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BACKGROUND: The National Lung Screening Trial (NLST) demonstrated that low-dose computed tomography screening is an effective

way of reducing lung cancer (LC) mortality. However, optimal screening strategies have not been determined to date and it is uncertain

whether lighter smokers than those examined in the NLST may also benefit from screening. To address these questions, it is necessary

to first develop LC natural history models that can reproduce NLST outcomes and simulate screening programs at the population level.

METHODS: Five independent LC screening models were developed using common inputs and calibration targets derived from the

NLST and the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Imputation of missing information regarding

smoking, histology, and stage of disease for a small percentage of individuals and diagnosed LCs in both trials was performed. Mod-

els were calibrated to LC incidence, mortality, or both outcomes simultaneously. RESULTS: Initially, all models were calibrated to the

NLST and validated against PLCO. Models were found to validate well against individuals in PLCO who would have been eligible for

the NLST. However, all models required further calibration to PLCO to adequately capture LC outcomes in PLCO never-smokers and

light smokers. Final versions of all models produced incidence and mortality outcomes in the presence and absence of screening that

were consistent with both trials. CONCLUSIONS: The authors developed 5 distinct LC screening simulation models based on the evi-

dence in the NLST and PLCO. The results of their analyses demonstrated that the NLST and PLCO have produced consistent results.

The resulting models can be important tools to generate additional evidence to determine the effectiveness of lung cancer screening

strategies using low-dose computed tomography. Cancer 2014;120:1713–24. VC 2014 American Cancer Society.

KEYWORDS: Cancer Intervention and Surveillance Modeling Network (CISNET), comparative modeling analyses, low-dose

CT screening, lung cancer screening, cancer natural history models, smoking and lung cancer, simulation model.

INTRODUCTION
The National Lung Screening Trial (NLST) found a significant lung cancer (LC) mortality reduction in its low-dose
computed tomography (CT) screening arm in comparison with its chest radiography (CXR) screening arm,1 suggesting
that screening heavy smokers with low-dose CT can be effective in the early detection of LC. Meanwhile, the Prostate,
Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) found no statistical difference in LC mortality when com-
paring a no-screen control arm versus a CXR screening arm.2 Consequently, several health policy groups have made rec-
ommendations endorsing low-dose CT for LC screening based on the NLST entry criteria and LC screening programs
are being established across the United States.3 However, there is still uncertainty regarding the optimal screening strat-
egies because the NLST only evaluated the impact of 3 consecutive annual screens among current and former smokers
aged 55 years to 74 years at the time of enrollment with an exposure of at least 30 pack-years and with � 15 years since
quitting. It is unknown whether current and former smokers with lower levels of exposure would also benefit from
screening. Furthermore, screening effectiveness may vary by sex, number of screens, and periodicity. In the absence of
results from other randomized control trials (RCTs) evaluating these questions, mathematical modeling of the natural
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history of LC may be the only approach to integrate avail-
able evidence and estimate the effectiveness and cost-
effectiveness of different LC screening strategies in the
general population.3,4

Mathematical models of cancer natural history have
been shown to be valuable in assessing and determining
optimal cancer prevention and control strategies. Recent
examples include analyses of the impact of tobacco con-
trol on LC mortality rates,5 comparative studies assessing
the effects of different screening modalities in patients
with colorectal cancer,6 cost-effectiveness analyses of
breast cancer screening strategies,7 and studies evaluating
the impact of prostate-specific antigen screening in reduc-
ing prostate cancer rates.8,9 All these examples used a com-
parative modeling framework by which researchers across
institutions can directly compare and contrast results
from distinct models.10-12 The conclusions arising from
comparative modeling analyses are more robust and reli-
able than single-model studies and this approach has been
cited as an example of good modeling practices.13

To estimate the potential impact of LC screening at
the US population level, a consortium of National Cancer
Institute (NCI)-sponsored investigators, the Cancer Inter-
vention and Surveillance Modeling Network (CISNET;
cisnet.cancer.gov), developed 5 independent natural his-
tory models of LC and screening. In the current study, we
describe the models’ development and calibration
approach to the NLST and PLCO, the common shared
inputs and calibration targets, and the differences and
similarities between models. We compared model predic-
tions versus observed trial outcomes and highlighted the
advantages and challenges of developing natural history
models based on large-scale RCTs.

