given input is much

less. Thus the output is not very responsive to the input and the

change in output can be easily overcome by noise. Thus tends

to fall off toward zero on either side of its peak value.

The certainty functions are functions of . We may also write

the uncertainty functions, which are functions of pixel value in
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the image (e.g., functions of greyvalue in ), as

(12)

and its reciprocal is the certainty function in the domain of

the image (e.g., the certainty function in pixel coordinates)

(13)

where . Note that is the same for all images

(e.g. for all values of image index ), whereas was defined

separately for each image. For any , the function is a shifted

(dilated) version of any other certainty function, , where the

shift (dilation) depends on the log exposure, (the exposure

).

The final estimate of (10) is simply a weighted sum of the

estimates from obtained from each of the input images, where

each input image is weighted by the certainties in that image.

1) Exposure interpolation and extrapolation: The architec-

ture of this process is shown in Fig. 5, which depicts an image

acquisition section (in this illustration, of three images), fol-

lowed by an analysis section (to estimate ), followed by a

resynthesis section to generate an image again at the output (in

this case four different possible output images are shown).

The output image can look like any of the input images, but

with improved signal to noise ratio, better tonal range, better

color fidelity, etc. Moreover, an output image can be an interpo-

lated or extrapolated version in which it is lighter or darker than

any of the input images. It should be noted that this process of

interpolation or extrapolation provides a new way of adjusting

the tonal range of an image. The process is illustrated in Fig. 5.

The image synthesis portion may also include various kinds of

deblurring operations, as well as other kinds of image sharp-

ening and lateral inhibition filters to reduce the dynamic range

of the output image without loss of fine details, so that it can be

printed on paper or presented to an electronic display in such a

way as to have optimal tonal definition.

III. COMPARAMETRIC IMAGE PROCESSING: COMPARING

DIFFERENTLY EXPOSED IMAGES OF THE SAME SUBJECT

MATTER

As previously mentioned, comparison of two or more differ-

ently exposed images may be done to determine , or simply to

tonally register the images without determining . Also, as pre-

viously mentioned, tonal registration is more numerically stable

than estimation of , so there are some advantages to compara-

metric analysis and comparametric image processing in which

one of the images is selected as a reference image, and others are

expressed in terms of this reference image, rather than in terms

of . Typically the dark images are lightened, and/or the light im-

ages are darkened so that all the images match the selected ref-

erence image. Note that in such lightening and darkening oper-

ations, full precision is retained for further comparametric pro-

cessing. Thus all but the reference image will be stored as an

array of floating point numbers.

A. Misconceptions About Gamma Correction

So-called gamma correction (raising the pixel values in an

image to an exponent) is often used to lighten or darken images.

While gamma correction does have important uses, such as

lightening or darking images to compensate for incorrect display

settings, it will now be shown that when one uses gamma correc-

tion to lighten or darken an image to compensate for incorrect

exposure, that whether one is aware of it or not, one is making an

unrealistic assumption about the camera response function.

Proposition III.1: Tonally registering differently exposed

images of the same subject matter by gamma correcting them

with exponent is equivalent to assuming that the

nonlinear response function of the camera is .

Proof: The process of gamma correcting an image may be

written

(14)

where is the original image, and is the lightened or darkened

image. Solving for , the camera response function, we obtain

(15)

We see that the response function (15) does not pass through

the origin, e.g. , not zero. Since most cameras are

designed so that they produce a signal level output of zero when

the light input is zero, the function does not correspond to

a realistic or reasonable camera response function. Even media

which does not itself fall to zero at zero exposure (like film, for

example) is ordinarily scanned in such a way that the scanned

output is zero for zero exposure, assuming that the

(minimum density for the particular emulsion being scanned)

is properly set in the scanner. Therefore it is inappropriate

and incorrect to use gamma correction to lighten or darken

differently exposed images of the same subject matter, when

the goal of this lightening or darkening is tonal registration

(making them look the “same,” apart from the effects of noise

which will be accentuated in the shadow detail of the images

that are lightened and the highlight detail of images that are

darkened).

B. Comparametric Plots and Comparametric Equations

To understand the shortcomings of gamma correction, and

to understand some alternatives, the concept of comparametric

equations and comparametric plots will now be introduced.

Equation (14) is an example of what is called a compara-

metric equation [17].

Comparametric equations are a special case of the more gen-

eral class of equations called functional equations [18] and com-

parametric plots are a special case of the more general class of

plots called parametric plots.

