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Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis
characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation,
inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis
and hepatocellular carcinoma.

Methodology and Results: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that
show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing
diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially
expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis
revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To
understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of
this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in
silico effects of potential drug targets for steatohepatitis.

Conclusions: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an
experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-
hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are
perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic
changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being
perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J
and C57BL/6J on the one hand and PWD/PhJ on the other.

Citation: Pandey V, Sultan M, Kashofer K, Ralser M, Amstislavskiy V, et al. (2014) Comparative Analysis and Modeling of the Severity of Steatohepatitis in DDC-
Treated Mouse Strains. PLoS ONE 9(10): e111006. doi:10.1371/journal.pone.0111006

Editor: Manlio Vinciguerra, University College London, United Kingdom

Received May 28, 2014; Accepted September 20, 2014; Published October 27, 2014

Copyright: � 2014 Pandey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The experimental data and results from
pathway analysis are included in the Supporting Information files.

Funding: This work was funded by a grant of the Austrian Nationalstiftung and the Austria Wirtschaftsservice GmbH in the framework of the IMGuS research
program (Institute for Medical Genome Research and Systems Biology, Vienna) and by the Max Planck Society. Co-author Ingrid Osprian was employed by
BIOCRATES Life Sciences AG during the runtime of the IMGuS project where she did the metabolic analysis presented in this manuscript. BIOCRATES Life Sciences
AG provided support in the form of salary for author Ingrid Osprian, but did not have any additional role in the study design, data collection and analysis, decision
to publish, or preparation of the manuscript. The specific role of this author is articulated in the ‘author contributions’ section.

Competing Interests: Co-author Ingrid Osprian was employed by BIOCRATES Life Sciences AG during the runtime of the IMGuS project where she did the
metabolic analysis presented in this manuscript. There are no patents, products in development or marketed products to declare. This does not alter the authors’
adherence to all the PLOS ONE policies on sharing data and materials.

* Email: wierling@molgen.mpg.de

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a major cause of

chronic liver damage in western countries and dependent on

genetic and environmental factors. NAFLD can be considered as

the hepatic manifestation of the metabolic syndrome and is linked

to visceral obesity and has a higher prevalence among people with

hyperlipidemia, hypertension, hyperglycemia and insulin resis-

tance [1,2]. Advanced stages of NAFLD, such as steatohepatitis,

ultimately result in fibrosis and cirrhosis and can finally lead to

liver failure or hepatocellular carcinoma (HCC) [3]. The

importance of nonalcoholic steatohepatitis (NASH) in public
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health in the western world is demonstrated by the massive

increase of obesity and type 2 diabetes mellitus, which are key

components of the metabolic syndrome [4].

The molecular basis of complex diseases, such as NASH, is

poorly understood and its analysis requires a detailed understand-

ing of the underlying metabolic and regulatory processes on the

molecular level. Steatohepatitis is characterized by alterations in

the liver, such as steatosis, ballooning of hepatocytes, apoptosis,

protein aggregates in hepatocytes (Mallory-Denk bodies), pericel-

lular fibrosis, and predominantly polymorphonuclear granulocytic

inflammation [3]. Certain features of steatohepatitis can be

reproduced to a variable extent in different mouse models by

various treatments like chronic intoxication with DDC (5-

diethoxycarbonyl-1,4-dihydrocollidine), methionine- and choline-

deficient diet, alcohol or high fat diet [5,6].

Metabolites can be seen as end points of perturbations occurring

at the gene level, so that changes of gene expression might to some

extent also relate to changes in metabolite concentrations. The

metabolic activity changes can be justified from transcript profiles

based on the fact that mRNA is translated into a protein, e.g.,

working as an enzyme, thus changing metabolic flux of its

catalyzed reaction [7]. Analysis of experimental data from cellular

levels, i.e., transcriptomics, proteomics, fluxomics, and metabo-

lomics show that there is not a high overall correlation between the

abundance of RNA and its encoded protein, and between enzyme

abundance and their respective catalyzed flux [7]. However, for

regulated metabolic pathways the changes of RNA and protein

abundances were in accordance with changes in reaction fluxes

[7]. Hence, models integrating metabolic pathways and gene

expression data may be used for in silico studies to predict changes

in metabolite levels. Several tools exist to perform pathway

analysis of expression and/or metabolic data that provide

reasonable candidate pathways for subsequent modeling [8,9].

Past studies already used combined analysis of gene expression and

metabolite data for the identification of, e.g., a genetic network of

liver metabolism [10], biomarkers of type 2 diabetes [11], and

disease related active pathways [12].

Herein, we studied transcriptomics and metabolomics data of

mice developing NASH-like phenotypic features. We fed three

genetically different mouse strains A/J, C57BL/6J, and PWD/PhJ

(henceforth AJ, B6 and PWD) a DDC-supplemented diet. These

mouse strains belong to two different subspecies and therefore

cover a broad genetic variety. AJ and B6 are classical laboratory

mouse strains mainly of Mus musculus domesticus origin, whereas
PWD is a wild-derived strain mainly of Mus musculus musculus
origin. Liver samples of DDC-treated and untreated mouse strains

were analyzed by RNA sequencing (RNA-Seq) providing com-

prehensive mRNA expression profiles. Furthermore, we quantified

selected metabolites by mass spectrometry and some relevant

proteins by reverse-phase protein array (RPPA). Pathway analysis

of these data identified deregulated pathways such as, nucleotide,

beta-alanine and histidine metabolism. Furthermore, strain-

specific deregulation was found in the metabolism of S-adenosyl-

methionine (SAMe). Moreover, the metabolism of arachidonic

acid was identified to be perturbed due to DDC-treatment

irrespective of the strain. For further analysis and correlation of

transcriptomics, protein and metabolite data, a kinetic model of

the arachidonic acid metabolism was developed and fed with

expression data to understand the metabolic changes. The

arachidonic acid metabolic model was further used in an in silico
study to obtain potential drug targets.

Materials and Methods

Mouse experiments and liver preparation
A/J, C57BL/6J and PWD/PhJ (abbreviated AJ, B6, and PWD)

animals were obtained from Jackson Laboratories (The Jackson

Laboratory, Maine, USA) and bred in the animal facility of the

Medical University of Graz under specific pathogen free

conditions. Eight weeks old male animals of each strain were fed

either a standard (control) diet (Ssniff Spezialdiäten GmbH, Soest,

Germany) or the standard diet supplemented with 0.1% DDC (5-

diethoxycarbonyl-1,4-dihydrocollidine, Sigma-Aldrich, Vienna,

Austria) for eight weeks under constant health monitoring.