MATERIALS AND METHODS

Data

Deidentified data from all NLST and PLCO participants
were provided to CISNET after obtaining Institutional
Review Board approvals from each institution. These
data included smoking history variables such as the age
at the start of smoking, the average number of cigarettes
smoked per day (CPDs), and the age at quitting for for-
mer smokers. Screening variables included the individu-
al’s age at entry into the study and, for screened
individuals, age at each screen, outcomes of each screen,
and the follow-up procedures for positive screens. For
each individual, the age at death or censoring and (if ap-
plicable) the cause of death were available. For individu-
als diagnosed with LC, the age at diagnosis, LC

histology, and LC stage (according the 6th edition of the
American Joint Committee on Cancer) were provided, as
well as information regarding the screen associated with
the LC diagnosis for screen-detected cancers.

NLST

The NLST was a RCT that compared the impact of low-
dose CT versus CXR screening on LC mortality. From
August 2002 through April 2004, a total of 53,454 indi-
viduals aged 55 years to 74 years were recruited; follow-up
occurred through December 31, 2009. Entry criteria
included a minimum exposure of 30 pack-years and � 15
years since quitting for former smokers. Individuals in
both screening arms received up to 3 annual screens. The
trial found a 20% LC mortality reduction in the low-dose
CT versus the CXR arm.1

A small percentage of LC cases (50 cases; 2.4%) had
missing histology and=or stage information. To complete
the missing data, a multistep imputation procedure based
on observed histology and stage distributions, tumor sizes,
and expert opinion was conducted. More details are pro-
vided in the supplementary material. Final analyses
included data from 53,342 individuals, due to the exclusion
of 112 subjects who died or were diagnosed with LC before
the first screen (110 patients) or those with missing smok-
ing information (age at start and=or time since quitting).

PLCO

The PLCO was a RCT that compared the impact of CXR
screening (intervention arm) versus usual care (no-screening
control arm) on LC mortality. The trial recruited 154,901
individuals aged 55 years to 74 years between November
1993 and July 2001. Participants were followed through
December 31, 2009 or for 13 years from the time of enroll-
ment, whichever came first. No minimum smoking expo-
sure was required to enroll. Individuals in the intervention
arm received up to 4 annual CXR screens. The study found
no difference in LC mortality between the intervention and
control arms.2 Contamination (CXR screening) in the con-
trol arm was limited (11% contamination rate2).

Additional smoking variables came from a supple-
mental questionnaire implemented toward the middle of
the trial. Missing baseline data regarding the age at the
start of smoking or CPDs for ever-smokers were imputed
according to the corresponding US distributions by birth
cohort and age. Final analyses included data from
148,025 individuals, after the exclusion of individuals
with missing baseline smoking status or (if applicable) age
at time of quitting. For more details please see supplemen-
tary material.
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Models

Models were developed by investigators at 5 institutions:
Erasmus Medical Center (model E), Fred Hutchinson
Cancer Research Center (model F), Massachusetts Gen-
eral Hospital (model M), University of Michigan (model
U), and Stanford University (model S). The models were
developed independently but the groups collaborated to
develop common inputs and define standardized analyses.
Below we provide a description of the five models. Addi-
tional details are provided in the Supplementary Material.

Smoking dose-response module

All models simulate individual LC natural history and
include a dose-response module that translates personal ciga-
rette exposure to LC risk. This smoking dose-response mod-
ule can be used to simulate age-specific LC outcomes given
an individual’s smoking history.5 Model M uses as its dose-
response module a probabilistic LC risk model previously
calibrated to Surveillance, Epidemiology, and End Results
(SEER) and US LC data14,15 and recalibrated to the NLST
and PLCO, whereas all other groups use multistage carcino-
genesis models.16-18 Both multistage5,16,17,19 and probabilis-
tic models have been used extensively to investigate the
effects of smoking on LC risk.12,20,21 Model E uses a multi-
stage model based on the Nurses’ Health Study (NHS) and
Health Professionals Follow-Up Study (HPFS).16 Model S
uses a modified version of this model. Model U uses a LC
multistage model by histology, also calibrated to the
NHS=HPFS. Model F uses a multistage model calibrated to
the NLST and PLCO. Three models (models F, M, and U)
use histology-specific smoking dose-response modules, and
3 models (models E, F, and M) recalibrated their smoking
dose-response to the NLST and PLCO. More details are
given in Table 1 and in the supplementary material. All
models are capable of accommodating detailed individual-
level smoking histories, including temporal factors such as
age at start, age at cessation, and age-specific changes in
CPDs. The variability across dose-response modules reflects
the modelers’ judgment regarding the best available data and
approaches to capture the complex relationship between
smoking and LC. The NHS and HPFS are arguably the best
prospective cohorts with which to investigate smoking-
related LC. They have > 30 years and > 20 years of follow-
up, respectively, and collect smoking information every 2
years. However, their LC histology information is much less
comprehensive than that of the NLST and PLCO, and stag-
ing information was not available. The NLST and PLCO
are excellent data sources with thorough information avail-
able regarding LC histology and staging, but have more lim-
ited follow-up and less extensive smoking data than