The notion of a parametric plot is well-understood. For ex-

ample, the parametric plot , is a plot of a circle

of radius . Note that it does not depend explicity on , so long

as the domain of includes at least all points on the interval

from 0 to , modulo .

A comparametric plot is a special kind of parametric plot in

which a function is plotted against itself, and in which the
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Fig. 5. Quantigraphic image exposure adjustment on a Wyckoff set: Multiple (in this example, 3) differently exposed (in this example by two aperture stops)
images are acquired. Estimates of q from each image are obtained. These are combined by weighted sum. The weights are the estimates of the certainty function
shifted along the exposure axis by an amount given by the estimated exposure for each image. From the estimated photoquantity q̂, one or more output images may
be generated by multiplying by the desired synthetic exposure and passing the result through the estimated camera nonlinearity. In this example, four synthetic
pictures are generated. These are extrapolated and interpolated versions of the input exposures. The result is a “virtual camera” [17] in which a picture can be
generated as if the user were free to select the original exposure settings that had been used on the camera originally taking the input images.

parameterization of the ordinate is a linearly scaled parame-

terization of the abscissa.

More precisely, the comparametric plot is defined as follows:

Definition III.1: A plot along coordinates is

called a comparametric plot [17] of the function .

A function has a family of comparametric plots, one for

each value of the constant , which is called the comparametric

ratio.

Proposition III.2: When a function is monotonic, the

comparametric plot can be expressed as a mono-

tonic function not involving .

Thus the plot in Definition III.1 may be rewritten as a plot

, not involving . In this form, the function is called

the comparametric function, and expresses the range of the

function as a function of the range of the function ,

independently of the domain, , of the function .
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The plot defines what is called a comparametric equation:

Definition III.2: Equations of the form are

called comparametric equations [17].

A better understanding of comparametric equations may be

had by referring to the following diagram:

(16)

wherein it is evident that there are two equivalent paths to follow

from to

(17)

Equation (17) may be rewritten

(18)

which provides an alternative definition of comparametric

equation to that given in Definition III.2.

Equation (14) is an example of a comparametric equation, and

(15) is a solution of (14).

It is often preferable that comparametric equations be on the

interval from zero to one in the range of . Equivalently stated,

we desire comparametric equations to be on the interval from

zero to one in the domain of and the range of . In this case,

the corresponding plots and equations are said to be unicom-

parametric. (Actual images typically range from 0 to 255 and

must thus be rescaled so that they range from 0 to 1, for unicom-

parametric image processing.)

Often we also impose a further constraint that , and

the constraint that and .

Solving a comparametric equation is equivalent to deter-

mining the unknown camera response function from a pair of

images that differ only in exposure, when the comparametric

equation represents the relationship between greyvalues in the

two pictures, and the comparametric ratio, , represents the

ratio of exposures (e.g., if one picture was given taken with

twice the exposure of the other, then ).

C. Zeta Correction of Images

An alternative to gamma correction is proposed. This alterna-

tive, called zeta correction, will also serve as another example

of a comparametric equation.

For zeta correction, we simply adjust the exponential solution

(15) of the comparametric equation given by traditional gamma

correction so that the solution passes through the origin:

. (For simplicity, and without loss of generality,

has been set to , the comparametric exposure ratio.) Thus,

. Preferably (to be unicomparametric) we

would like to have , so we use the response function

(19)

which is a solution to the corresponding comparametric equa-

tion

(20)

The comparametric equation (20) forms the basis for zeta cor-

rection of images

for
(21)

Implicit in zeta correction of images is the assumption of an

exponential camera response function, which, although not

realistic (given that the exponential function expands dynamic

range, and most cameras have compressive response functions

rather than expansive response functions), is preferable to

gamma correction because of the implicit notion of a response

function for which .

With standard IEEE arithmetic, values of can range from

approximately 50 to 1000.

D. Affine Comparametric Equation and Affine Correction of

Images

In this section, one of the two most useful (in the author’s

opinion) comparametric equations is introduced, giving rise to

affine correction of images. Affine correction is an improvement

over that of zeta correction (which itself was an improvement

over gamma correction).

First consider the classic model

(22)

used by photographers to characterize the response of a va-

riety of photographic emulsions, including so-called extended

response film [9]. It is well known that (22) becomes the equa-

tion of a straight line when expressed in logarithmic coordinates,

if we subtract (as many scanners such as PhotoCD attempt to

do by prompting the user to scan a piece of blank film from the

film trailer before scanning the rest of the roll of film)

(23)

It is an interesting coincidence that the comparametric plot of

this function (22) is also a straight line.

