
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

 
IEEE Transactions on Pattern Analysis and Machine Intelligence 35.4 (2013): 

823 – 834 
 

DOI:    http://dx.doi.org/10.1109/TPAMI.2012.164  
 
Copyright: © 2013 IEEE 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1109/TPAMI.2012.164


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Comparative Analysis and Fusion of
Spatio-Temporal Information for Footstep

Recognition
Ruben Vera-Rodriguez, John S.D. Mason, Julian Fierrez, Member, IEEE and Javier Ortega-Garcia, Senior

Member, IEEE

Abstract—Footstep recognition is a relatively new biometric, which aims to discriminate persons using walking characteristics extracted

from floor-based sensors. This paper reports for the first time a comparative assessment of the spatio-temporal information contained

in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with

almost 20,000 valid footstep signals and more than 120 persons. Results show very similar performance for both spatial and temporal

approaches (5% to 15% EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5%

to 10% EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves

to simulate conditions of different potential applications such as smart homes or security access scenarios.

Index Terms—Biometrics, footstep recognition, gait recognition, pressure analysis, pattern recognition.

✦

1 INTRODUCTION

THE growth in biometrics has been very significant
in the last few years, not only for the most popular

modes such as fingerprint, speech or face, but as well
for the lesser known biometrics such as otoacoustic
emissions, palm or footsteps. This paper is focused on
the assessment of footstep signals as a relatively new
biometric with a comparative analysis and fusion of
spatio-temporal information of the signals. In this work,
footstep signals are captured from persons walking over
an instrumented sensing area, in contrast to some works
using the sound of the footsteps [1]. It is worth noting
that some works on this area [2], [3], [4] refer to footstep
recognition as part of gait recognition [5], but using a
floor-based approach.

One significant benefit of footsteps over other, better
known modes is that footstep signals can be collected
unobtrusively with minimal or no person cooperation;
this can be very convenient for the user. Other benefits
lie in the robustness to environmental conditions, with
minimal external noise sources to corrupt the signals.
Also, footstep signals do not reveal an identity to other
humans like the face or the voice, making footsteps a
less sensitive mode. Footsteps might prove to be an ideal
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complementary biometric, considering the scenario of a
person walking to other arrangement systems such as
a passport control, door entry system or a fingerprint
scanner. For example, the case of the fusion of footsteps
with face and iris systems at a distance in a security gate
scenario is very appealing [6].

As described in [7], footstep recognition was first
suggested as a biometric in 1977 [8], but it was not
until 1997 when the first experiments were reported
[9]. Since then the subject has received relatively little
attention in the literature compared to other biometrics.
A review is presented in Section 2 covering sensors,
features and approaches to classification. The associated
results are promising and give an idea of the potential of
footsteps as a biometric [10], [11]; however, these results
are related to relatively small databases in terms of
number of persons and footsteps, and this is a limitation
of the work to date.

A database is an essential tool to assess any biome-
tric; therefore, this paper reports experimental results of
footsteps as a biometric on the largest footstep database
to date, with more than 120 people and almost 20,000
signals, enabling assessment with statistical significance.

The main contribution of the present work is the
assessment of footsteps in time, in space and in a
combination of the two. Features extracted in the time
domain include the ground reaction force (GRF), the
spatial average and the upper and lower contours of the
pressure signals, while in the spatial domain 3D images
of the accumulated pressure are obtained. Interestingly,
the performance for the two domains proves to be very
similar, with equal error rates (EERs) in the range of
5-15% for each domain depending on the experimental
setup, and in the range of 2.5-10% for their fusion. Re-
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TABLE 1

Comparison of approaches to footstep recognition.

Method Database Technology Features Classifier Results

Addlesee et al., (UK) 1997
(ORL Active Floor) [9]

300 footsteps, 15 per-
sons

Load cells GRF HMM ID rate: 91%

Orr and Abowd, (USA) 2000
(Smart Floor) [12]

1680 footsteps, 15 per-
sons

Load cells Geometric from GRF NN ID rate: 93%

Cattin, (Switzerland) 2002 [13] 480 footsteps, 16 per-
sons

Piezoelectric sensors PSD from derivative
GRF

NN Verif EER: 9.5%

Yun et al., (Korea) 2003 (Ubi-
floor) [14]

500 walking seq., 10
persons

Switch sensors Position of stride foot-
steps

MLP neural net. ID rate: 92%

Jung et al., (Korea and Japan)
2004 [15]

440 footsteps, 11 per-
sons

Pressure mat 2D COP trajectories HMM-NN ID rate: 80%

Suutala et al., (Finland) 2004/05
(EMFi Floor) [16]

440 footsteps, 11 per-
sons

Electro mechanical
film

Geometric from GRF,
and FFT

MLP neural net.
and LVQ

Best ID rate of 92% us-
ing 3 footsteps as test

Middleton et al., (UK) 2005 [2] 180 walking seq., 15
persons

Switch sensors Stride length, cadence
and heel-to-toe ratio

NN ID rate: 80%

Gao et al., (UK) 2006 [17] 400 footsteps, 11 per-
sons

Load cells Geometric from GRF NN ID rate: 94%

Stevenson et al., (USA) 2007
[18]

85 footsteps, 8 persons Piezoelectric sensors Derivative GRF HMM Verif EER: 20%

Suutala et al., (Finland and
Japan) 2008 [19]

