
Comparative Analysis of Approximate
Blocking Techniques for Entity Resolution

George Papadakis$, Jonathan Svirsky#, Avigdor Gal#, Themis Palpanas^

$Dep. of Informatics & Telecommunications, University of Athens, Greece gpapadis@di.uoa.gr
#Technion, Israel Institute of Technology js@tx.technion.ac.il, avigal@ie.technion.ac.il

^Paris Descartes University, France themis@mi.parisdescartes.fr

ABSTRACT

Entity Resolution is a core task for merging data collections. Due
to its quadratic complexity, it typically scales to large volumes of
data through blocking: similar entities are clustered into blocks and
pair-wise comparisons are executed only between co-occurring en-
tities, at the cost of some missed matches. There are numerous
blocking methods, and the aim of this work is to offer a compre-
hensive empirical survey, extending the dimensions of comparison
beyond what is commonly available in the literature. We consider
17 state-of-the-art blocking methods and use 6 popular real datasets
to examine the robustness of their internal configurations and their
relative balance between effectiveness and time efficiency. We also
investigate their scalability over a corpus of 7 established synthetic
datasets that range from 10,000 to 2 million entities.

1. INTRODUCTION
The need for data integration stems from the heterogeneity of

data arriving from multiple sources, the lack of sufficient seman-
tics to fully understand data meaning, and errors originating from
incorrect data insertion and modifications (e.g., typos and elimina-
tions) [5]. Entity Resolution (ER) aims at “cleaning” noisy data
collections by identifying entity profiles, or simply entities, that
represent the same real-world object. With a body of research that
spans over multiple decades, ER has a wealth of formal models [7,
11], efficient and effective algorithmic solutions [18, 26], as well as
a bulk of systems and benchmarks that allow for comparative anal-
yses of solutions [4]. Elmagarmid et al. provide a comprehensive
survey covering the complete deduplication process [6].

Exhaustive ER methods cannot scale to large volumes of data,
due to their inherently quadratic complexity: in principle, each en-
tity has to be compared with all others in order to find its matches.
To improve their efficiency, approximate techniques are typically
employed, sacrificing a small number of true matches in order to
save a large part of the time-consuming comparisons. Among them,
blocking is the most common and popular approach, clustering sim-
ilar entities into blocks so that it suffices to execute comparisons
only within the resulting blocks.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 9
Copyright 2016 VLDB Endowment 21508097/16/05.

Christen’s survey [5] examines the main blocking methods for
structured data, concluding that they all require careful fine-tuning
of internal parameters in order to yield high performance. Their
most important parameter is the definition of blocking keys, i.e.,
the signatures that are extracted from the entity profiles in order to
facilitate their placement into blocks. Its configuration can be sim-
plified to some extent through the unsupervised, schema-agnostic
keys proposed in [24]: they achieve higher recall than the manually-
defined, schema-based ones, at the cost of more comparisons and
higher processing time. Yet, every method involves additional in-
ternal parameters that are crucial for their performance, but their
effect has not been carefully studied in the literature.

In this context, our work aims to answer the following four ques-
tions: (1) How easily can we configure the parameters of the main

blocking methods? (2) Are there any default configurations that are

expected to yield good performance in versatile settings? (3) How

robust is the performance of every blocking method with respect to

its internal parameters? and (4) Which blocking method offers the

best balance between recall and precision in most cases?

We start by introducing a novel taxonomy that relies on the life-
cycle of blocks in order to elucidate the functionality of all types
of blocking methods. Based on it, we analytically examine 17
state-of-the-art blocking methods, comparing their relative perfor-
mance and scalability over 13 established benchmarks with widely
different characteristics: their sizes range from few thousand enti-
ties to few million, they involve both real-world and synthetic data
and they cover both structured (homogeneous) and semi-structured
(heterogeneous) data. We performed an exhaustive set of experi-
ments, considering all performance aspects of blocking: the effec-
tiveness in terms of recall and precision as well as the time effi-
ciency with respect to overhead and total running time.