Proposition III.3: The comparametric plot corresponding to

the standard photographic response function (22) is a straight

line. The slope is , and the intercept is .

Proof: Re-arranging to

eliminate gives so that

(24)

Note that the constant does not appear in the comparametric

equation. Thus we cannot determine from the comparametric

equation. The physical (intuitive) interpretation is that we can

only determine the nonlinear response function of a camera up

to a single unknown scalar constant.

Note that (14) looks quite similar in form to (22), and in fact

is identical if we set and . However, one must recall

that (14) is a comparametric equation and (22) is a solution to
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a (different) comparametric equation. Thus we must be careful

not to confuse the two. The first corresponds to gamma correc-

tion of an image, while the second corresponds to the camera

response function that is implicit in applying (24) to lighten or

darken the image. To make this distinction clear, applying (24)

to lighten or darken an image will be called affine correcting

(e.g. correcting by modeling the comparametric function with

a straight line). The special case of affine correction when the

intercept is equal to zero will be called linear correction.

Preferably affine correction of an image also includes a step

of clipping values greater than 1 to 1, and values less than zero

to zero, in the output image

(25)

If the intercept is zero and the slope is greater than one, the ef-

fect, neglecting noise, of (25), is to lighten the image in a nat-

ural manner that properly simulates the effect of having exposed

the image with greater exposure. In this case, the effect is the-

oretically identical to that which would have been obtained by

using a greater exposure on the camera, assuming the response

function of the camera follows the power law , as many

cameras do in practice. Thus it has been shown that the cor-

rect way to lighten an image is to apply linear correction, not

gamma correction (apart from correction of an image to match

an incorrectly adjusted display device or the like, where gamma

correction is still the correct operation to apply).

Here we have worked forward, starting with the solution (22)

and deriving the comparametric equation (24) of which (22) is a

solution. It is much easier to generate comparametric equations

from their solutions than it is to solve comparametric equations.

The above comparametric equation is both useful and simple.

The simplicity is in the ease with which it is solved, and by the

fact that the solution happens to be the most commonly used

camera response model in photography. As we will later see,

when processing images, the comparametric function can be es-

timated by fitting a straight line through data points describing

the comparametric relation between images. However, there are

two shortcomings to affine correction.

1) It is not inherently unicomparametric so it must be clipped

to 1 when it exceeds 1 and clipped to zero when it falls

below zero, as shown in (25).

2) Its solution, only describes the response of cameras

within their normal operating regime. Since the art of

quantigraphic image processing involves a great deal of

image processing done on images that have been deliber-

ately and grossly overexposed or underexposed, there is a

need for a comparametric model that captures the essence

of cameras at both extremes (e.g., both overexposure and

underexposure) of exposure.

E. Preferred Correction of Images

Although affine correction was an improvement over zeta

correction, which itself was an improvement over gamma cor-

rection, affine correction still has the two shortcomings listed

above. Therefore another form of image exposure correction is

proposed, and it will be called the preferred correction. This new

exposure correction is unicomparametric (bounded in normal-

ized units between 0 and 1) and also has a parameter to control

the softness of the transition into the toe and shoulder regions of

the response function, rather than the hard clipping introduced

by (25).

As with affine correction, the preferred correction will be in-

troduced first by its solution, from which the comparametric

equation will be derived. The solution is

(26)

which has only three parameters. Thus no extra unnecessary

degrees of freedom (which might otherwise capture or model

noise) have been added over and above the number of degrees

of freedom in the previous model (22).

An intuitive understanding of (26) can be better had by

rewriting it

for
(27)

where the soft transition into the toe (region of underexposure)

and shoulder (region of overexposure) is evident by the shape

of this curve on a logarithmic exposure scale.

This model may, at first, only seem like a slight improvement

over (22), given our common intuition that most exposure in-

formation is ordinarily captured in the central portion that is

linear on the logarithmic exposure plot. However, it is important

that we unlearn what we have been taught in traditional photog-

raphy, where incorrectly exposed images are ordinarily thrown

away rather than used to enhance the other images! It must be

emphasized that comparametric image processing differs from

traditional image processing in the sense that in comparametric

image processing (using the Wyckoff principle, as illustrated in

Fig. 4 the images typically include some that are deliberately un-

derexposed and overexposed. In fact this overexposure of some

images and underexposure of other images is often deliberately

taken to extremes. Therefore, the additional sophistication of

the model (26) is of great value in capturing the essence of a

set of images where some extend to great extremes in the toe or

shoulder regions of the response function.