180 walking seq., 9 per-
sons

Switch sensors length, width, stride
length and duration

GP ID rate: 64% for 1 foot-
step, 84% for sequence

Suutala and Roning, (Finland)
2008 (EMFi Floor) [10]

150 walking seq., 10
persons

Electro mechanical
film

Geometric from GRF
and FFT

SVM ID rate: 63% for 1 foot-
step, 92% for 6 footsteps

Vera-Rodriguez et al., (UK)
2007/09 [20]

3174 footsteps, 41 per-
sons

Piezoelectric sensors Geometric and holistic
from derivative GRF

SVM Verif EER: 9.5% for De-
vel, 13.5% for Eval

Qian et al., (USA) 2010 [3] 5690 stride footsteps,
11 persons

FSR mat Geometric from pres-
sure and 2D COP trajec-
tories, stride length of
stride

FLD (LDA) ID rate: 92%

Vera-Rodriguez et al., (UK and
Spain) 2010 [21]

9990 stride footsteps,
127 persons

Piezoelectric sensor
mat

Holistic pressure-time
info

SVM Verif EER: 5-15% de-
pending on exp. setup

Yun, (Korea) 2011 (UbifloorII)
[4]

500 walking seq., 10
persons

Photo interrupter
sensors

Foot centers, heel-to-toe
time, geometric from
footstep sequence

MLP ID rate: 96%

Vera-Rodriguez et al., (UK and
Spain) 2011 [22]

9990 stride footsteps,
127 persons

Piezoelectric sensor
mat

Holistic pressure-space
info

SVM Verif EER: 5-15% de-
pending on exp. setup

Proposed method 9990 stride footsteps,
127 persons

Piezoelectric sensor
mat

Fusion of time and
spatial holistic pressure
info

SVM Verif EER: 2.5-10% de-
pending on exp. setup

sults achieved are considerably better compared to other
existing methods (e.g. [3], [10]). This paper also consid-
ers some important factors for footstep recognition not
included in previous related works such as the influence
of the quantity of data used in the training stage of
the system, which serves to simulate various potential
applications, and the effect of the sensor density in the
performance.

The paper is organized as follows. Section 2 describes
related work in order to put ours in context. Section 3
introduces the collection process of the database and
the signals obtained. Feature extraction is covered in
Section 4, paying special attention to the spatial and
temporal components of the signals. Section 5 described
the experimental protocol followed. Experimental results
are presented and analyzed in Section 6, and finally
conclusions and future work are drawn in Section 7.

2 RELATED WORK

A general classification of biometrics is often made into
physiological and behavioural modes (see for example
[23]). Clearly this is not an orthogonal classification
since most of the behavioural modes are affected by
physiological characteristics. It is interesting to note that
in the case of the behavioural modes the main biometric
information is carried along the time axis of the signals.

Footstep signals, and others such as gait or talking
face, can be seen as dual biometrics due to the fact that
information can be extracted from both the physiological
and behavioural components to carry out person recog-
nition. In this paper we present a new approach to the
study of footstep signals, viewing them in the orthogonal
dimensions of time and space (named as BTime and
BSpace respectively throughout the remainder of this
paper).

This duality of footsteps is reinforced in the literature
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when reviewing the two main approaches, namely: i)
switch sensors [2], [4], [14], [19], and ii) pressure sen-
sors [9], [12], [13], [17], [20], [24]. Switch sensors have
been used with a range of densities from 50 to 1000
sensors per m2; this is much higher than the density
of approaches using pressure sensors. Approaches based
on switch sensors have focused more on the study of the
spatial distribution of footstep signals (BSpace), while
approaches based on pressure sensors have focused
more on the study of the footstep pressure dynamics
along the time course (BTime).

As an exception, Jung et al. [15] used a comercial
pressure mat with a high sensor density, but only used
the spatial domain information. Very recently, Qian et
al. (2010) [3] also used a comercial pressure mat ex-
tracting the center of pressure (COP) information and
adding the pressure information, therefore using time
and spatial pressure information only for some selected
key points (geometric approach). Section 6.3.1 compares
results with our proposed method.

Table 1 presents a comparison of the published work
on footsteps as a biometric with reported systems in
the rows in a chronological order and parameters in the
columns.

The second column of the table shows database sizes.
As can be seen, a common characteristic of most of
the referenced works is the relatively small size of
the databases in relation to other biometric evaluations
where persons are normally counted in hundreds or
thousands and the number of tests perhaps in many
thousands. Apart from our initial investigations (41 per-
sons and 3174 footsteps [20]), a maximum number of
16 persons [13] and 5690 footstep examples [3] were
gathered. The experiments reported here are carried out
over the largest footstep to date with 9990 stride footstep
signals from 127 persons.

In each case, except for [2], [17], the databases are
divided into training and testing sets, but none use
independent development and evaluation sets, with ex-
ception of our works [11], [20], [21], [22], a limitation
which makes application performance predictions much
more difficult. In the work that follows, an emphasis is
placed on training/test and validation/evaluation sets.

Identification, rather than verification, was the task
considered in the majority of the above cases. Identi-
fication has the benefit of utilising the available data
to a maximum but suffers from well known scalability
problems in terms of the number of classes in the set.