NHS=HPFS. In addition, the NLST includes only ever-
smokers and individuals in both arms were screened for LC.
Approximately one-half of individuals in PLCO were also
screened.

Histology distribution

Three models (models F, M, and U) have smoking dose-
response modules that are histology-specific. In these mod-
els, the LC histology distribution is a model outcome that
depends on the dose-response module and the participants’
smoking histories. Two models (models E and S) have
smoking dose-response modules that are not histology-
specific, and therefore they calibrated their histology to the
NLST and PLCO. Histology categories varied by model
(Table 1). Differences in histology categorization across
models are due partly to differences in dose-response mod-
ules, which are based on different data sets that vary in their
LC histology classifications (NHS=HPFS, NLST=PLCO,
and SEER). However, they are also due to variations in
model structure, and the modelers’ judgment regarding the
histology detail needed to characterize screening efficacy.

Stage progression

All models assume that stage progression rates vary by sex
and histology. Models E and U use Markov state transition
processes to model stage progression.22 Model U further
assumes that the progression rate at each stage is dependent
on tumor size (cell number). Models F, M, and S model
stage as a function of tumor size and the presence or absence
of metastasis. Variability in stage categorization (Table 1) is
due to the underlying data inputs, model structure, and the
modelers’ criteria regarding the stage detail needed to cap-
ture the effects of screening on LC mortality.

LC survival

All models assume that LC survival varies by histology
and stage. Models F, M, S, and U also assume that survival
varies by sex. Model U further assumes that survival varies
by age at diagnosis.

Models E, M, and U use LC survival modules cali-
brated to the SEER 17 (2004-2008) survival. Survival in
model S was calibrated to SEER 17 (1988-2003) survival.
LC survival in model F was calibrated to the NLST and
PLCO.

Other-cause mortality

Model E uses an other-cause mortality (OCM) module
based on the NCI’s smoking history generator, which pro-
duces OCM rates consistent with the US population.23,24

All other models use OCM based on the NLST and PLCO
(Table 1).
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Screening and follow-up

Screening sensitivities vary by model. In model E, screen
sensitivity varies by modality, stage, and histology. Mod-
els F and U have screen sensitivities that also vary by tu-
mor size (cell number). Sensitivities in models M and S
depend on screening modality, tumor size (in mm), and
lung nodule location (central vs peripheral). Model S also
considers histology. The variability in assumption is pri-
marily due to differences in model structure (eg, models
that do not model tumor size explicitly cannot have size-
dependent sensitivities). Follow-up examinations are
defined as those received after a positive screen but before
diagnosis, if it occurred. Algorithms for follow-up of a
positive screen are simulated with varying detail; models
M and S include detailed algorithms based on nodule size
thresholds and risk factors (explicit), whereas models E, F,
and U incorporate a global probability of receiving several
follow-up examinations (implicit) based on the observed
frequency of imaging examinations per positive screen in
the NLST. Because the NLST and PLCO did not specify
a follow-up regimen, models M and S specify less aggres-
sive protocols than the Fleischner Society guidelines,25 to
approximate the observed follow-up rate in the NLST.