Proposition III.4: The comparametric equation of which the

proposed photographic response function (26) is a solution, is

given by

(28)

where . This function (28) gives rise to the preferred

correction of images (e.g., the preferred recipe for lightening or

darkening an image). Again, does not depend on , which is

consistent with our knowledge that the comparametric equation

captures the information of up to a single unknown scalar

proportionality constant.

F. Some Solutions to Some Comparametric Equations That

Are Particularly Illustrative or Useful

Some examples of comparametric equations and their solu-

tions are summarized in Table I.
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TABLE I
ILLUSTRATIVE OR USEFUL EXAMPLES OF COMPARAMETRIC EQUATIONS AND THEIR SOLUTIONS. THE THIRD FROM THE TOP AND SECOND FROM THE BOTTOM

WERE FOUND TO DESCRIBE A LARGE VARIETY OF CAMERAS AND HAVE BEEN USED IN A WIDE VARIETY OF QUANTIGRAPHIC IMAGE PROCESSING APPLICATIONS.
THE SECOND ONE FROM THE BOTTOM IS THE ONE THAT IS MOST COMMONLY USED BY THE AUTHOR

G. Properties of Comparametric Equations

As stated previously, the comparametric equation only

provides information about the actual photoquantity up to a

single unknown scalar quantity, e.g., if is a solution of

comparametric equation then so is . In general we

can think of this as a coordinate transformation from to ,

in the domain of . More generally, the comparametric plot

has the same shape as the comparametric plot

, for all bijective . From this fact, we

can construct a property of comparametric equations in general:

Proposition III.5: A comparametric equation

has solution , for any

bijective function . .

Likewise, we can also consider coordinate transformations in

the range of comparametric equations, and their effects on the

solutions.

Proposition III.6: A comparametric equation ,

has solution , where is a comparametric

equation with solution .

Properties of comparametric equations related to their coor-

dinate transformations are presented in Table II.

Some simple but illustrative examples of using coordinate

transformation properties to solve comparametric equations are

now provided.

Example 1: Let , which we know has solution

, with and . Let ,

e.g. is a transformation which consists of simply adding noise.

Thus , so that

has solution .

Example 2: From Table I, observe that the comparametric

equation has solution . Let .

We can thus solve

by noting that .

TABLE II
SOME PROPERTIES OF COMPARAMETRIC EQUATIONS. THIS TABLE COULD BE

EXTENDED OVER SEVERAL PAGES, MUCH LIKE AN EXTENSIVE TABLE LISTING

PROPERTIES OF LAPLACE TRANSFORMS, OR A TABLE OF PROPERTIES

OF FOURIER TRANSFORMS, OR THE LIKE

This solution also appears in Table I. We may also use this so-

lution to seed the solution of the comparametric equation second

from the bottom of Table I, by using . The

equation second from the bottom of Table I may then be fur-

ther coordinate transformed into the equation at the bottom of

Table I by using . Thus properties of compara-

metric equations, such as those summarized in Table II, can be

used to help solve comparametric equations, such as those listed

in Table I.

IV. PRACTICAL IMPLEMENTATIONS

This section pertains to the practical implementation of the

theory presented in previous sections.

A. Comparing Two Images That Differ Only in Exposure

Without loss of generality, consider two differently exposed

pictures of the same subject matter, and , and recognize

that in the absence of noise, the relationship between the two

images would be

(29)
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so that

(30)

where , , and .

It is evident that (30) is a comparametric equation.

This process (30) of “registering” the second image with the

first differs from the image registration procedure commonly

used in much of machine vision [19]–[22] and image resolu-

tion enhancement [4], [8], [7] because it operates on the range,

, (tonal range) of the image as opposed to its do-

main (spatial coordinates) .

B. Comparagram

The comparagram is defined as the joint histogram between

two images that differ only in exposure. The comparagram

is a square matrix of size by , where is the number

of greylevels [11], [12]. It can be seen from (30) that the

general problem of solving (30) can be done directly on the

comparagram instead of the original pair of images. This

comparametric approach has the added advantage of breaking

the problem down into two separate simpler steps:

1) comparametric regression: finding a smooth semimono-

tonic function, , that passes through most of the highest

bins in the comparagram.