Special care has been taken to examine the effect of the internal
configuration on blocking methods. To this end, we assess the per-
formance of each method under a wide range of plausible values
for its internal parameters. We also define a formal approach for
identifying the best configuration per blocking method and dataset.
The same formalization can be used for inferring the settings that
achieve the best average performance across all datasets, thus pro-
viding a default configuration per method. By comparing the best
and the default parameters, we are able to assess the robustness of
each blocking method.

Relation to Previous Work. The blocking techniques for ER [6,
9, 10, 12] can be distinguished in two broad categories: the ap-

proximate methods sacrifice recall to a minor extent in an effort to
achieve significantly higher precision, whereas the exact methods
guarantee that all pairs of duplicates are identified [17, 23]. More
popular in the literature are methods of the former type, because

684

they are more flexible in reducing the number of executed compar-
isons. For this reason, we only consider approximate methods.

Our experimental analysis builds on two previous surveys of ap-
proximate blocking methods for structured data [5, 24]. We use
all datasets and blocking methods that were examined in [24] and
we combine them with the same schema-agnostic blocking keys.
These cover all datasets and almost all techniques considered in [5].
Yet, we go beyond these works in the following seven ways: (i)

Our study involves two large heterogeneous datasets, which were
absent from previous studies, even though they are quite common
in the era of Big Data. (ii) We consider three additional block-
ing methods, which capture more recent developments in blocking,
especially the handling of heterogeneous data. (iii) We take into ac-
count the lifecycle of blocks, examining the performance of block-
ing methods when coupled with block processing techniques. (iv)

We focus on the configuration of blocking methods, being the first
to systematically examine a wide range of internal parameters for
every method, to formally define its best and default configuration
per dataset, and to assess its robustness. (v) Our emphasis on inter-
nal configurations enables the estimation of relative performance
and scalability of the main blocking methods in a systematic way.
This is impossible with prior works that consider a limited number
of possible configurations. (vi) Our experiments suggest default
configurations for all blocking methods, thus minimizing the effort
required for using them. (vii) We introduce a novel taxonomy of
blocking methods that emphasizes the lifecycle of blocks and the
role of their internal parameters, thus providing useful insights into
our experimental results.

Contributions. This paper makes the following contributions.
• We provide a novel categorization of blocking methods and

their internal parameters based on the lifecycle of blocks, which
leads to a better understanding of their behavior.
• We thoroughly compare 17 state-of-the-art blocking methods

through experiments on 13 established benchmarks with different
characteristics. All datasets, along with the testing code (in Java),
are publicly available.1

• We formally define the best and the default configuration of
blocking methods over a set of datasets.
• We report comprehensive findings from our experiments and

provide new insights on the scalability and robustness of the main
blocking methods. In this way, we guide practitioners on how to
select the most suitable technique and its configuration for each
data integration problem.

Paper Structure. Section 2 introduces the terminology and the
measures used in the evaluation. We define our taxonomy of block-
ing methods in Section 3 and describe the state-of-the-art ones in
Section 4. Section 5 presents the experimental setup, and Section 6
the results. We summarize the main findings in Section 7.

2. PRELIMINARIES
Entities constitute uniquely identified collections of name-value

pairs that describe real-world objects. An entity with id i is denoted
by ei. A set of entities is termed an entity collection (E), and the
number of entities it involves is called collection size (|E|). Two
entities {ei, e j}⊆E with i, j are called duplicates or matches if they
represent the same real-world object. Given one or more entity
collections, ER aims to identify the duplicate entities they contain.

We distinguish ER into two main tasks, depending on the form of
the input: (i) Clean-Clean ER receives as input two duplicate-free,
but overlapping entity collections, E1 and E2, and tries to identify

1See http://sourceforge.net/projects/erframework and
https://bitbucket.org/TERF/mfib.

the entities they have in common, D(E1∩E2). (ii) All other cases
of ER are considered equivalent to Dirty ER, where the input com-
prises a single entity collection, E, that contains duplicates in itself.
The goal is to partition E into a set of equivalence clusters, D(E).
In the context of homogeneous data (databases), the former task is
called Record Linkage and the latter Deduplication [5].

ER involves an inherently quadratic complexity: the number of
comparisons executed by the brute-force approach equals ||E|| =
|E1|×|E2| for Clean-Clean ER and ||E||=|E|×(|E|−1)/2 for Dirty ER.
In order to scale to large entity collections, we use blocking, which
restricts the computational cost to comparisons between similar en-
tities: it clusters them into a set of blocks B, called block collection,
and performs comparisons only among the co-occurring entities.