All animal experiments were conducted according to the

Austrian Animal Welfare Act. All experiments were approved by

the Austrian ministry of science and research after review by the

Austrian animal research committee under animal license number

BMBWK-66.010/0047-BrGT/2005. Austrian law does not re-

quire individual institutional animal care and use committees for

universities as all animal experimentation has to be pre-approved

by the Austrian ministry of science and research.

Up to 4 animals were kept in individually ventilated cages at a

monitored temperature of 20–24uC, with humidity between 40–

70%, a constant 12 hour light and dark cycle and at least 50–60

air changes per hour. Animals were provided with water and

rodent chow ad libitum. Animal health was monitored by daily

visual cage inspection and weekly weight check of all experimental

animals. Animals losing more than one third of body weight or

showing other signs of distress due to DDC feeding were excluded

from analysis and immediately sacrificed. All animals were

sacrificed by cervical dislocation after anaesthesia by isoflurane

inhalation. Liver tissues were harvested and samples of liver tissue

were frozen in methyl-butane cooled by liquid nitrogen and

subsequently stored in liquid nitrogen. RNA was prepared from

frozen liver samples using the RNeasy Mini Kit (Qiagen GmbH,

Hilden, Germany) according to manufacturers instructions.

RNA-Seq experiments and data analysis
We performed transcriptome analysis of healthy and DDC-

treated livers of three mouse strains AJ, B6, and PWD each, and

three biological replicates per strain and condition. In total, 18

paired-end RNA-Seq libraries were prepared from 10 mg of total

RNA using a strand-specific strategy and following the protocol

described in [13]. The following ligation adapters and PCR

primers were used: PE Adapter OligoMix (Cat.#1001782),

PCR Primer PE 1.0 (Cat.#1001783), PCR Primer PE2.0

(Cat.#1001784), IndexPE Adapter Oligo Mix Cat.#1005711),

PCR PrimerInPE 1.0, (Cat.#100571), PCR PrimerInPE 2.0,

(Cat.#1005713). Sequencing was carried out on the GAIIx

platform (Illumina) by running 2651 cycles according to the

manufacturer instructions. Sequencing reads were aligned to the

mm9 assembly of the mouse reference genome using BWA [14].

Gene levels were then quantified in reads per kilobase of exon

model per million mapped reads [15] and using the Ensembl v.53

(Mus musculus) annotation. Identification of differentially ex-

pressed genes (DEGs) was performed with the R-package ‘‘edgeR’’

[16]. For identification of DEGs three biological replicates of each

mouse strain AJ, B6, and PWD for control and DDC-treated states

were used. DEGs were identified in two ways: (i) ‘‘strain-wise’’ and

(ii) ‘‘irrespective of strains’’. For strain-wise identification DEGs

between DDC-treated and control states were computed sepa-

rately for each mouse strain AJ, B6, and PWD, while for the

identification irrespective of strains control and DDC-treated

states were analyzed across all three mouse strains together. Using

edgeR p-values were calculated and adjusted for multiple testing

Modeling Severity of Steatohepatitis in Mice
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using the Benjamini-Hochberg procedure implemented in edgeR.

Principal components analysis (PCA) was performed to investigate

any grouping of strain-wise DEGs.

Metabolomics analysis
Acylcarnitines, Sphingomyelins, Hexoses, Glycerophos-

pholipids (FIA-MS/MS). To determine the concentration of

acylcarnitines, sphingomyelins, hexoses and glycerophospholipids

in liver homogenate the AbsoluteIDQ kit p150 (Biocrates Life

Sciences AG) was prepared as described in the manufacturer’s

protocol. In brief, 10 ml of liver homogenate was added to the

centre of the filter on the upper 96-well kit plate, and the samples

were dried using a nitrogen evaporator (VLM Laboratories).

Subsequently, 20 ml of a 5% solution of phenyl-isothiocyanate was

added for derivatization. After incubation, the filter spots were

dried again using an evaporator. The metabolites were extracted

using 300 ml of a 5 mM ammonium acetate solution in methanol.

The extracts were obtained by centrifugation into the lower 96-

deep well plate followed by a dilution step with 600 ml of kit MS

running solvent. Mass spectrometric analysis was performed on an

API4000 QTrap tandem mass spectrometry instrument (Applied

Biosystems/MDS Analytical Technologies) equipped with an

electro-sprayionization (ESI)-source using the analysis acquisition

method as provided in the AbsoluteIDQ kit. The standard FIA-

MS/MS method was applied for all measurements with two

subsequent 20 ml injections (one for positive and one for negative

mode analysis). Multiple reaction monitoring (MRM) detection

was used for quantification applying the spectra parsing algorithm

integrated into the MetIQ software (Biocrates Life Sciences AG).

Prostanoids, oxidized fattyacids (LC-MS/MS). Prostanoids –

a term summarizing prostaglandins (PG), thromboxanes (TX) and

prostacylines – andoxidised fatty acidmetaboliteswere analyzedbyLC-

ESI-MS/MS [17] by online solid phase extraction (SPE)-LC-MS/MS

with an API4000 QTrap tandem mass spectrometry instrument

(Applied Biosystems/MDS Analytical Technologies) in negative

MRM detection mode. In brief, filter spots in a 96 well plate were

spikedwith internal standard; 20 ml of samplewere added and extracted

with aqueous methanol, the individual extracts then were analysed.

Data of prostanoids and oxidized fatty acids were quantified with

Analyst 1.4.2 software (Applied Biosystems) and finally exported for

statistical analysis.

Protein preparation
Proteins were isolated from fresh-frozen tissue using T-Per

extraction reagent (Pierce Biotechnology, Inc., Rockford, IL, USA)

according to the manufacturer’s recommendations, with the

addition of the following inhibitors: complete mini protease

inhibitor cocktail, staurosporin and PhosStop (Roche, Mannheim,

Germany). For protein extraction from tissue (30–40 mg) the

Qiagen Tissuelyser (Qiagen, Hilden, Germany) was used. Samples

were isolated in 10 ml protein lysis buffer per 10 mg sample.

Protein concentrations were determined using the bicinchoninic

acid assay reagents (Pierce Biotechnology, Inc.). Protein lysates

were stored at 280uC.