It is interesting to point out that some systems present
classification results for stride data (consecutive foot-
steps), e.g. [2], [3], [10], while others for a single footstep,
e.g. [12], [20]. In [10] an identification accuracy of 63%
using a single footstep as a test was improved to a 92%
when six consecutive footsteps were used, showing the
benefits of using stride data compared to single footstep
signals.

Regarding the classification, different methods have
been used as can be seen in the table. In [10], Suutala

Fig. 1. Spatial distribution of the piezoeletric sensors.

and Roning presented a comparison of performance for
various classification methods such as KNN, LVQ, RBF,
MLP and SVM, obtaining best results for the cases of
MLP and SVM, which has been reinforced by Yun [4].

3 DATA ACQUISITION

This section describes on the one hand the sensor arran-
gement and the corresponding footstep signals obtained,
and on the other hand the resultant database (SFootBD)
that has been collected.

3.1 Sensor Arrangement and Footstep Signals

The sensor approach developed here combines the cha-
racteristics of a high sensor density and the sampled
pressure obtained from piezoelectric sensors. The first
characteristic enables the extraction of spatial informa-
tion regarding shape and position of the foot (BSpace),
and the second provides the information of the pressure
along the time course (BTime), thus resulting in footstep
signals which contain more information than that avai-
lable from approaches published previously, such as [2],
[12], [19]. Exceptions are [3], [15] which used comercial
pressure mats with high sensor density (10,000 sensors
per m2), but very low time frequency sampling (30-40
Hz).

The system developed is comprised of two sensor
mats positioned to capture one stride for each signature,
i.e. signals from two consecutive footsteps (right foot
then left foot). Each mat measures 45 × 30 cm and
contains 88 piezoelectric sensors, giving a sensor resolu-
tion of approximately 650 sensors per m2; the sampling
frequency associated with each sensor is 1.6 kHz, and
therefore having a capture system with high time and
high spatial resolution for the first time. Figure 1 shows
a diagram of the spatial distribution of the piezoelectric
sensor mats employed to capture the footstep signals.

Footstep signals collected here contain information in
four dimensions, namely: pressure magnitude, time, and
spatial positions X and Y. Figure 2 shows three different
3D plots for an example of a footstep signal reflecting its
three stages: Figure 2(a) shows the differential pressure
for an instant in the first stage of the footstep, i.e. when
the heel strikes the sensor mat, Figure 2(b) shows the
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Fig. 2. Spatio-temporal footstep signal in different stages. (a) The time derivative of the pressure against the position

X and Y at the first stage of footstep; (b) and (c) the same but for second and third stages of the footstep signal.

same but for an instant in the second stage of the foot-
step, i.e. when the whole foot rests over the sensors, and
Figure 2(c) the same but for an instant in the third stage
of the footstep, i.e. when the heel leaves the surface and
the toes push off the sensor mat. It is worth noting that
the output of the piezoelectric sensors is the differential
pressure in time; thus, it can be seen in Figure 2(c) that
there are negative values.

In this paper, footstep signals are studied in the time
and spatial domains separately, which enables compari-
son with previous related work and gives an indication
of the discriminative power of the signals in each do-
main.

3.2 Database Collection and Labelling

The main objective regarding database size was to collect
a database as large as possible; therefore, an automatic
capture system was developed in order to collect the
biometric data without the need for human intervention.
The first session of each person was a supervised en-
rolment, where a supervisor explained how to provide
the footstep data. In this sense persons were asked to
walk at a natural speed a few meters before the sensor
mats in order to produce more realistic signals. Persons
were encouraged to return as often as they could to
provide further sample signals. These following sessions,
and therefore the majority of the database was collected
on an unsupervised mode. The enrolment of persons in
the system was continuous during the collection period.
Also, different people provided data during different
periods of time and in different number of sessions,
because as stated before, the objective was to obtain a
large database. More details about the database can be
found in [22].

A characteristic of the footstep signals is that they do
not reveal human identity directly, or in other words,
they can not be used by humans to carry out recognition.
Thus, apart from the footstep signals, other support bio-
metric modes were captured simultaneously with same

Fig. 3. Four sources of data captured, clockwise from

top left: footstep signals, speech identifier, face and gait

videos. Footstep is the primary mode, the other three are

support modes. The four modes are connected with a

common timestamp.

timestamps. These support modes are speech, face and
gait. They were used to assist with both manual and
automatic database labelling, and in the cross-checking
of apparent label anomalies (suspected errors that might
arise during experiments).

Another benefit of having the extra modes is the
opportunity to assess them as biometrics in a multimodal
manner. Figure 3 illustrates the setup of the capture
system with four biometric modalities which are all
acquired with the same timestamps.

The speech mode was deemed to be very appealing
for the automatic labelling of the database using speaker
recognition [25]. This procedure has resulted in the
largest footstep database to date with over 120 people
and almost 20,000 valid footstep signals (i.e. 10,000
stride signals) leading to a more reliable assessment of
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Fig. 4. Number of footstep signals against number of

persons in the footstep database.

footsteps as a biometric. The database was collected in
various sessions per user during a period of 16 months.

A characteristic of the labelled database considered
here is that it contains a large amount of data for a
small subset of subjects (>200 signals per subject, for
15 subjects), which could serve to simulate a smart
home scenario; and a smaller quantity of data for a
larger group of subjects (>20 signals per subject, for 54
subjects), which could serve to simulate a security access
scenario. This reflects the mode of capture which was
voluntary and unsupervised. Figure 4 shows the number
of stride footstep signals per person in the database. The
footstep database (SFootBD) is available to the research
community in [26].