2) solving the comparametric equation: unrolling this func-

tion, into , by regarding it an

iterative map onto itself (see Fig. 6.) The iterative map

(logistic map) is most familiar in chaos theory [23], [24],

but here, since the map is monotonic, the result is a deter-

ministic function.

Separating this estimation process into two stages also allows

us a more direct route to “registering” the image domains, if for

example, we do not need to know , but only require , which

is the recipe for expressing the range of in the units of

. In particular, we can lighten or darken images to match

one another without ever having to solve for . The first part of

the above two step process allows us to determine the relation-

ship between two pictures that differ only in exposure, so that

we can directly perform operations like image exposure interpo-

lation and extrapolation as in Fig. 5, but skipping the interme-

diate step of computing . Not all image processing applications

require determining , so there is great value in simply under-

standing the relationship between differently exposed pictures

of the same subject matter.

C. Comparametric Regression and the Comparagram

In situations where the image data is extremely noisy, and/or

where a closed-form solution for is desired, a parame-

terized form of the comparametric function is used, in which

a function corresponding to a suitably parameterized re-

sponse function is selected. The method amounts to a curve

fitting problem in which the parameters of are selected so that

best fits one or more comparagrams constructed from two or

more differently exposed images under analysis.

Fig. 6. Comparametric procedure for finding the pointwise nonlinearity
of an image sensor from two pictures differing only in their exposures.
(COMPARAMETRIC PLOT) Plot of pixel values in one image against
corresponding pixel values in the other. (RESPONSE CURVE) Points on the
response curve, found from only the two pictures, without any knowledge
about the characteristics of the image sensor. These discrete points are only
for illustrative purposes. If a logarithmic exposure scale is used, (as most
photographers do) then the points fall uniformly on the Q = log(q=q ) axis.

D. Comparametric Regression to a Straight Line

The result (24) suggests that can be determined from

two differently exposed images by applying linear regression

to the comparagram of the images, , treating each entry as a

datapoint, and weighting by the number of bin counts

at each point. Often this is done by weighting with .

For example, (assuming empty bins are not counted)

provides the classic linear regression problem in which all

nonempty bins are weighted equally and the slope and intercept

of the best-fit line through nonempty bins is found. Generally

is chosen somewhere between 1/4 and 2.

A simple example is presented, that of reverse-engineering

the standard Kodak PhotoCD scanner issued to most major pho-

tographic processing and scanning houses. In most situations, a

human operator runs the machine, and decides, by visual inspec-

tion, what “brightness” level to scan the image at (there is also an

automatic exposure feature which allows the operator to preview

the scanned image and decide whether or not the chosen “bright-

ness” level needs to be overridden). By scanning the same image

at different “brightness” settings, a Wyckoff set results. This al-

lows the scanner to capture nearly the entire dynamic range of

the film, which is of great utility since typical photographic neg-

ative film captures far greater dynamic range than possible with

the scanner as it is ordinarily used. A photographic negative

taken from a scene of extremely high contrast (a sculpture on

exhibit at the List Visual Arts Center, in a completely darkened

room, illuminated with a bare flash lamp from one side only)

was selected because of its great dynamic range that could not

be captured in any single scan. A Wyckoff set was constructed

by scanning the same negative at five different “brightness” set-

tings (Fig. 7). The settings were controlled by a slider that was

calibrated in arbitrary units from 99 to +99, while running

Kodak’s proprietary scanning software. Kodak provides no in-

formation about what these units mean. Accordingly, the goal of

the experiment was to find a closed-form mathematical equation

describing the effects of the “brightness” slider on the scans, and

to recover the unknown nonlinearity of the scanner. In order to

make the problem a little more challenging and, more impor-

tantly, to better-illustrate the principles of comparametric image
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Fig. 7. These scans from a photographic negative differ only in the choice of “brightness” setting selected using the slider provided on the X-windows screen by
the proprietary Kodak PhotoCD scanning software. The slider is calibrated in arbitrary units from �99 to +99. Five scans were done and the setting of the slider
is noted above each scan.

Fig. 8. Pairwise comparagrams of the images in Fig. 8. It is evident that the data are well fitted by a straight line, which suggests that Kodak must have used the
standard nonlinear response function f(q) = � + �q in the design of their PhotoCD scanner.

processing, the dmin procedure of scanning a blank film at the

beginning of the roll was overridden.