Reverse-phase protein array (RPPA) processing and data
analysis
Protein lysates were diluted using protein lysis puffer (2 mg/ml).

After adding Tween 20 (0.05%, v/v) protein lysates were printed

onto nitro-cellulose coated glass slides (Oncyte Nitrocellulose Film

Slides, Grace Bio-Labs, Blend, OR, USA) using the Aushon 2470

solid-pin tool arrayer (Aushon Biosystems, Billerica, MA, USA).

Antibody incubation and antibody-mediated signal amplification

were performed as described [18]. Slides were scanned with the

Odyssey NIR scanner (LI-COR Biosciences, Bad Homburg,

Germany). Image analysis was carried out with GenePix-Pro 6.0

(Axon Instruments, Sunnyvale, USA). Data sets were analyzed

using the RPPAnalyzer package [19]. Quantification results were

normalized to the Fast Green FCF staining of total proteins as well

as to the median antibody binding signal levels [20].

Antibody validation for RPPA
To verify antibody specificities, a pool of protein lysates from

cancer and benign tissues was analyzed by SDS-PAGE followed

by Western Blotting. 25 mg of the protein lysate was used and a

standard near-infrared detection was applied as described in [18].

Antibodies with a predominant single band in the expected size

range were selected for further RPPA analysis. Antibodies were

purchased from Cell Signaling Technology (Danvers, MA, USA).

Model Initialization
An example of mapping RNA-Seq or RPPA data to enzyme

concentration is described below. Assume a mass action kinetic

equation,

v~kcat|E|S

where v is the flux, kcat is the enzymatic turnover number, and E
and S are the enzyme and the substrate concentrations,

respectively. The aforementioned equation is transformed in

equation,

v~vmax|u|S

where vmax is the maximum rate and u is a unitless quantity

representing a ratio. For the initialization of the scaling factor u
with RNA-Seq or RPPA data we use 1 for the control state and the

ratio between treatment and control for the DDC-supplemented

state. The ratio is computed based on the experimental

transcriptomics and proteomics data form mice fed 8 weeks with

a DDC-supplemented diet and their respective controls. The state

after 8 weeks is assumed as a quasi steady state also regarding the

quantified metabolite concentrations.

Modelling and kinetic parameter optimization
The mathematical model of the arachidonic acid (AA)/

eicosanoid pathway was developed in PyBioS [21,22] based on

information from KEGG and a survey of literature [23–26].

Parameter optimization of the mathematical model was performed

with COPASI [27]. COPASI provides a number of different

algorithms for optimization of a predefined objective function. We

used the genetic algorithm in our analysis to minimize the

objective function

fp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

x[M

x½ �e{ x½ �s,p

� �2

s

where x is a given metabolite of a set of metabolites M of our

metabolic model, [x]e and [x]s are concentration values of a

metabolite x from experiments and simulations, respectively, and

p is a set of kinetic parameters. x½ �s,p is the steady state

concentration of metabolite x during simulation which depends

on p. minfp is an optimization problem which minimize f over p.

Modeling Severity of Steatohepatitis in Mice
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Results

Liver samples of DDC-treated and untreated mouse strains (AJ,

B6 and PWD) were phenotypically characterized and analyzed by

RNA-Seq providing comprehensive mRNA expression profiles, by

mass spectrometry of selected metabolites, and by RPPA analysis

of relevant proteins.

Phenotypic characterization
Phenotypes of liver samples of all three mouse strains after eight

weeks of a DDC-supplemented diet were characterized by

histological examination and formation of Mallory-Denk bodies

using immunohistochemical analysis of ubiquitin and p62

(Fig. 1a). Steatosis was observed to a medium degree in AJ and

PWD while it was absent in B6. Ballooning of the hepatocytes and

the occurrence of ubiquitin and p62 containing protein aggregates

was most pronounced in AJ. Based on the degree of steatohepatic

features AJ and B6 were categorized as high and low susceptible,

respectively, while PWD is resistant.

Identification of differentially expressed genes using
RNA-Seq data
Using RNA-Seq data differentially expressed genes (DEGs) in

response to DDC treatment were computed (i) ‘‘strain-wise’’ and

(ii) ‘‘irrespective of strains’’ as described in the material and

methods section. The total number of DEGs from strain-specific

analysis was very similar between the strains with 1,645, 1,657 and

1,373 for AJ, B6 and PWD, respectively (Fig. 1b). In total, 516

genes were deregulated in all three strains in response to DDC

feeding, whereas 471 DEGs were found exclusively in AJ (Fig. 1b,

Table S1). We call these 471 genes susceptibility genes since this

strain shows the most pronounced steatohepatitis phenotype. In

addition, to address the DDC treatment effect a principle

component analysis (PCA) was performed based on 2,813 genes

(Table S2), which were differentially expressed in at least one

mouse strain due to DDC treatment (Fig. 1c). While healthy mice

show strain-specific expression profiles in PCA, all mouse profiles

from DDC treatment group together, implying a similar overall

response due to DDC treatment irrespective of the strain (Fig. 1c).

Besides the strain-specific analysis, DEGs were also computed

irrespective of strains. This analysis yields in total 4,215 DEGs in

response to DDC treatment (Table S3).

Analysis of proteomics data
For a screening of changes of the proteome some specific

proteins were also analyzed by reverse phase protein arrays

(RPPA; Table S4). Notably, the protein expression levels of the

liver-type fatty acid-binding protein (Fabp1) are decreased in all

strains after DDC-feeding. This observation is in agreement with

data from human samples showing an underexpression in mild

and progressive stages of NASH but paradoxically an overexpres-

sion in simple steatosis [28]. Furthermore, keratin 8 (Krt8) and

keratin 18 (Krt18) were found to be upregulated after DDC

treatment. Both proteins are major components of the hepatocyte

cytoskeleton. Other proteins that were found to be upregulated are

glutathione S-transferase alpha (Gsta1) and glutathione S-trans-

ferase mu (Gstm1) that are both involved in detoxification

processes and catalyze the conjugation of reduced glutathione to

xenobiotics. Notably, the level of glutathione S-transferase alpha

upregulation in AJ and B6 mice is much higher compared to

PWD. Moreover, the protein expression level of the cytochrome

Cyp2e1 level is found to be down-regulated in PWD, while it is not

changed in B6 and AJ mice. In addition to general protein

amounts, also phosphorylated states of the key signaling proteins

Erk1 (Mapk3), Akt1 and Stat3 were measured reflecting the

activity states of their respective signaling pathways. All of them

were found to be induced due to DDC treatment.