It is interesting to note that persons were allowed
to walk over the footstep sensors with different types
of footwear (shoes, trainers, boots, barefoot, etc.) and
carrying weights such as office bags, which makes sig-
nals collected to be more realistic. This is in contrast to
most databases in the field which only contain persons
walking barefoot.

4 FEATURE EXTRACTION

This section describes the feature extraction process with
a special emphasis on the time and spatial information
contained in the footstep signals. These two types of
features are extracted independently in order to be com-
pared, and are fused in a later stage described in Section
6.2.

4.1 Time Domain Features (BTime)

The most popular time domain feature in related works
is the ground reaction force (GRF) [3], [9], [10], [12],
[16], [17]. In most of the cases, some key points are
extracted from the GRF profile using the time and the
pressure value coordinates as features together with
some distance measures between some of them (geomet-
ric approach) [7].

In the case considered here, the time domain informa-
tion of the footstep signals is extracted from the differen-
tial pressure of the sensors along the time axis without

considering their spatial distribution, similar to the work
in [21]. Figure 5(a) shows an ensemble of signals from
an example single footstep. Each profile represents the
differential pressure against time for each of the 88
sensors across one footstep. In the preprocessing stage,
an energy detector across the 88 sensors of the signals
is used to obtain the beginning of each footstep in order
to align the signals to a common time position.

Figure 5(b) shows the global GRF profile for the
example footstep considered here. In this case, as the
piezoelectric sensors provide the differential pressure,
the global GRF is obtained by accumulating each sen-
sor signal across time (individual GRF, GRFi); then an
average of the 88 single profiles is computed to provide
a global GRF (GRFT ).

Formally, si[t] is the output of the piezoelectric sensor
i, i = 1,...,88 and t = 1,...,Tmax are the time samples. Tmax

was set to a value of 2000 time samples large enough
for all footstep signals considered. Then, the individual
GRF (GRFi) and the global GRF (GRFT ) are defined by:

GRFi[t] =
t∑

τ=0

(si[τ ]) (1)

GRFT [t] =
1

88

88∑

i=1

(GRFi[t]) (2)

Apart from the GRFT , two other feature approaches
are studied here. The first comes from a spatial average
of the 88 sensors of the mat to produce a single profile.
Similar features were also extracted in [13], [18]. An
example is shown in Figure 5(b).

save[t] =
1

88

88∑

i=1

(si[t]) (3)

The second is a novel approach which uses the upper
and lower contour coming from the maxima and minima
of the sensors for each time sample independently of the
spatial distribution of the sensors. An example is shown
in Figure 5(c). This also gives valuable discriminative
information as can be seen in the results shown in
Section 6.1.

sup[t] =
88

max
i=1

(si[t]) (4)

slo[t] =
88

min
i=1

(si[t]) (5)

These two signals are then concatenated into one
contour signal scon[t] = [sup[t], slo[t]]. Equations 2 to
5 lead to a high dimensionality in the time domain
with 2000 samples per footstep signal (1,25 seconds).
Data dimensionality is further reduced using principal
component analysis (PCA). Empirically, good develop-
ment results are obtained when retaining approximately
96% of the original information by using the first 120
principal components for each feature approach.
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Fig. 5. Time domain (BTime) feature extraction: (a) Differential pressure directly from the 88 sensors, against time.

(b) Normalised ground reaction force profile from (a) as defined in Equation 2, and normalised spatial average of the

88 sensors as defined in Equation 3. (c) Upper and lower contour profiles from (a) as defined in Equations 4 and 5

respectively.
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Fig. 6. Spatial domain (BSpace) feature extraction: (a) Accumulated pressure (AP) of each sensor across one footstep.

(b) Result after smoothing image from (a) with a Gaussian filter. (c) Resultant after alignment and rotation to a common

centre of signals from (b).

4.2 Spatial Domain Features (BSpace)

Related works have extracted spatial domain informa-
tion from capture systems working with switch sensors
and therefore no pressure information is included. The
most common features are the length and width of the
footstep signals and the length and the relative positions
of the stride footsteps [2], [14], [19].

The spatial domain information extracted here is a
novel approach which considers the distribution of the
accumulated pressure along a footstep signal in the
spatial domain. In this case, the individual GRF (GRFi)
of each footstep sensor is integrated along the time axis,
obtaining a single value of the accumulated pressure
(APi) for each sensor of the array for a footstep signal,
similar to the work in [22]. The accumulated pressure
(APi) is the measure used to study the distribution of the
pressure across the spatial domain of the signals, and it
is defined by:

APi =

Tmax∑

t=0

(GRFi[t]) (6)

Figure 6(a) represents the 88 values of APi in the X
and Y spatial axes for an example footstep signal. In

this case, we have used an image resolution of one pixel
per mm2, giving the values of APi to the positions with
sensors and zero values to the rest of the image, keeping
this way the original geometry of the sensors.

It is worth noting that Equations 2 and 6 use the 88
profiles of GRFi to extract time and spatial information
respectively. In the first case, the 88 profiles of GRFi are
averaged to produce a global GRF (GRFT ), i.e., pressure
information in the time domain (see Figure 5(b)). In the
second case, the total sum of the time values of each
GRFi profile give 88 values of the accumulated pressure
(APi), i.e., pressure information in the space domain (see
Figure 6(a)).