Comparagrams , , , and were computed from

the five images ( through ) of Fig. 7, and are displayed as

density plots (e.g. treating them as images of dimension 256 by

256 pixels, where the darkness of the image is proportional to

the number of counts—darkness rather than lightness to make it

easier to see the pattern) in Fig. 8. Linear regression was applied

to the data, and the best-fit straight line is shown passing through

the data points. Because the dmin procedure was overridden,

notice that the plots do not pass through the origin. The two

leftmost plots had nearly identical slopes and intercepts, and

likewise for the two rightmost, which indicates that the arbitrary

Kodak units of “brightness” are self-consistent (e.g. which

describes the relationship between a scan at a “brightness” of 40

units and one of 20 units is essentially the same as which

describes the relationship between a scan at a “brightness” of

20 units and one of 0 units). Since there are three parameters in

(22), , , and , which describe only two degrees of freedom

(slope and intercept), may be chosen so that works

out to be linearly proportional to arbitrary Kodak units. Thus,

setting (where is the average

slope of the two leftmost plots and the average slope of

the two rightmost plots) results in the value From

this we obtain . Thus, we have that

(31)

where is in arbitrary Kodak units (e.g. for the left-

most image, for the next image, for the

middle image, , and ). Thus (31) gives

us a closed-form solution that describes the response curve as-

sociated with each of the five exposures , ,

. The curves may be differentiated, and, if

these derivatives are evaluated at ,

the so-called certainty images, shown in Fig. 9 are obtained.

In the next example, the use of the certainty functions to con-

struct an optimal estimate, will be demonstrated.

E. Comparametric Regression to the Preferred Model

For this second example, the comparametric model proposed

in (28) will be used.

In many practical situations, real-world images are very

noisy.

Accordingly, an example of noisy images that comprise a

Wyckoff set (Fig. 10), in which an extremely poor scan was de-

liberately used to scan images from a publication [11], is now

considered.

That the images in Fig. 10 are of very poor quality is evi-

denced by their comparagram [Fig. 11(a)]. Using regression of

(28) to the joint comparagram combined with the knowledge

(from the publication from which the images were obtained

[11]) that , it was found that and .

This data provides a closed-form solution for the response func-

tion. The two effective response functions, which are shifted

versions of this one response function, where the relative shift is

, are plotted in Fig. 12, together with their derivatives. (Recall

that the derivatives of the response functions are the certainty

functions.) Since a closed-form solution has been obtained, it

may be easily differentiated without the further increase in noise
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Fig. 9. Certainty functions express the rate of change of f(q(x; y)) with Q(x; y). The certainty functions may be used to compute the certainty images, f(c ).
White areas in one of the certainty images indicate that pixel values f(q) change fastest with a corresponding change in the photoquantity, Q. When using the
camera as a lightmeter (e.g., a quantigraphic instrument to estimate q), it will be most sensitive where the certainty images are white. White areas of these certainty
images correspond to mid-grey values (midtones) of the corresponding original images in Fig. 7, while dark areas correspond to extreme pixel values (either
highlights or shadows) of the original images in Fig. 7. Black areas of the certainty image indicate that Q changes drastically with small changes in pixel value,
and thus an estimate of Q in these areas will be overcome by image noise n .

(a)

(b)

Fig. 10. Noisy images badly scanned from a publication. These images are
identical except for exposure and a good deal of quantization noise, additive
noise, scanning noise, etc. (a) Darker image shows clearly the eight people
standing outside the doorway, but shows little of the architectural details of the
dimly lit interiour. (b) Lighter image shows the architecture of the interiour, but
it is not even possible to determine how many people are standing outside, let
alone recognize any of them.

that usually accompanies differentiation. Otherwise, when de-

termining the certainty functions from poor estimates of , the

certainty functions would be even more noisy than the poor es-

timate of itself. The resulting certainty images, denoted by

, are shown in Fig. 13. Each of the images, gives

rise to an actual estimate of the quantity of light arriving at the

image sensor (9) These esimates were combined by way of (10)

resulting in the composite image appears shown in Fig. 14.

Note that the resulting image looks very similar to , ex-

cept that it is a floating point image array, of much greater tonal

range and image quality.

Furthermore, given a Wyckoff set, a composite image may

be rendered at any in-between exposure from the set (expo-

sure interpolation), as well as somewhat beyond the exposures

given (exposure extrapolation). This result suggests the “Virtu-

alCamera” [17] which allows images to be rendered at any de-

sired exposure, once is computed.

This capability is somewhat similar to QuickTime VR and

other image-based rendering systems, except that it operates in

the range of the images rather than their domain.