Pathway analysis of metabolic profiles and gene
expression data
Besides gene expression and proteomics data, also 44 metab-

olites were identified and quantified by mass spectrometry.

Differences in metabolite concentrations due to DDC treatment

were judged by t-test (Table S5). A pathway analysis of metabolic

profiles and gene expression data was performed with Consensus-

PathDB to identify steatohepatitis-specific pathways [29]. Pathway

over-representation analysis of the aforementioned 471 suscepti-

bility genes obtained only in AJ identified nucleotide, histidine,

beta-alanine, purine metabolism, apoptosis and steroid hormone

biosynthesis upon the top-ranked deregulated pathways (Table

S6). Within the beta-alanine pathway we found Srm encoding

spermidine synthase (SPDS) as being upregulated in AJ (2.44-fold

in AJ compared to 0.77-fold and 0.75-fold in B6 and PWD,

respectively, Tab. S2) as well as the related metabolites spermidine

(SPD) and spermine (SPM) that form a module of the hepatic S-

adenosylmethionine (SAMe) metabolism (Fig. 1d, [30]). SAMe is

needed for methylation of DNA, RNA and lipids, and synthesis

and catabolism of SAMe is tightly regulated and changes in SAMe

level might lead to fatty liver disease and the development of HCC

[30].

Gene expression and metabolite concentrations of hepatic

SAMe metabolism were found to be affected in the DDC-treated

state (Fig. 1e and 1f). Expression of the genes methionine

adenosyltransferase 1 alpha (Mat1a), spermine synthase (Sms),
DNA methyltransferase 1 (Dnmt1), adenosylhomocysteinase

(Ahcy), betaine-homocysteine methyltransferase (Bhmt), and sper-

midine synthase (Srm) and concentration changes of the related

metabolites spermidine, spermine and putrescine show a different

behavior between AJ, B6 and PWD. Gene expression and

metabolic profiles of hepatic SAMe metabolism imply that PWD

has an opposite response compared to AJ and B6 after feeding a

DDC-supplemented diet which resembles the differences in

steatohepatitis phenotypes of the strains. The enzyme SAMe

decarboxylase (SAMDC) is activated by putrescine and upregula-

tion of spermidine synthase (SPDS) and spermine synthase (SPMS)

might explain the increased concentration of spermidine (SPD)

and spermine (SPM) in AJ. A higher concentration of putrescine in

AJ and B6 lowers the Km of SAMDC activating polyamine

synthesis [30] that may affect the concentration of SAMe. This

might affect methylation of various substrates such as DNA, RNA

and lipids that might be one reason in NASH disease develop-

ment. However, it remains difficult to judge the difference in

degree of steatoheapatitis since the expression data and metabolic

profiles of AJ and B6 show a similar response to the DDC-

supplemented diet.

NAFLD has been defined as a metabolic disease associated with

the insulin-resistance syndrome [1]. A genome-scale metabolic

network of the mouse comprising 3,724 reactions, 2,774 metab-

olites, and 1,415 enzyme coding genes was used as a reference to

identify metabolic pathways of related genes [31]. Irrespective of

strain-specific effects, a group of 288 genes (out of 4,215 DEGs)

coding for metabolic enzymes of the genome-scale metabolic

network were identified as differentially expressed (edgeR p-value

,1e-6 over all three strains) after DDC treatment (Table S7). This

set of 288 genes was subsequently used in a pathway analysis with

ConsensusPathDB to identify affected metabolic pathways due to

DDC treatment (Table S8). Furthermore, a set of 19 differentially

regulated metabolites (t-test p-value ,0.05, Table S5) was used for

Modeling Severity of Steatohepatitis in Mice
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a metabolite-based over-representation analysis with Consensus-

PathDB (Table S9). Both, the pathway analysis of the transcrip-

tomics as well as the metabolic data set, yield the arachidonic acid

pathway upon others as being deregulated after DDC treatment

(p-value 2.6e-4 and 1.3e-4, respectively, Table S8 and S9).

Analysis of metabolites of the arachidonic acid/eicosanoid

pathway yield also significant changes due to DDC treatment of

some metabolites of this pathway. The abundances of four

metabolites of this pathway are significantly altered due to DDC-

treatment: PGD2, 5-HPETE, 15-HETE, and 15-HPETE (p-

value,0.05, Table S4). An increased activity of the arachidonic

acid pathway could also be observed in the metabolic data. Based

on these observations we selected the arachidonic acid metabolism

as a candidate for further in silico analysis.

Model of the arachidonic acid/eicosanoid metabolic
pathway
Arachidonic acid (AA) is a fatty acid usually coming from

dietary animal sources or being synthesized from dietary linoleic

acid. AA is present in cell membranes as a part of phospholipids.

AA is released from phospholipids by phospholipase A2 (PLA2)

and subsequently it acts as a precursor of prostaglandins and their

related compounds, the prostacyclins, thromboxanes and leuko-

trienes. Several physiological effects of prostaglandins are

described in the literature, such as inflammatory response, pain,

fever, blood pressure, blood clotting, and regulation of sleep/wake

cycle [32,33]. Cyclooxygenase-1, also known as prostaglandin H2

synthase 1 (Ptgs1), catalyzes the reaction of arachidonate to

prostaglandin H2 (PGH2), which is the precursor of other

prostaglandins, prostacyclins, and thromboxanes. The enzyme 5-

lipoxygenase (Alox5) produces 5-HPETE, which is a precursor of

leukotrienes. The metabolites PGD2, 5-HPETE, 15-HETE and

15-HPETE have been observed to be significantly (p,0.05)

changed in concentration due to DDC treatment in the liver

samples of all mouse strains (Table S5).

There are only a few kinetic models of the AA metabolism

available in the literature to study anti-inflammatory drugs of

human polymorphonuclear leukocytes [23] and macrophage cells

[24]. Here, an in silico model of the AA metabolism in mouse liver

was developed based on information from KEGG [26] and a

biochemical text book [25] to study the regulation of the perturbed

metabolites using the related transcriptome and protein data. The

structure of the model is depicted in Fig. 2.