The sensor-derived images are then processed to give
a form suitable for subsequent pattern matching, i.e.,
rotation and alignment to a common position is needed
for all the spatial images extracted from the database.
The spatial sensor resolution of the array only allows
a ±60 degrees rotation for perfect matching, which is
too large; therefore, the images were smoothed using
a Gaussian filter (defined in Equation 7) in order to
obtain a continuous image. Bicubic spline interpolation
was also tried but better results were obtained using the
Gaussian filter. Figure 6(b) shows the resultant image for
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the given example after the Gaussian filter. Best results
were obtained using values of x,y = 1,...,100 and σ = 14
for the filter.

G(x,y) =
1

2πσ2
e
−

x
2+y

2

2σ2 (7)

These images are then aligned and rotated based on
the points with maximum pressure, corresponding with
the toe and the heel areas respectively. The resultant
image is shown in Figure 6(c), which is used to carry out
the biometric classification. For the case of experiments
that make use of the stride footstep, the relative angle
between the left and the right footstep is also considered
as a feature.

The above process results in an image with high di-
mension (necessary for accurate rotation and alignment).
The next step is then to reduce this dimension prior to
the classification. The resulting images have a dimension
of 280 × 420 = 117,600 pixels for the single footstep,
and this is reduced using principal component analysis
(PCA) to 140 principal components (keeping 96% of the
original information).

Regarding the classifier, in both cases of time and
spatial domain features a support vector machine (SVM)
[27] was adopted with a radial basis function (RBF) as
the kernel, due to very good performance in previous
studies in this area [10], [11].

5 EXPERIMENTAL PROTOCOL

This section describes the experimental protocol follo-
wed to assess footsteps as a biometric. Special attention
has been paid to the partitioning of the data into three
sets, namely Training, Validation and Evaluation sets, the
first being used for model training and the second two
for testing.

As an assessment protocol of the footstep recognition
evaluation, index files were created to provide a list of
the footstep signals to use in each one of the training
and test datasets following the structure utilised by the
international NIST SRE [28].

The Training set is comprised of a set of in-class data
used to train one model per client, and a set of out-class
data from a cohort of impostors, which is used in the
training process to obtain better statistical models. PCA
transformation is only carried out with the data from the
Training set, and the coefficients of the PCA transforma-
tion are then applied to the data of the Validation and
Evaluation sets to reduce their dimensionality too. Also,
SVM is used in the training stage to train a model per
client.

Validation and Evaluation sets are two test sets, the
main difference being that the Evaluation set is a balan-
ced set comprised of the last 5 footstep signals provided
by persons P1 to P110, while the Validation set is an
unbalanced set which contains a larger number of test
signals for subjects included in the Training data. The
Validation set is used to tune the system, i.e., type of

TABLE 2

Database configuration for the case of 40 models and 40

reference signals per model.

Training Set Validation Set Evaluation Set

Clients P1 – P40 P1 – P40 P1 – P40

Signals per client 40 170 (8-650) 5

Total signals clients 1,600 6,697 200

Cohort impostors P41 - P127 P41 - P78 P41 - P110

Total signals impostors 763 380 350

Total signals per set 2,363 7,077 550

Total 9,990

40

40

700

127

Clients

Number of Persons

N
u

m
b

e
r 

o
f 

S
ig

n
a

ls
Cohort
Impostors

Validation Set

Evaluation Set

Training Set

12711078

Fig. 7. Number of footstep signals against number of per-

sons in the database. Diagram of the database with the

different divisions of Training, Validation and Evaluation

sets for the benchmark division. Numbers are described

in Table 2.

features, number of PCA components, SVM parameters,
etc., in order to obtain the best results. The Evaluation
set is comprised of unseen data, not used in the devel-
opment of the system.

It is to be stressed that these sets reflect the chronologi-
cal order of the data capture. Therefore, the training data
is comprised of the first data provided by each user, and
the data used in the Evaluation set is the last collected.
This is a realistic approach reflecting actual usage in
contrast to previous related works, e.g., [2], [3], [11], [14],
which randomly divide the data into training and test
sets, or use a leave-one-out approach.

Results described in Sections 6.1 and 6.2 relate to a
benchmark division of the database which is set to use
40 footstep signals per client to train the models having
available a group of 40 clients (and therefore 40 models).
Table 2 shows the numbers of data in each set in more
detail, and Figure 7 shows a diagram of the partitioning
of the database. Each signal from the test sets is matched
against all the trained models (40 models in this case).
As can be seen in the table, the total number of stride
signals in the database is 9990, i.e. 19,980 single (right
and left) signals in total.
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Sections (6.3 and 6.4) report experimental results in
the form of error rates against quantity of data used to
train each model. In this case the database is divided
in 11 configurations of different numbers of clients and
data per client. The influence of the quantity of data
used to train and test the system is a key factor in
any performance assessment; while common in more
established biometric modes this aspect is not considered
in many cases of footstep studies, for example in [3], [9],
[12], [13], due to limited numbers of data per person in
the databases. Different applications can be simulated
using different quantities of data in the client models.
In the present work we consider applications such as
smart homes and access control scenarios. In the case of
a smart home there would be potentially a very large
quantity of training data available for a small number
of clients, while in security access scenarios such as a
border control, limited training data would be available,
but potentially for a very large group of clients.