V. SPATIOTONAL QUANTIGRAPHIC FILTERS

Ordinarily, most print and display media have limited dy-

namic range. Thus one might be tempted to argue against the

utility of the Wyckoff principle based on this fact, e.g. one might

ask “since televisions and print media cannot display more than

a very limited dynamic range, why bother building a Wyckoff

camera that can capture such dynamic ranges?” Why bother

capturing the photoquantity with more accuracy than is needed

for display?

Some possible answers to this question are as follows.

1) Estimates of are still useful for machine vision, and

other applications that do not involve direct viewing of a

final picture. An example is the wearable face recognizer

[25] which determines the identity of an individual from

a plurality of differently exposed pictures of that person,

and then presents the identity in the form of a text label

(virtual name tag) on the retina of an eye of the wearer

of the eyeglass-based apparatus. Since need not be dis-

played, the problem of output dynamic range, etc., of the

display (e.g. number of distinct intensity levels of the laser

beam shining into a lens of the eye of the wearer) is of no

consequence.

2) Even though the ordinary dynamic range and the range

resolution (typically 8 bits) is sufficient for print media
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(a) (b)

(c)

Fig. 11. Comparametric regression: (a) Comparagram. Note that because the images were extremely noisy, the comparagram is spread out over a fat ridge. Note
also the gaps in the comparagram owing to the poor quality of the scanning process. (b) Even the comparagram of the images prior to the deliberately poor scan
of them is itself quite spread out, indicating the images were quite noisy to begin with. (c) Comparametric regression is used to solve for the parameters of the
comparametric function. The resulting comparametric plot is a noise-removed version of the comparagram, e.g., provides a smoothly constrained comparametric
relationship between the two differently exposed images.

Fig. 12. Relative response functionsF (K Q) recovered from the images in
Fig. 10, plotted together with their derivatives. The derivatives of these response
functions suggests a degree of confidence in the estimate Q̂ = F (f ) � K
derived from each input image.

(given the deliberately introduced nonlinearities that best

use the limited range resolution), when performing op-

erations such as deblurring, noise artifacts become more

evident. In general, sharpening involves high pass fil-

tering, and thus sharpening will often tend to uncover

noise artifacts that would normally exist below the per-

ceptual threshold when viewed through ordinary display

media. In particular, sharpening often uncovers noise in

the shadow areas, making dark areas of the image appear

noisy in the final print or display. Thus in addition to the

benefits of performing sharpening quantigraphically by

applying an anti-homomorphic filter as in Fig. 3 to undo

the blur of (5), there is also further benefit from doing the

generalized anti-homomorphic filtering operation at the

point in Fig. 4, rather than just that depicted in in Fig. 3.

3) A third benefit of capturing more information than can be

displayed, is that it defers the choice of which information
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(a)

(b)

Fig. 13. Certainty images which will be used as weights when the weighted
sum of estimates of the actual quantity of light is computed. Bright areas
correspond to large degrees of certainty.

Fig. 14. Composite image made by simultaneously estimating the unknown
nonlinearity of the camera as well as the true quantity of light incident on the
camera’s sensor array, given two input images from Fig. 10. The combined
optimal estimate of q̂ is expressed here, in the coordinates of the lighter
(rightmost) image. Although nothing has been done to appreciably enhance
this image (e.g. the procedure of estimating q and then just converting it back
into a picture again may seem pointless) we can note that while the image
appears much like the rightmost input image, that the clipping of the highlight
details has been softened somewhat. Later we will see methods of actual image
enhancement done by processing q̂ prior to converting it back to an image
again.

to get rid of. For example, a camera could be constructed

in such a way that it had no exposure adjustments: neither

automatic nor manual settings. Instead, the camera would

be more like an array of lightmeters that would capture an

array of light measurements. Decisions as to what sub-

ject matter is of importance could then be made at the

time of viewing or the time of printing. Such a camera

has been incorporated into eyeglasses [13], allowing the

wearer to completely forget about the camera, with no

need to worry about settings or adjustments. In this way

the wearer can capture once-in-a-lifetime moments like

a baby’s first steps, and then worry about adjusting the

exposure settings later. Exposure can then be adjusted in

the peaceful quiet of the living room, long after the picture

(a) (b)

(c)