The downstream synthesis of prostaglandins and leukotrienes is

initiated by signaling and subsequent release of AA catalyzed by

phospholipase A2 (PLA2). In endothelial cell-pericyte co-cultures

of rat cells it has been shown that PLA2 is induced through the

activation of the MAPK/ERK cascade [34]. PLA2 is involved in

inflammation driven liver fibrosis as a key feature of progressive

NASH and macrophage PLA2 deficiency prevented activation of

hepatic stellate cells and infiltration of F4/80-positive macrophag-

es [35]. 15-lipoxygenase (ALOX15) is an important regulator of

inflammation and apoptosis and its expression is regulated by a

cytosolic signaling complex with protein kinase C delta (PKCD)

and phosphorylated STAT3 [36]. Thus, to describe the activity of

PLA2 and PKCD, respectively, RPPA data of phosphorylated

ERK and STAT3 was used subsequently for the modeling (Table

S4).

The eicosanoid pathway is regulated by several feedback

mechanisms (see Fig. 2). The release of AA is controlled by an

inhibitory link between AA and phospholipase A2 (PLA2, R1 in

Fig. 2, [37]). PLA2 is activated by phosphorylated ERK (p-ERK).

Presence of both PLA2 and p-ERK is necessary to drive the

metabolic conversion of phosphatidylcholine (PC) into AA (see R1

in Fig.2). To reflect the inhibition of PLA2 by AA an inhibitory

feedback link is added to R1. The activity of 5-lipoxygenase

(ALOX5) catalyzing the production of 5-HPETE and leukotriene

A4 (LTA4) is controlled by product inhibition and by the ALOX5-

activating protein ALOX5AP (R2, R4, [38,39]). To convert AA

into 15-HPETE the presence of both ALOX15 and a complex

with PKCD and STAT3 are necessary. The production of 15-

HPETE is also controlled by an inhibitory link between 15-

HPETE and ALOX15 which is added to R6 (Fig. 2, [23]).

Synthesis of 15-HPETE and PGH2 are controlled by feedback

inhibition and glutathione peroxide and PTGS1, respectively (R7

and R9, [23,40].

We hypothesize that changes of metabolite concentrations of

the AA pathway can be explained by changes in mRNA

expression. To address this hypothesis, changes in Vmax values of

enzymatic reactions were approximated by fold changes of RNA-

Seq expression of the respective enzymes due to DDC treatment.

The fold change of PLA2 was approximated by Pla2g4a which

was expressed at a low level (,1 RPKM, [41]) but not

differentially (Table S10). Therefore, we hypothesize that PLA2

is at least present to trigger AA release upon its activity state, but it

is not differentially expressed due to DDC treatment. Similarly,

ALOX5 and ALOX15 were approximated by Alox5 (p-

value = 0.13) and Alox15 (p-value = 0.62), respectively, which

were expressed at low level (,1 RPKM) and we hypothesize that

the expression of these genes were not affected due to DDC-

treatment. PTGDS is approximated by Ptgds expression, but it

was not significantly changed due to DDC treatment (p-

value = 0.64). If there are several isoenzymes that can catalyse

the same reaction the most significantly differentially expressed

gene was chosen. For instance, GPX can be approximated by

Gpx1, Gpx2, Gpx3, Gpx6 and Gpx7. Since Gpx3 was significantly

affected (p = 2.66e-41) and highly expressed it was used to initialize

the GPX expression in the model. Fold changes of the enzymes

PTGS1, ALOX5AP and PKCD were approximated by expression

Figure 1. Analysis of phenotypic and omics data. a) Qualitative scoring of histological phenotypes of the mouse liver samples. Score -1, absent;
score 0, minimal; score 1, mild; score 2, moderate; score 3, severe changes compared to healthy liver tissue. Immunohistochemistry, IHC. b) Venn
diagram of differentially expressed genes due to DDC treatment in AJ, B6, and PWD mice. c) Principle component analysis (PCA) of 2813 genes that
were found differentially expressed for at least one mouse strain due to DDC-treatment. * and + indicate control and DDC mice, respectively; red,
green and blue represent AJ, B6, and PWD mice, respectively. Principle component 1 (PC1) explains 43% and PC2 29% of the data. d) S-
adenosylmethionine (SAMe) metabolism. Methionine (Met) is converted to SAMe by the enzyme methionine adenosyltransferase (MAT1). SAMe is
converted into S-adenosylhomocysteine (SAH) by DNA-methyltransferase (DMTs) and SAH hydrolase (AHCY) with homocysteine (Hcy) as an
intermediate. SAH is substrate for Met formation by betaine-homocysteine methyltransferase (BHMT). SAMe can also be converted into spermine
(SPM) via decarboxylated SAMe (dcSAMe) and spermidine (SPD) catalyzed by SAMe decarboxylase (SAMDC), SPD synthase (SPDS), and SPM synthase
(SPMS). This pathways is regulated by putrescine, which activates SAMDC. e) Arithmetic mean values of RPKM values of aforementioned genes for
liver samples of control and DDC-treated mice. Error-bars indicate standard deviations. The bar chart shows log2-ratios of RPKM values of DDC-
treated vs control. The genesMat1a, Srm, Sms, Dnmt1, Ahcy, and Bhmt encode the enzymes MAT, SPDS, SPMS, DMTs, AHCY and BHMT, respectively. f)
Bar chart of median concentrations of the metabolites prostaglandin D2 (PGD2), leukotriene D4 (LTD4), methionine (Met), spermidine, spermine, and
putrescine. Error-bars indicate median absolute deviations. * indicates samples without a replicate.
doi:10.1371/journal.pone.0111006.g001
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values of Ptgs1, Alox5ap and Prkcd, respectively. Within our

experiments the protein amount of phosphorylated ERK (p-ERK)