6 EXPERIMENTAL RESULTS

This section describes the experimental results obtained
for the assessment of footsteps as a biometric. Results
relate to the comparative analysis of both BTime and
BSpace feature approaches, their fusion, and some other
important aspects such as the influence of the quantity
of data used to train the models in the performance, the
difference between using single signals (right, left) or
stride signals (connected footsteps), the influence of the
sensor density and a final evaluation of the recognition
system.

Results are presented with DET curves [29], using the
equal error rate (EER) as the performance measure for
verification applications. Also, CMC curves are used in
Section 6.2 to show the performance for the case of an
identification scenario.

6.1 Comparative Analysis of BTime and BSpace

Approaches

This section presents the comparative analysis of the
two BTime and BSpace feature approaches. Figure 8(a)
shows the DET curve profiles for the BTime approach,
which is described in Section 4.1. This is shown for the
three features considered, i.e., the global GRF, the spatial
average, and the contour. Also a fourth plot in the figure
shows the result of the fusion at the feature level of the
three time features, which is carried out concatenating
the features of the single approaches after PCA. These
results are generated for stride footsteps, which are
comprised of concatenated right and left footstep signals.
The benchmark division of the database shown in Table
2 is considered here.

As can be seen, very similar results are obtained for
the GRF and spatial average features with EERs of 15.5%
and 15.8% respectively. The contour feature approach
provides a better result with an EER of 12.7%. In any

case, the fusion outperforms the three single approaches,
obtaining an EER of 10.5%.

In a similar way, Figure 8(b) shows the DET curve re-
sult obtained for the case of the spatial domain approach
(BSpace), described in Section 4.2. An EER of 10.6% is
achieved in this case, which is surprisingly very similar
to the result obtained for the fusion of the three time
domain features, which can also be seen in Figure 8(b).

This is a directly comparative assessment of the time
and spatial information contained in the footstep signals,
as the same protocol has been used to carry out the
experiments. This implies that the time and spatial infor-
mation extracted from the footstep signals have similar
discriminatory properties.

A further analysis has been carried out to study
how statistically relevant are BTime and BSpace feature
approaches. First, the Pearson correlation coefficient of
the matching scores of both approaches was calculated
obtaining 0.42 (where 1 would mean they are completely
correlated and 0 completely uncorrelated). Second, a t-
test has been carried out at the score level to study the
statistical difference between the two approaches. As
a result, we obtain p<0.001, which means that scores
from both approaches are statistically different with a
95% percent of significance level. Also, the scatter plot
for the scores of BTime and BSpace is shown in Figure
8(c). Therefore, we can conclude that the two classes
of features are statistically relevant, and fusing the two
systems can lead to a performance improvement, as
reported in [30].

6.2 Fusion of BTime and BSpace

This section is focused on the fusion of the time and
spatial information of the footstep signals. In the case
considered here, the fusion of BTime and BSpace approa-
ches has been carried out at the feature and score levels.
For simplicity, same weights were applied to the two
cases.

In the feature-level fusion, the feature sets originated
from the different algorithms described in Sections 4.1
and 4.2 are fused into a single feature vector. PCA is used
in this case to reduce the dimensionality of the feature
vector and then it is introduced to a SVM classifier to
provide the new matching scores.

In the score-level fusion, the scores originating from
the BTime and BSpace approaches are combined to
generate a new score. As stated in [31], fusion at the score
level is the most common approach due to the ease in
accessing and combining the scores generated by diffe-
rent classifiers. In this paper, different combination rules
such as the sum, product, max and min rules have been
compared following previous works [32]. These fixed
combination rules are simple, computationally fast and
provide good performance compared to other categories
such as classifier-based as stated in [31], [33].

Figure 9(a) shows the DET curves obtained for the
cases of the fusion carried out at the feature-level and
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at the score-level using the sum, product, max and
min rules. As can be seen, the best performance for
the score-level fusion corresponds to the case of the
product combination rule with an EER of 7.2%. This also
gives a slightly better performance that the fusion at the
feature-level (7.5% EER), therefore results achieved in the
following sections relate to the score-level fusion using
a product combination rule.

Figure 9(b) shows a comparison of performance for
the case of the stride footsteps for BTime, BSpace and
their fusion at the score-level. Results improve for the
fusion an absolute average of 3.3% of EER, which is very
significant.

Figure 9(c) shows the corresponding CMC curves,
which report the expected performance in an identifi-
cation application. As can be seen, results for BTime
and BSpace are similar obtaining rank 1 of 0.58 and 0.62
respectively, and rank 5 of 0.84 in both cases. When the
fusion at the score level is applied, the results improve
significantly achieving a rank 1 of 0.75 and a rank 5 of
0.89.

6.3 Other Important Aspects

This section is focused on some other important aspects,
which are not common in previous studies in the field
of footsteps as a biometric. The factors studied here are
the influence of the quantity of data used to train the
models in the performance, the difference between using
single signals (right, left) or stride signals (connected
footsteps) and the influence of the sensor density in the
performance.

6.3.1 Quantity of Data

As described previously, the influence of the quantity
of data used to train and test the system is key in
any performance assessment, but this aspect is not been
considered in many cases of footsteps studies. A charac-
teristic of the database considered here is that it contains
a large amount of data for a small subset of subjects
(>200 signals per subject, for 15 subjects), and a smaller
quantity of data for a larger group of subjects (>20
signals per subject, for 54 subjects). Therefore, many
experiments can be carried out using different divisions
of the database in terms of quantity of data used to
train the models varying also the number of clients. This
could serve to simulate some potential applications for
footsteps such as smart homes or security access.