A block with id i is denoted by bi. Its size (|bi|) refers to the num-
ber of its elements, while its cardinality (||bi||) refers to the number
of comparisons it contains: ||bi||=|bi|·(|bi|−1)/2 for Dirty ER and
||bi|| = |bi,1|·|bi,2| for Clean-Clean ER, where bi,1⊆E1 and bi,2⊆E2

are the disjoint, inner blocks of bi. The total number of pairwise
comparisons in B is called total cardinality (||B||) and is equal to
the sum of the individual block cardinalities: ||B||=

∑
bi∈B ||bi||.

Typically, two duplicate entities are considered detected as long
as they co-occur in at least one block – independently of the se-
lected entity matching technique [2, 5, 22, 26]. We actually follow
the best practice in the literature and consider entity matching as
an orthogonal task to blocking [5, 24, 27]. Provided that the vast
majority of duplicate entities are co-occurring, the performance of
ER depends on the accuracy of the method that is used for entity
comparison. The set of co-occurring duplicate entities is denoted
by D(B), while |D(B)| denotes its size.

Effectiveness Measures. Three measures are used for estimat-
ing the effectiveness of a block collection B [5, 24]:

(E1) Pairs Completeness (PC) assesses the portion of the dupli-
cate entities that co-occur at least once in B (also known as recall in
other research fields). Formally, PC(B, E)=|D(B)|/|D(E)| for Dirty
ER and PC(B, E1, E2)=|D(B)|/|D(E1 ∩ E2)| for Clean-Clean ER.

(E2) Pairs Quality (PQ) corresponds to precision, as it estimates
the portion of non-redundant comparisons that involve matching
entities. Formally, PQ(B)=|D(B)|/||B||.

(E3) Reduction Ratio (RR) estimates the portion of comparisons
that are avoided in B with respect to the naive, brute-force ap-
proach. Formally, RR(B, E)=1-||B||/||E||.

All these measures take values in the interval [0, 1], with higher
values indicating higher effectiveness. Ideally, the goal of block-
ing is to maximize all of them at once, identifying all existing du-
plicates with the minimum number of comparisons. However, a
linear increase in |D(B)| typically requires a quadratic increase in
||B|| [12], thus yielding a trade-off between PC and PQ-RR. There-
fore, blocking should aim for a balance between these measures,
minimizing the executed comparisons, while ensuring that most
matching entities are co-occurring (PC > 0.80) [24].

Efficiency Measures. We use two measures to estimate the time

efficiency of the blocking process [24]:
(T1) Overhead Time (OTime) is the time between receiving the

input entity collection(s) and returning the set of blocks as output.
(T2) Resolution Time (RTime) adds to OTime the time required

to perform all pair-wise comparisons in B with an entity matching
technique. Following [24], we use the Jaccard similarity of all to-
kens in all attribute values for this purpose, without involving any
optimization for higher efficiency (e.g., inverted indices). This is a
generic approach that applies to all contexts, unlike more advanced
techniques that are usually specialized for a particular domain, or
for a particular type of data, e.g., structured data [19].

For both measures, lower values indicate higher time efficiency.

685

Block

Building

Comparison

Cleaning
E B Block

Cleaning

��������	
���

��������
���	
������������

��������

����������������������

��������

����	��������	
�����������

Figure 1: The sub-tasks of blocking and the respective methods.

3. BLOCKING METHODS TAXONOMY
We now introduce a taxonomy of blocking methods to facilitate

their understanding, use and combination. Our taxonomy is based
on the internal functionality of blocking, which we divide into three
sub-tasks (Figure 1 presents them in the order of execution):

Block Building (BlBu) takes as input one or two entity collec-
tions and clusters them into blocks. Typically, each entity is repre-
sented by multiple blocking keys that are determined a-priori, ex-
cept for MFIBlocks [18] , where the keys are the result of mining;
blocks are then created based on the similarity, or equality of these
keys. As an illustrating example, consider Figure 2, which demon-
strates the functionality of Standard Blocking [5] when using the
unsupervised, schema-agnostic keys proposed in [24]. All attribute
values in Figure 2(a) contribute to the blocking keys: for every one
of their tokens, a separate block is created with all associated en-
tities, as shown in Figure 2(b). The internal parameters of BlBu

may fit into one of two types: (i) key definition parameters pertain
to the specification of blocking keys, e.g., how to extract keys from
an attribute value; (ii) key use parameters determine the measures
that support the creation of blocks from a set of existing keys, e.g.,
the minimum similarity threshold for constructing a new block.