and phosphorylated STAT3 (p-STAT3) were measured for both

control and DDC-treated mice using the reverse phase protein

array (RPPA) technology. For this we made use of respective

proteomics data and initialized the model components p-ERK and

p-STAT3 based on RPPA data. Since p-ERK and p-STAT3 were

upregulated due to DDC treatment (Table S4; fold changes of p-

ERK and p-STAT3 in AJ, B6, and PWD are 1.90, 2.09, 1.98, and

1.41, 1.42, 2.03, respectively) the effect of p-ERK on PLA2 is

modeled by the RNA-Seq expression value of Pla2g4a for the

DDC-treatment simulation and the p-ERK ratio. Similarly, the

effect of the complex formation of PKCD and p-STAT3 on the

ALOX15 activity was described by the RNA-Seq expression value

of ALOX15 of the DDC-treatment state and the fold change of p-

STAT3 and PKCD, respectively. Phosphatidylcholine (PC) was

modeled as a fixed component and as its initial concentration the

measured concentration of phosphatidylcholine C33:2 was used

(Table 1). The experimentally identified fold changes of all

enzymes are summarized in Table 1 and were used to approx-

imate the kinetic parameters of the respective reactions. The

kinetic parameters of the model were optimized by an objective

function integrating the experimental data (see parameter

optimization in section Material and Methods). Using data of

Figure 2. Model of arachidonic acid/eicosanoid metabolism. The model has three branches. Through the first branch arachidonic acid (AA)
forms leukotriene A4. In the second branch 15-HPETE and 15-HETE are derived from AA, while in the third branch AA forms prostaglandin D2. See the
results section for a detailed description of the model inhibitory links. Phosphatidylcholine, PC; arachidonic acid, AA; phospholipase A2, PLA2;
phosphorylated ERK, P-ERK; cyclooxygenase-1, also known as prostaglandin G/H synthase 1, PTGS1; protein kinase C delta, PKCD; signal transducer
and activator of transcription 3, STAT3; arachidonate 15-lipoxygenase, ALOX15; arachidonate 5-lipoxygenase, ALOX5; arachidonate 5-lipoxygenase-
activating protein, ALOX5AP; prostaglandin H2, PGH2; prostaglandin D2, PGD2; prostaglandin D2 synthase, PTGDS; 15-hydroxyeicosatetraenoic acid,
15-HETE; 5- and 15-hydroperoxyeicosatetraenoic acid, 5- and 15-HPETE; leukotriene A4, LTA4; glutathione peroxidase, GPX.
doi:10.1371/journal.pone.0111006.g002
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DDC treatment vs. control we built a quantitative model to

explain changes of metabolites of the eicosanoid pathway due to

treatment by DDC that mimics the NASH phenotype.

Model Optimization
Model parameters were optimized using experimentally deter-

mined metabolite concentrations of the model components.

Metabolite concentrations were measured after 8 weeks of DDC

treatment and interpreted as steady state concentrations for the

model. The metabolites PGD2, 5-HPETE, 15-HPETE and 15-

HETE have been found as being affected due to DDC treatment.

These metabolites as well as upstream AA were used for model

optimization. Therefore, the model was simulated into its steady

state and the euclidean distance between simulated steady state

concentrations and experimental metabolite data of the afore-

mentioned metabolites were used in an objective function to

optimize the kinetic parameters using COPASI. Parameter

optimization was done using the metabolic concentrations of B6

control and B6 DDC mice. Kinetic parameters, i.e., the maximum

reaction rates (Vmax), Michaelis-Menten constants (Km) and

inhibition constants (Ki) were optimized based on experimental

data. The following five metabolites of the AA model were used to

formulate an objective function: AA, 5-HPETE, and 15-hydro-

peroxyeicosatetraenoic acid (15-HPETE), 15-Hydroxyeicosate-

traenoic (15-HETE), and prostaglandin D2 (PGD2). Let afore-

mentioned metabolites be in a set M. The objective function f
reads

fp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where, p is a set of kinetic parameters of the AA model. ec and sc
represent experimental and simulated steady concentration in

control condition, while ed and sd represent experimental and

simulated steady concentration in the DDC-treated condition.

The objective function f was minimized to obtain optimal kinetic

parameters of the AA model using the genetic algorithm of

COPASI with a population size of 50 and a generation size of 500.

The identified kinetic parameters are listed in Table 2. The model

is available in SBML format (suppl. File S1).

Results of the fitted model for the metabolites AA, PGD2, 5-

HPETE, 15-HPETE, and 15-HETE using the trained B6 model

were compared with the experimental results (Fig. 3; C57Bl6_sim

vs. C57Bl6_exp). Except of AA all of the aforementioned

metabolites were up-regulated (.1.5 fold) in both, experimental

and simulated data, due to DDC in B6 mice (Fig. 3c). AA was not

found altered in the experimental data set, but was slightly up-

regulated in the simulation (1.35-fold).

For validation of the model we predicted DDC-induced

metabolite changes for AJ and PWD using the trained model.

Simulation results predict an up-regulation (.1.5-fold) of 5-

HPETE, 15-HPETE and 15-HETE in both strains, which was in

line with the experimental data. The concentration of PGD2 was

found increased (.1.5-fold) between experimental and simulated

data for PWD (Fig. 3c). In AJ our modeling approach predicts a 2-

fold increase of PGD2 concentration in response to the DDC-

treatment, but the experimental data showed no changes (0.9 fold).

This disagreement can be strain-specific because one can expect

changes in the concentration of PGD2 due to an up-regulated

gene expression of Ptgs1 which is located upstream in the

metabolic pathway. AA was up-regulated (.=1.5-fold) in DDC-

PWD mice, which is concordant with the experimental data, while

for AJ AA is not found as being changed (0.9 fold) in the

experimental data, whereas a minor up-regulation (1.2-fold) was

predicted by the simulation (Fig. 3c).

Key regulatory enzymes of the DDC mouse model
To identify key regulatory enzymes of the AA/eicosanoid

pathway in DDC treated mice, a kind of sensitivity analysis of the

trained model was performed. Starting with DDC-treated mice of

the AJ strain, each enzyme or enzyme combinations were reverted

to its/their activity in normal, untreated condition. This analysis

was performed for ALOX5AP, GPX, PKCD, PTGS1, pERK,

and pSTAT3 whose activity was found to be perturbed due to

DDC-treatment. A reference state was defined where the activity

of all enzymes is equal to the normal condition. Results of this

analysis are depicted in Fig. 4a. Reverting a single enzyme or

combinations of two enzymes were not sufficient to bring the

DDC-treated state back to normal because it affects only some

branches of the model, as for example a change in the activity of

ALOX5 has an effect on the regulation of the downstream

metabolites 5-HPETE and LTA4 (cf. Fig. 2). We found that the

Table 1. Initial values of the arachidonic acid/eicosanoid metabolic model.