Trial simulations

Four models (models E, M, S, and U) generate individual
LC outcomes using microsimulations.26 The simulation
depends on individual smoking history, sex, age at enroll-
ment, and screening arm. The specific simulation
approach depends on the model’s structure. Three models
(models E, M, and S) simulate age at onset of lung tumors
via their smoking dose-response module and then simu-
late each tumor’s natural history, including malignant
conversion, stage progression (models E, M, and S), tu-
mor growth (models M and S), and clinical and screen
detection (models E, M, and S). Model U simulates the
initiation of tumors via mutations of normal cells, and
then the premalignant and malignant tumor cell dynam-
ics (cell division, death, stage progression, and clinical and
screen detection). Model F uses a likelihood-based
approach to estimate LC outcomes and death via a longi-
tudinal, multistage, observation model.18 All models sim-
ulate all trial participants and then compare their
aggregate modeled outcomes with those of the trials (LC
incidence and mortality and OCM by screening arm, sex,
histology, and stage).

Screening effectiveness and mortality reduction

All models evaluate screening effectiveness, but based on
different assumptions that depend on model structure.

Model M assumes that patients with early-stage non-
small cell LC (NSCLC) would undergo resection (lobec-
tomy, consistent with practice guidelines), which
removes the primary tumor. In model M, therefore, for
patients without undetected distant metastases or addi-
tional primary LCs in another lobe, resection is curative
for LC. In model U, the benefit of screening is due to the
early detection of LC, leading to improved cure proba-
bilities and survival times, which depend on histology,
stage, sex, and age at diagnosis, but not on detection
mode. Model F assumes that screen-detected cancers are
treated according to clinical practice guidelines with cure
rates that vary by tumor stage and histology. In model E,
screen-detected patients experience a reduced risk of LC
mortality versus clinically detected cases. This improved
prognosis is represented as a cure fraction (dependent on
stage and screening modality for stages IA, IB, and II)
calibrated to the trials. Model S estimates probabilities
of lethal metastases as function of tumor size, histology,
and sex. All advanced stage LCs are, by definition,
detected after the onset of lethal metastases. Some early-
stage cancers may have occult lethal metastases at the
time of detection. For patients with early-stage and late-
stage tumors detected after the onset of lethal metastases,
LC survival is not affected by screening. However, with
screening, patients are more likely to be detected at early
stages before the onset of lethal metastases, and therefore
are cured of their disease after standard care.

Model Calibration and Validation Approach

Models were first calibrated to the NLST LC incidence
and mortality by screening arm, sex, histology, stage,
and detection mode. Models were then validated against
PLCO by first comparing model predictions and
observed LC incidence and mortality by sex and screen-
ing arm in the subset of individuals in PLCO who would
have been eligible for the NLST (PLCO-NLST–eligi-
ble). Model predictions were consistent with the
observed outcomes in the PLCO-NLST–eligible group,
demonstrating the consistency between the 2 trials.
However, model outcomes did not consistently match
against observed outcomes among PLCO participants
who were not eligible for the NLST (never-smokers and
light smokers). As a result, models were further cali-
brated to fit the whole PLCO data set to ensure that they
could be used with confidence to extrapolate the effects
of CT screening to smokers with lower exposure (< 30
pack-years). Calibration methods (targets, measures of
goodness of fit, and optimization algorithms) varied by
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model and are described in Table 1 and in the supple-
mentary material.

RESULTS
After final calibration, all models produced LC outcomes
consistent with both trials (within the confidence intervals
of the data). We demonstrated several measures of LC
incidence and mortality in the NLST and PLCO for both
sexes combined and compared observed and model out-
comes. Calibration targets varied by model, and therefore
the modeling results shown in each figure include combi-
nations of calibrated outcomes and model predic-
tions=extrapolations. Modeled outcomes were computed
using the “final” version of each model.

Figure 1 shows NLST observed and modeled inci-
dence and mortality by screening arm and years since ran-
domization (YSR). The figure shows that as previously

reported,1 the observed cumulative LC incidence was
higher in the CT screening arm, whereas the cumulative
mortality was higher in the CXR screening arm. Figures 2
and 3 display observed versus modeled LC cases and deaths
in the NLST by detection modality (screen-detected vs
non–screen-detected), screening arm, and YSR. The figures
show the contrasting pattern between screen-detected and
non–screen-detected cancers, with an early increase and
peaking by YSR for screen-detected cancers in both screen-
ing arms, in contrast with the slow progressive rise for non–
screen-detected cancers. The figures indicate that the mod-
els reproduce the general patterns of incidence and mortal-
ity by screening arm, detection modality, and YSR.