In this sense, the database was divided in 11 different
configurations. Table 3 shows the relation between the
number of signals used to train the client models and the
number of clients available in each case. Note that there
are 75 client models with 1 signal as training because at
least 10 signals are required for the Validation set and at
least 5 for the Evaluation set. Users 76 to 127 provided
a smaller amount of data, which was used as data from
impostors.

TABLE 3

Relation between number of signals in the client models

and number of clients available in each case.

Signals/model 1 10 20 40 60 80 100 200 300 400 500

Client models 75 60 54 40 30 24 20 15 9 7 5

Figure 10(a) shows a comparison of performance for
the case of the stride footsteps for BTime, BSpace and
their fusion at the score-level. The figure shows the
recognition performance in terms of EER against the
different quantities of stride footstep signals used to train
the models. The top abscissa axis shows the number of
client models trained.

All three plots have a similar overall shape with i)
an initial steep fall from approximately 35% EER to 15%
EER for the cases of BTime and BSpace and to 11% EER
for their fusion when using 1 to 10 footsteps for training,
ii) a smooth knee curve when increasing the number of
signals used in the models from 20 to 80 where the error
rates change less rapidly from 13 to 8.5% EER for the
cases of BTime and BSpace, and from 9% to 5.5% EER
for the case of the fusion; and iii) relatively flat profiles
where error rates are around 4.5-5% EER for BTime and
BSpace and around 2.5% EER for the case of the fusion
when using 500 signals to train the reference models.
EER results obtained on the left part of the figure could
serve to estimate the performance of footstep recognition
in a security access application obtaining results in the
range of 5% to 10% EER. On the other hand, results
on the right part of the figure could serve to estimate
the performance of footstep recognition in a smart home
application obtaining results in the range of 2.5% to 4%
EER.

A very recent publication in the field of footstep recog-
nition by Qian et al. (2010) [3] achieves recognition results
of around 7.5% of error rate for the case of using 11
clients and 362 stride footsteps to train each client model.
This would be more or less comparable with our case
when using 9 clients and 300 stride signals for training,
in which we achieve 3.5% EER. A reason for this better
performance in our case could be because we use holistic
feature approaches for BTime and BSpace and then we
carry out their fusion; on the other hand they use a
geometric approach selecting a few key points of the
center of pressure (COP), using their spatial coordinates
and the pressure value, therefore not considering a large
amount of information contained in the signals.

6.3.2 Single vs. Stride

The study of single vs. a stride (consecutive footsteps)
footsteps has been carried out in previous works such
as [2], [4], [10], always obtaining better results for stride
compared to single footsteps. In our case, we can only
compare the performance between single and two con-
secutive footsteps.

Figure 10(b) shows the results obtained for the case of
the score-level fusion of BTime and BSpace for the single
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Fig. 11. Density of the array of piezoelectric sensors.

Selected sensors for Density 1 and Density 2. Example

of a 9 UK size foot (27.5 cm long).

(right and left) and the stride footsteps. Plots follow the
same trends, but with a significant improvement of the
performance for the case of the stride footsteps with an
average of 2.5% EER compared to the single footsteps. As
in related works, better recognition performance could
be achieved with the concatenation of a sequence of
footstep signals.

6.3.3 Sensor Density

This section studies the influence of the sensor density,
and how it affects the performance, as this has not
been considered in related works. It is obvious that if
the sensor density is higher, more information can be
extracted, but up to a spatial sampling limit.

Figure 11 shows a diagram of the geometry and
density of the piezoelectric sensors, for an example 9 UK
size foot (27.5 cm long). A standard 88 sensor density (∼
650 sensors per m2) plus two sub-sampling conditions
are considered. The sub-sampling process is illustrated
in the figure with the geometry of the sensors used for
Density 1 and for Density 2.

Density 1 reduces the original sensor density by a
34%, i.e. from 88 to 58 sensors (∼ 430 sensors per m2),
and Density 2 reduces the original sensor density by
a 66%, i.e. from 88 to 30 sensors (∼ 220 sensors per
m2). Density 2 was the optimal sampling distribution
having the sensors in a hexagonal array. In order to
have another sampling distribution with a higher sensor
density, sensors not used in Density 2 were used to form
Density 1.

Figure 10(c) shows EER results for the cases of BTime,
BSpace and their fusion for the three densities consi-
dered. Results relate to the benchmark division of the
database shown in Table 2. As can be seen, the reduction
of the sensor density affects significantly the recognition
performance. Also, the figure shows a much worse result
for BSpace compared to BTime approach for the cases of
Density 1 and 2. This this due to fact that BSpace features
depend more directly on the sensor density.

TABLE 4

Comparison of EER in % for BTime, BSpace and their

fusion for the cases of Validation/Evaluation and

single/stride footsteps using 40, 100 and 500 signals to

train the client models.