Fig. 15. Extreme example to illustrate nonmonotonic processing: (a) An
underexposed picture shows details such as the horizon and the sail of a
boat, as seen through an open doorway, even though the sail is backlit with
extremely bright light. (b) The picture is taken from inside an abandoned
fortress with no interiour lights. Light coming in from the open door is largely
lost in the vastness of the dark interiour, so that a much longer exposure is
needed to show any detail of the inside of the fortress. (c) Sharpened (filtered)
quantigraphic estimate ^f(k Sq̂(Â x + b̂ =ĉ x + d̂ )) expressed in the
projective coordinates of the second image in the image sequence (right hand
image). A dynamic range in excess of a million to one was captured in q̂, and
the estimate was then quantigraphically sharpened, with filter S, resulting in a
lateral inhibition effect so that the output is no longer monotonically related to
the input. Notice, for example, that the sail is as dark as some shadow areas
inside the fortress. Because of this filtering, a tremendous dynamic range has
been captured and reduced to that of printed media.

is captured and the confusing excitement of the moment

has passed. In this way exposure can be adjusted care-

fully in a quiet setting away from the busy and distracting

action of everyday life. Since these decisions are made

later, they can also be changed, as there is no need to com-

mitt to one particular exposure setting. Moreover, defer-

ring exposure decisions may have forensic value. For ex-
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ample, ordinary everyday subject matter and scenes may

later become crime scenes, such that previously taken pic-

tures in those spaces may help solve a crime. A family

photographing their child’s first trip to a grocery store

may inadvertently capture an image of a fire exit illegally

chained shut in the background. A fatal fire at some time

in the future might call for evidence against the owner of

the shop, where deferred choices of exposure may assist

in the production of a picture exposed optimally for the

fire exit in the background rather than the child in the fore-

ground. Since the wearable apparatus transmits images to

the World Wide Web, various viewers can each adjust the

image interactively to suit their own display and percep-

tual capabilities, as well as their own preferences.

4) A fourth benefit from capturing a true and accurate mea-

surement of the photoquantity, even if all that is desired

is a nice looking picture (e.g. even if what is desired is

not necessarily a true or accurate depiction of reality), is

that additional processing may be done to produce a pic-

ture in which the limited dynamic range of the display

or print medium shows a much greater dynamic range of

input signal, through the use of further image processing

on the photoquantity prior to display or printing.

It is this fourth benefit that will be further described, as well as

illustrated through a very compelling example, in this section.

Ordinarily, humans can not directly perceive the “signal” we

process numerically, but, rather, we perceive the effects of the

“signal” on perceptible media such as television screens or the

like. In particular, in order to display , it is typically con-

verted into an image and displayed, for example, on

a television screen.

Fig. 14 is an attempt to display, on the printed page, a signal

which contains much greater dynamic range than can be directly

represented on the page. To do this, the estimate was converted

into an image by evaluating . Even though we see some

slight benefit, over (one of the input images) the benefit has

not been made fully visible in this print.

A. An Extreme Example with Spatiotonal Processing of

Photoquantities

To fully appreciate the benefits of quantigraphic image pro-

cessing, let us consider a seemingly impossible scene to photo-

graph reasonably (in a natural way without bringing in lighting

equipment of any kind).

Fig. 15 depicts a scene in which there is a dynamic range in

excess of a million to one. In this case, two pictures were cap-

tured with several orders of magnitude difference between the

two exposures. Thus the quantigraphic estimate has far greater

dynamic range than can be directly viewed on a television or

on the printed page. Display of would fail to show the

shadow details, while display of would fail to show the

highlight details.

In this case, even if we use the virtual camera architecture

depicted in Fig. 5, there is no single value of display exposure

for which a display image will capture both the

inside of the abandonded fortress and the details looking outside

through the open doorway.

Therefore, a strong highpass (sharpening) filter, is applied

to , to sharpen the photoquantity , as well as provide lateral

inhibition similar to the way in which the human eye functions.

Then the filtered result, , is dis-

played upon the printed page [Fig . 15(c)], in the projective co-

ordinates of the second (rightmost) image, . Note the in-

troduction of spatial coordinates , and . These compen-

sate for projection (e.g. if the camera moves slightly between

pictures), as described in [12], [13]. In particular, the parame-

ters of a projective coordinate transformation are typically esti-

mated together with the nonlinear camera response function and

the exposure ratio between pictures [12], [13].

As a result of the filtering operation, notice that there is no

longer a monotonic relationship between input photoquantity

and output level on the printed page. Notice, for example,

that the sail is as dark as some shadow areas inside the fortress.

Because of this filtering, the dynamic range of the image may

be reduced to that of printed media, while still revealing details

of the scene. This example answers the question “why capture

more dynamic range than you can display.”
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