Symbol AJ, control AJ, DDC B6, control B6, DDC PWD, control PWD, DDC

PTGS1 1.00 2.13 1.00 1.41 1.00 2.09

ALOX5 1.00 1.00 1.00 1.00 1.00 1.00

PTGDS 1.00 1.00 1.00 1.00 1.00 1.00

STAT3 1.00 1.41 1.00 1.42 1.00 2.03

PKCD 1.00 4.30 1.00 4.48 1.00 3.85

GPX 1.00 6.51 1.00 11.70 1.00 19.42

PLA2 1.00 1.90 1.00 2.09 1.00 1.98

ALOX5AP 1.00 4.81 1.00 6.30 1.00 14.23

ALOX15 1.00 1.00 1.00 1.00 1.00 1.00

PC* 269.00 206.00 249.00 209.00 266.00 255.00

The enzyme concentrations of the control state were always initialized with 1.0 nM. The DDC initial value always reflects the fold change between the DDC-treated
and the control expression value. The absolute concentration of phosphatidylcholine C33:2 (PC*) comes from MS-analysis and is measured in mM for control and DDC-
treatment conditions of AJ, B6, and PWD mice.
doi:10.1371/journal.pone.0111006.t001
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combinations of the enzymes ALOX5AP, PKCD and PTGS1

with either pERK or pSTAT3 can bring the DDC-treated

metabolic state back to normal, with the exception of 15-HETE

and AA. Only the combination ALOX5AP, PERK, PKCD,

STAT3, and PTGS1 or the combination of all six enzymes was

able to bring back the DDC-treated state to normal.

Simulating drug effects in the DDC mouse model
To study potential drug targets for steatosis or inflammation in

silico drug tests were performed. For instance, cyclooxygenase-2

(PTGS2/COX-2) is a frequent target of anti-inflammatory drugs

[42]. In the computer simulation, the activity of each enzyme of

the AJ DDC model was inhibited by 3-, 6- and 9-fold, respectively.

The calculated effects of those enzyme inhibitions on the

regulation of metabolites are shown in Fig. 4b. The inhibition of

PTGS1 and ALOX5AP leads to a down-regulation of the

respective downstream components (either PGH2 and PGD2 or

5-HPETE and LTA4). ALOX15 is activated by PKCD and

pSTAT3, and the inhibition of PKCD or pSTAT3 leads to a

down-regulation of the downstream components 15-HPETE and

15-HETE. It can be expected that the inhibition of glutathione

peroxidase (GPX) leads to a down-regulation of the downstream

component 15-HETE, but the model predicts an up-regulation of

15-HPETE and no change in 15-HETE. This is due to the

complex regulation of ALOX15, i.e., an activation of the complex

PKCD and pSTAT3 and an inhibition of GPX by 15-HETE.

Discussion

Using a DDC-based mouse model of steatohepatitis we

analyzed three different mouse strains AJ, B6, and PWD covering

a broad range of genetic variations. AJ, B6, and PWD mice

respond with different degrees of steatohepatitis ranging from

high, low to resistant, respectively. Based on gene expression and

metabolic data we identified differences in hepatic SAMe

metabolism in respect to the different steatohepatitis phenotypes

across the individual mouse strains. SAMe metabolism might

explain susceptibility of AJ mice. SAMe is a key methyl-group

donor for phosphatidylcholine synthesis that is required, e.g., for

the export of very-low-density lipoproteins (VLDL) and triglycer-

ides from the liver [43]. Furthermore, VLDL synthesis has been

found to be impaired by MAT1A-knockout that could be

recovered by SAMe administration in MAT1A deficient mice

[43]. SAMe and methionine metabolism was found to be

perturbed in NASH patients [44] and it may play an important

role in development of NAFLD, such as NASH [30]. A study

suggests depletion of hepatic anti-oxidants (e.g. reduced glutathi-

one and SAMe) promotes oxidative stress and may induce cellular

alterations typical for steatohepatitis [6].

We identified AA metabolism as being the most affected one

upon all of the three mouse strains and we propose a dynamic

model of AA metabolism of NASH-like phenotypes in mouse

induced by DDC. The fitted model provides good predictions

between the experimental and simulated metabolic data using the

respective gene expression data.

To determine regulatory roles of important enzymes in the

upregulation of metabolic levels of the AA/eicosanoid pathway

due to DDC-treatment, a sensitivity analysis was performed by

reverting to the activity of the enzymes to normal, untreated

conditions. The simulated combination of the enzymes

ALOX5AP, PERK, PKCD, STAT3, and PTGS1 is able to

revert the DDC-treated metabolic state to normal. This multi-

targets inhibition might likely become a future approach in respect

to individualized medicine as it has already been suggested for

cancer [45].

Furthermore, we did in silico drug testing of several model

enzymes. Inhibition of PTGS1 and ALOX5AP caused down-

regulation of PGH2 and PGD2 or 5-HPETE and LTA4,

respectively. These enzymes are known targets to treat inflamma-

tion. PTGS1 (COX-1), for instance, can be inhibited by

Table 2. Kinetic equations and their parameters of the arachidonic acid/eicosanoid metabolism model.

R1: PC R AA Vmax|A1|A2|S

SzKm| 1z I
Ki

� �� � Vmax=20.56 nM2s21, Km= 2500 nM [BRENDA], Ki= 100 nM,
A1= {PLA2}, A2= {PERK}, I= [AA] nM, S= [PC] nM

R2: AA R 5-HPETE Vmax|A1|A2|S

SzKm| 1z I
Ki

� �� � Vmax=0.01 nM2s21, Km= 0.0107 nM, Ki= 8.603 nM, A1= {ALOX5},
A2= {ALOX5AP}, I= [5-HPETE] nM, S= [AA] nM

R3: 5-HPETE R Kcat|S S= [5-HPETE], Kcat= 0.0012s21

R4: 5-HPETE R LTA4 Vmax|A1|A2|S

SzKm| 1z I
Ki

� �� � Vmax=9.7953 nM2s21, Km=99.913 nM, Ki= 0.709 nM, A1= {ALOX5},
A2= {ALOX5AP}, I= [LTA4] nM, S= [5-HPETE] nM

R5: LTA4 R Kcat|S S= [LTA4] nM, Kcat=0.0012 s21

R6: AA R 15-HPETE Vmax|A1|A2|A3|S

SzKm| 1z I
Ki

� �� � Vmax=0.003 nM3s21, Km= 0.067 nM, Ki= 1.004 nM, A1= {ALOX15},
I= [15-HPETE] nM, A2= {PKCD}, A3= {PSTAT3}, S= [AA] nM