Figure 4 shows observed versus model-predicted
LCs in the NLST by histology. Because models have vary-
ing LC histology categories, we grouped them here as
small cell LC (SCLC) and NSCLC. The figure shows that

Figure 1. National Lung Screening Trial (NLST) observed and modeled incidence and mortality are shown by screening arm and
years since randomization (YSR). LC indicates lung cancer; CT, computed tomography; CXR, chest radiography; model E, Eras-
mus Medical Center; model F, Fred Hutchinson Cancer Research Center; model M, Massachusetts General Hospital; model U, Uni-
versity of Michigan; model S, Stanford University.
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the observed NSCLC incidence was higher in the CT
arm, whereas the SCLC incidence was approximately
similar in both screening arms. Modeled histology distri-
butions matched well with the observed distributions.
Figure 5 shows the NLST observed versus predicted
NSCLC incidence by clinical stage and screening arm.
The figure demonstrates the shift toward earlier stages in
NSCLC incidence in the CT versus CXR arm.

Figures 6 and 7 show full PLCO and PLCO-
NLST–eligible observed and modeled deaths by screening
arm, detection mode (CXR arm), and YSR. The figures
display the early increase and peaking of screen-detected
cancers in the CXR arm by YSR, and the slower increase
of otherwise detected cancers in the CXR arm and for all
cancers in the control arm. The figures demonstrate a
decrease in the non–screen-detected cancers in the CXR

and control arms toward the end of the trial, most likely

due to the weeding out and loss to follow-up of high-risk
individuals. All models reproduce the general patterns of
incidence and mortality in PLCO.

DISCUSSION

Main Findings

We derived 5 independent LC and screening natural his-
tory models calibrated to the 2 largest screening trials to
date, the NLST and PLCO. The 5 models are diverse in
structure, assumptions, and additional data inputs. All
models produce outcomes that are generally consistent
with the trial results. We found that models calibrated
only to the NLST validated well against the PLCO-
NLST–eligible population, thereby demonstrating the
consistency between the 2 trials. However calibrating only

Figure 2. Observed versus modeled lung cancer cases in the National Lung Screening Trial (NLST) are shown by detection mo-
dality (screen vs non–screen-detected), arm and years since randomization (YSR). CT indicates computed tomography; CXR,
chest radiography; model E, Erasmus Medical Center; model F, Fred Hutchinson Cancer Research Center; model M, Massachusetts
General Hospital; model U, University of Michigan; model S, Stanford University. Dashed lines represent 95% binomial CIs for the
observed values. Observed screen-detected cancers after year 3 are due to delay in diagnosis after the last screen.
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to the NLST may be insufficient for the purposes of evalu-
ating screening protocols, allowing for lower smoking
exposures, and making projections for the US population.
This is particularly true for models that base their smok-
ing dose-response fully on the NLST and also for models
with histology distributions based on observed trial data,
because the NLST only includes information regarding
current and former heavy smokers and it is well-
documented that the LC risk from smoking varies greatly
by histology.27,28 To derive models that could be used
with confidence to extrapolate the impact of low-dose CT
screening to smokers with lower exposures (< 30 pack-
years) and to the US population, it is essential to calibrate
such models to data sets with information on LC risk
for light and never-smokers, such as NHS=HPFS or
PLCO.

Study Limitations and Strengths

The current study has some limitations. First, as in any
mathematical modeling approach, our models are simpli-
fications of the biological complexity of lung carcinogene-
sis and neglect the influence of various endogenous
and exogenous LC risk factors such as family history,
chronic obstructive pulmonary disease, residential radon,
occupational exposures, race, and socioeconomic status.
However, it is well known that smoking still accounts for
the large majority of LC deaths (� 90%29) and our mod-
els do capture the complex relation between smoking and
LC via their smoking dose-response module. Further-
more, in contrast with the majority of LC risk models in
the literature, several of our models do account explicitly
for the differential impact of smoking on LC risk by his-
tology. The diversity in model structure, assumptions,

Figure 3. Observed versus modeled lung cancer deaths in the National Lung Screening Trial (NLST) are shown by detection mo-
dality (screen vs non–screen-detected), arm and years since randomization (YSR). CT indicates computed tomography; CXR,
chest radiography; model E, Erasmus Medical Center; model F, Fred Hutchinson Cancer Research Center; model M, Massachusetts
General Hospital; model U, University of Michigan; model S, Stanford University. Dashed lines represent 95% binomial CIs for the
observed values.
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and data sources provides additional strength (and an
assessment of model uncertainty) to the conclusions of
our comparative modeling analysis, as does the long his-
tory of collaboration between the CISNET groups.