Block Cleaning (BlCl) receives as input a block collection and
removes blocks that primarily contain unnecessary comparisons.
These may come in one of two forms: redundant comparisons are
repeated comparisons across different blocks, and superfluous com-

parisons involve non-matching entities. While the former are easy
to detect, the latter can only be estimated during entity matching,
in the final step of ER. In the example of Figure 2(b), e1 and e3

are first compared in block b1 and, thus, their comparison in block
b2 is redundant, since there is no gain in recall if we repeat it; in
addition, the non-redundant comparison between e1 and e4 in block
b3 is superfluous, because there is no gain in recall if we execute it.
In this context, BlCl aims to discard both redundant and superflu-
ous comparisons at a limited cost in recall. Its internal parameters
enforce either block-level constraints, affecting individual blocks
(e.g., maximum entities per block), or entity-level constraints, af-
fecting individual entities (e.g., maximum blocks per entity).

Comparison Cleaning (CoCl) takes as input a block collection
and outputs a set of executable pairwise comparisons. Similar to
BlCl, its goal is to discard redundant and superfluous comparisons
at a small cost in recall. Instead of targeting entire blocks, though,
it operates at a finer level of granularity, targeting individual com-
parisons. Hence, its internal parameters are partitioned into those
relating to redundant comparisons and to superfluous comparisons.

Based on these three sub-tasks, we identify four categories of
blocking methods, which are depicted in Figure 1:

(i) Lazy blocking methods involve a coarse functionality that
solely employs BlBu.

(ii) Block-refinement methods exclusively perform BlCl.
(iii) Comparison-refinement methods apply only CoCl.
(iv) Proactive blocking methods involve a fine-grained func-

tionality that aims to create self-contained blocks. To this end, they
either perform BlBu+BlCl, or all three, BlBu+BlCl+CoCl.

Table 1 lists the blocking methods we test in this work, parti-
tioned into these four categories. For each method, we also map its
internal parameters to their type.

 (a)

e1 Given name: JOHN

Surname: RIVERA

Suburb: BRENTWOOD, 22ND

Zip Code: 1413

e2 Given name: RODERICK

Surname: CARTIER

Suburb: 22

Zip Code: 14135
e4

Name: RODRICK CARTER

Address: 22ND, 14135

 (b)

b1 (BRENTWOOD)

e1 e3

b3 (22ND)

e1 e4

b4 (14135)

e2 e4

b2 (1413)

e1 e3 e3

e3 Name: JOHONNY RIBERA

Address: BRENTWOOD,

 22ND, 1413

Figure 2: (a) A set of entities, (b) creating a block for every

token that appears in the attribute values of at least two entities.

4. BLOCKING METHODS
We now briefly present the 17 blocking techniques we consider

in our experimental analysis: 5 lazy, 7 proactive, 2 block- and 3
comparison-refinement methods. Emphasis is placed on their in-
ternal parameters and the sub-tasks they run. For the lazy and
proactive methods, we exclusively consider the schema-agnostic
configuration of their blocking keys that was examined in [24]; this
approach simplifies their configuration, enhances their recall, and
turns them applicable to heterogeneous entity collections. Based
on this configuration, Figure 3 outlines the relationships among
these methods; an edge A→B indicates that method B improves on
method A either by modifying the definition of its blocking keys,
or by changing the way they are used for the creation of blocks.

4.1 Lazy Blocking Methods
Standard Blocking (StBl) [5, 26] has a parameter-free function-

ality: every distinct token ti in the input creates a separate block bi

that contains all entities having ti in their attribute values as long
as ti is shared by at least 2 entities (Figure 2). StBl serves as the
starting point for the other lazy and proactive methods (see below),
which rely on its schema-agnostic, unsupervised blocking keys for
creating their blocks.