R7: 15-HPETE R 15-HETE Vmax|A|S

SzKm| 1z I
Ki

� �� � Vmax=1.098 nMs21, Km= 1.58 nM, Ki= 0.0106 nM, A1=ALOX15,
I= [15-HETE] nM, S= [15-HPETE] nM

R8:15-HETE R Kcat|S S= [15-HETE], Kcat= 0.00127 s21

R9: AA R PGH2 Vmax|A|S

SzKm| 1z I
Ki

� �� � Vmax=0.168 nMs21, Km= 3.876 nM, Ki= 0.013 nM,
A= {PTGS1}I= [PGH2], S= [AA] nM

R10: PGH2 R PGD2 Vmax|S|A Vmax=0.067 nMs21, A= {PTGDS}, S= [PGH2]

R11:PGD2 R Kcat|S S= [PGD2] nM, Kcat=0.052 s21

R12: AA R Kcat|S S= [AA] nM, Kcat= 0.00096 s21

A, A1, A2 and A3 are the ratios of gene expression or protein levels of the respective enzymes between DDC-treated vs. control mice. S is the substrate of the corres-
ponding reaction. Squared brackets refer to concentration values and curly braces indicate fold changes of DDC treatment vs. control. The Km value of PLA2 is taken
from BRENDA [55], and other parameters of the table were fitted using the AJ mice metabolic concentrations (see results section).
doi:10.1371/journal.pone.0111006.t002
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mofezolac, SC-560, and other drugs [46]. Inhibition of

ALOX5AP also known as 5-lipoxygenase activating protein, or

FLAP may be useful in the prevention of hepatotoxin-induced

necro-inflammatory injury [47]. Drug molecules can interact with

multiple targets to alter the state and function of the associated

biological network. Licofelone is a novel 5-LOX/COX-inhibitor

which inhibits two enzymes to avoid side effects [48]. Overall, the

dynamics of the AA model can be used for in silico drug studies to
test multiple drugs and potential drug targets. The model

confirmed the upregulation of PGD2 due to DDC treatment

found experimentally. This could be linked to the key transcription

factors/ligand-activated nuclear receptors such as PPARd which

has been implicated as a key regulator of energy homeostasis and

may represent future research avenues to study the interaction of

metabolic and signaling pathways [49].

Prostaglandin E2 (PGE2) was found to be upregulated in AJ and

B6 mice but not in PWD (Fig. 1f). PGE2 promotes inflammation

after binding to prostaglandin E receptor 2 (EP2) [50] and an

inflammatory marker tumor necrosis factor alpha (TNFa)

regulates NASH development in a diet-induced mouse model

[51]. To explain inflammation phenotypes through signaling by

PGE2-EP2-TNFa we observed an upregulation of Tnf expression
(35-fold) in AJ and B6 mice. Upregulation of PGE2 and TNFa in

AJ and B6 mice may explain inflammation of the NASH

phenotype.

The spectrum of NAFLD can be characterized by specific

alterations in hepatic lipid composition. A comprehensive analysis

of plasma lipids and eicosanoids in human revealed a stepwise

increase in lipoxygenease metabolites 5-HETE, 8-HETE and

15-HETE in NAFLD [52]. This correlates with our observations

in the experimental and simulated data, where concentrations of

5-HETE and 15-HETE were increased in DDC mice. Another

study reported overexpression of cyclooxygenase-2 (COX-2) in

hepatocellular carcinoma (HCC) patients [53]. Using immunohis-

tochemistry they studied COX-2 overexpression in different

chronic liver diseases including NASH, chronic hepatitis, and

liver cirrhosis. In our study, we detected overexpression of PTGS1

(COX-2) in DDC mice, which is a key regulator of prostaglandin

formation.

Martı́nez-Clemente et al. demonstrated that hyperlipidemia-

prone apolipoprotein E-deficient (ApoE(2/2)) mice exhibit

hepatic steatosis and increased susceptibility to hepatic inflamma-

tion and advanced fibrosis [54]. They found in an experimental

model the proinflammatory 5-lipoxygenase (5-LO) pathway to be

up-regulated and thus causing liver inflammation and fibrogenesis.

They also found that the inhibition of the 5-LO pathway results in

a significant reduction in liver inflammation. Our data supports an

up-regulation of ALOX5AP through 5-LO pathway due to DDC

treatment in AJ, B6, and PWD, leading to an upregulation of the

downstream component 5-HPETE in the model that is supported

by our experimental data.

In conclusion, mRNA expression data combined with mathe-

matical modeling of metabolic systems provides a useful tool to

better understand cellular metabolism although the correlation

between transcripts and proteins can deviate depending on cellular

location, biological function, and organism [13]. The development

of NAFLD is characterized by broad changes on the molecular

level. Detailed analysis of three differently susceptible mouse

strains, which reflect genetic diversity in humans, showed major

deregulation of arachidonic acid metabolism. Detailed modeling of

Figure 3. Comparison of simulated steady state and experimental metabolite concentrations. Quantitative data of simulated and
experimental metabolite concentrations of all three mouse strains AJ, B6, and PWD for a) control b) DDC treatment, and c) their respective ratios of
the metabolites prostaglandin D2, PGD2; 5- and 15-hydroperoxyeicosatetraenoic acid, 5- and 15-HPETE; 15-hydroxyeicosatetraenoic acid, 15-HETE;
and arachidonic acid, AA.
doi:10.1371/journal.pone.0111006.g003

Figure 4. Identification of key regulatory enzymes (a) and drug testing (b) of the arachidonic acid/eicosanoid metabolism model. a)
Key enzymes or enzyme combinations of the DDC model condition of AJ were reverted to control conditions of this strain to judge the effect on the
change of the metabolite state. Black dots indicate enzymes or enzyme combinations that were reverted to control conditions. Red dots indicate
those enzyme combination that are able to bring back the DDC-treated state to control conditions. b) In silico drug testing of the model by
simulating down-regulation of individual enzyme concentrations as given by their respective expression value by 1/3rd-, 1/6th- and 1/9th of the DDC-
treated state of AJ.
doi:10.1371/journal.pone.0111006.g004

Modeling Severity of Steatohepatitis in Mice

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e111006



the arachidonic acid metabolism and model predictions of

metabolic levels are in good agreement with experimental profiles

when the model is initialized by the measured gene and protein

expression data. The study identified deregulated genes, proteins,

metabolites and affected pathways of NAFLD etiology in mouse

and serves as an integrated resource of omics data for the

development of computational models of the disease, such as AA

and SAMe metabolism.
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