Another potential limitation of the current study is
that the screening mortality reductions predicted by each

model are largely dependent on the findings of the NLST
and PLCO. To our knowledge the NLST and PLCO are
currently the best existing studies of LC screening report-
ing on the main outcome of LC mortality (reduction),
and therefore calibrating models to these trials is the best
available option. Some other studies, particularly in

Figure 4. Observed versus model-predicted lung cancers in the National Lung Screening Trial (NLST) are shown by histology. CT
indicates computed tomography; CXR, chest radiography; model E, Erasmus Medical Center; model F, Fred Hutchinson Cancer
Research Center; model M, Massachusetts General Hospital; model U, University of Michigan; model S, Stanford University.

Figure 5. National Lung Screening Trial (NLST) observed versus predicted non-small cell lung cancer (NSCLC) incidence is shown
by clinical stage and screening arm. The figure demonstrates the shift toward earlier stages in NSCLC incidence in the computed
tomography (CT) versus chest radiography (CXR) arm. Model E indicates Erasmus Medical Center; model F, Fred Hutchinson Can-
cer Research Center; model M, Massachusetts General Hospital; model U, University of Michigan; model S, Stanford University.
Dashed lines represent 95% multinomial CIs for the observed values. Model E does not model separately Ia1 and Ia2 cancers, so
their Ia1 value represents all IA cancers. Model S models early versus late stage cancers.
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Europe, have been underpowered to demonstrate the ben-
efits of low-dose CT screening whereas others are still
ongoing.30 Once data from other trials become available,

which is not expected for a few years, the models could be
validated against new trials and, if deemed necessary, cali-
brated further, particularly if applied to non-US

Figure 6. Full Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) observed and modeled deaths are shown by
screening arm, detection mode (chest radiography [CXR] arm), and years since randomization (YSR). Model E indicates Erasmus
Medical Center; model M, Massachusetts General Hospital; model U, University of Michigan; model S, Stanford University. Dashed
lines represent 95% binomial CIs for the observed values.

Figure 7. Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO)-National Lung Screening Trial (NLST)–eligible
observed and modeled deaths are shown by screening arm, detection mode (chest radiography [CXR] arm), and years since ran-
domization (YSR). Model E indicates Erasmus Medical Center; model F, Fred Hutchinson Cancer Research Center; model M, Mas-
sachusetts General Hospital; model U, University of Michigan; model S, Stanford University. Dashed lines represent 95% binomial
CIs for the observed values.
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populations. In any case, the models will be helpful to
compare trial results and, if needed, to investigate the rea-
sons behind any potential discrepancies.

Finally, the current study highlights the benefits of
modeling as a way to synthesize information coming from
diverse and complex data sources. The models developed
use individual data from RCTs (the NLST and PLCO),
prospective cohort studies (eg, NHS=HPFS), and cancer
registry data (NCI-SEER). These data sources are
extremely valuable on their own, and provide information
regarding different aspects of LC. However, it is only
through modeling that they can be integrated and jointly
inform the biology and epidemiology of LC, as well as the
potential benefits of LC screening at the population level.

Implications and Future Research

The results of the current analyses demonstrate that the
NLST and PLCO produced consistent results, and sug-
gest that it is critical to use data covering a wide range of
smoking histories (never-smokers, light smokers, and
heavy smokers) to develop models that can extrapolate the
effects of screening to the general population. The 5 mod-
els presented herein are currently being used to evaluate
the impact of alternative low-dose CT screening protocols
on LC mortality in the United States. Specifically, we are
assessing the effectiveness of screening programs with
varying age eligibility, exposure criteria, and screening fre-
quency.31 In the near future, we will use the models to
predict the potential levels of overdiagnosis due to LC
screening and determine optimal screening strategies at
both the national and state levels. Using models calibrated
to the NLST and PLCO will enhance the validity of effec-
tiveness and cost-effectiveness analyses of LC screening.
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