EER in %
Single Footstep Stride Footstep

40 100 500 40 100 500

Valid

BTime 14.1 11.9 8.1 10.5 8.6 5

BSpace 13.6 11 7.1 10.6 7.6 4.1

Fusion 9.9 7.7 4.5 7.2 5.3 2.6

Eval Fusion 15.2 13.4 7.9 10.7 8.9 4

The fusion of both feature approaches provides the
best results in any case. The trends of EER are similar to
the ones obtained for the case of BTime, and much better
than for the case of BSpace. It can be concluded that at
least 650 sensors per m2 are required to give the good
performance presented in this paper. Given the trends of
profiles in Figure 10(c), a higher density might provide
even better results.

6.4 Evaluation of the System

This section describes the experimental work using the
Evaluation test set. This evaluation is carried out at
this stage for the best working configuration obtained
in the Validation set. Figure 12 shows the results for
the Evaluation test set, which is comprised of the last 5
signals provided by 110 persons. This data was reserved
for this trial assessment, and has not been used in any
form previously.

As could be expected, the performance obtained for
the Evaluation is worse compared to the Validation set.
Results of 12.1% EER are obtained for the case of 10
signals per model (60 models), which improves to 4%
EER for the case of 500 signals per model (5 client
models). A reason for this difference in the performance
could be that the signals comprising the Evaluation set
are the last signals provided by the users and therefore
more likely to be more different from the data used in
the reference models.

Performance results obtained on the left part of the
figure, in the order of 10-12% EER, are to be expected
in applications such as security access. In applications
such as smart homes better performance results in the
order of 3-6% EER can be expected, which correspond
to the right part of the profiles in the figure.

As an overview of the results achieved, Table 4 shows
a comparison of performance in terms of EER for the ex-
periments described in this paper. Three working points
have been chosen from profiles in Figures 10(a), 10(b)
and 12; these are: 40, 100 and 500 signals used to train
the client models, for 40, 20 and 5 clients respectively.
The table shows EERs for the cases of single and stride
footsteps, and for Validation set (BTime, BSpace and
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Score-Level fusion) and Evaluation set (only for the case
of the fusion).

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This paper studies footstep signals as a biometric based
on the largest footstep database to date with more than
120 persons and almost 20,000 signals.

The main contribution of the present work is the
assessment of footsteps in time, in space and in a com-
bination of the two. This is in contrast with the great
majority of the related works, which either use time
or spatial information from the signals due mainly to
the limitation of the capture systems. Interestingly, the
performance for the two domains proves to be very
similar, with equal error rates (EERs) in the range of
5-15% for each domain depending on the experimental
setup, and in the range of 2.5-10% for their fusion. To
our knowledge, these are the best results achieved for
footstep recognition to date.

The experimental protocol is designed to study the
influence of the quantity of data used to train the refe-
rence models, with a steep fall to 11% EER when using
1 to 10 signals, then a smooth knee curve from 9 to
6% EER when using 20 to 80 signals, and relatively flat
profiles thereafter for the case of the fusion of BTime and
BSpace and the stride footstep. This serves to predict the
performance for footsteps in applications such as smart
homes or border control scenarios for the first time.

Another interesting finding is an average relative im-
provement of 25% EER achieved for stride footsteps
compared to single (right or left) footsteps, which sug-
gests that performance could be further improved with
the concatenation of a sequence of footstep signals.

Also, this paper studies the influence of the sensor
density in the performance, showing a significant incre-
ment of the EER when the sensor density is reduced.

This is more accentuated for the case of BSpace (average
of 2.8 times greater). Note 650 sensors per m2 was the
maximum considered here due to physical limitations;
results suggest that higher density might improve error
rates.

7.2 Future Work

As footsteps are a relatively new biometric, there is large
amount of research that can be carried out in this field.

Section 6.2 describes the fusion of the time and spatial
domain information of the footstep signals. Significant
improvements of 3% EER are reported with fusion at
the feature and score levels. An extension to the work
presented would be to combine the spatio-temporal
information of the signals from the sensor level.

Experiments reported in this work relate to the si-
tuation where the training data and the test data are
in logical time sequence to reflect real applications, i.e.
all the model data are recorded before the test data.
Even better results could be obtained for the case of
randomising the data used in the training and test sets,
like some previous works such as [2], [3], [14]. This
would produce artificially good results, but it would
serve to analyze the effect of the time gap between
training and test data.
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(a) BTime Approaches
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(b) Comparison BTime-BSpace
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(c) Scatter Plots BTime-BSpace

Fig. 8. (a) DET curves for BTime approaches and their fusion. (b) Comparison of performance of BTime and BSpace

approaches. (c) Scatter plots of scores for BTime and BSpace.
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(a) Fusion Approaches
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(b) DETs BTime, BSpace and Fusion
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(c) CMCs BTime, BSpace and Fusion

Fig. 9. (a) Comparison of performance for the four combination rules used in the score-level fusion and the feature-

level fusion. (b) Comparison of performance of BTime, BSpace and their fusion at the score-level. (c) Comparison of

CMC curves for an identification application.
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(a) Comparison of BTime, BSpace and Fu-
sion
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(b) Score-Level Fusion BTime·BSpace
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(c) Sensor Density

Fig. 10. (a) Comparison of BTime, BSpace and their fusion for stride footsteps with EER vs. signals used per client

model. (b) Comparison of score-level fusion of BTime and BSpace approaches for single and stride footsteps. (c)

Comparison of EER against three sensor densities for stride footstep for BTime, BSpace and their fusion. Baseline

density (650 sensors per m2), Density 1 (430 sensors per m2) and Density 2 (220 sensors per m2).