Attribute Clustering (ACl) [26] partitions attribute names into
a set K of non-overlapping clusters according to the similarity of
their values, and applies StBl independently inside each cluster.
Every token ti of the values in a cluster k∈K creates a block with
all entities that have ti assigned to an attribute name belonging
to k. A token ti associated with n attribute names from m(≤n)
attribute clusters, creates at most m blocks, while for StBl, the
same token creates a single block. Thus, ACl aims to offer the
same recall as StBl for significantly fewer comparisons. Its func-
tionality is configured by the representation model of the attribute
name textual values and the corresponding similarity measure. In
our experiments, we consider 12 such models: character n-grams

(CnG), with n∈{2, 3, 4}, character n-gram graphs [13] (CnGG),
with n∈{2, 3, 4}, token n-grams (TnG), with n∈{1, 2, 3}, and token

n-gram graphs [13] (TnGG), with n∈{1, 2, 3}; CnG is coupled with
the Jaccard similarity, TnG with the cosine similarity, and the graph
models with the graph value similarity metric [13].

Extended Sorted Neighborhood (ESoNe) [5] sorts the blocking
keys of StBl in alphabetical order and slides a window of size w

over them. In every iteration, it creates a new block for all keys
that are placed within the current window. In the example of Fig-
ure 2, w=3 creates two blocks: the first with all entities associ-
ated to keys 1413, 14135, 22ND (each entity appears at most once):
b1 = {e1, e2, e3, e4}; and the second with all entities associated to
keys 14135, 22ND, BRENTWOOD (its content is identical to b1).

Q-grams Blocking (QGBl) [15] transforms the blocking keys of
StBl into a format more resilient to noise: it converts every token
into sub-sequences of q characters (q-grams) and builds blocks on

686

Standard Blocking (StBl) [5,26]

Sorted

Neighborhood

(SoNe) [16]

Q-grams Blocking

(QGBl) [15]

Extended

Q-grams

Blocking

(EQGBl) [5]

Suffix Arrays

(SuAr) [1]

Extended

Suffix Arrays

(ESuAr) [5]

Canopy

Clustering

(CaCl) [21]

Extended Canopy

Clustering (ECaCl) [5]

Attribute

Clustering

(ACl) [26]

TYPiMatch

(TYPiM) [20]

MFIBlocks

(MFIB) [18]
Extended Sorted

Neighborhood

(ESoNe) [5]

Figure 3: The relations between lazy and proactive methods.

their equality. For example, using q=3, BRENTWOOD is trans-
formed into the keys BRE, REN, ENT , NTW, TWO, WOO and OOD.
This is applied to all tokens of all entity values, and a block is cre-
ated for every q-gram that appears in at least two entities.

Extended Q-grams Blocking (EQGBl) [5] aims to increase the
discriminativeness of the blocking keys of QGBl so as to reduce the
cardinality of its blocks. Instead of individual q-grams, it uses keys
that stem from the concatenation of at least L q-grams. L is derived
from a user-defined threshold T ∈ [0, 1): L = max(1, ⌊k·T ⌋), where
k is the number of q-grams in the original blocking key (token).
The larger T is, the larger L gets, yielding less keys from the k q-
grams. In our example, the key BRENTWOOD is transformed into
the following combinations for T=0.9 and L=6:
BRERENENT NTWWOOOOD, BRERENENTTWOWOOOOD,
BRERENNTWTWOWOOOOD, BREENT NTWTWOWOOOOD,
BRERENENT NTWTWOWOOOOD, BRERENENT NTWTWOWOO,
RENENT NTWTWOWOOOOD, BRERENENT NTWTWOOOD. This
is applied to the tokens from all attribute values of all entities, cre-
ating a block for every key that appears in at least two entities.

4.2 Blockrefinement Methods
Block Purging (BlPu) sets an upper limit either on the size [8],

or on the cardinality [26] of individual blocks and purges those
exceeding it. We employ a simplified version that specifies the
maximum size of retained blocks through a ratio ρ ∈ [0, 1] of the
input collection size: |b|max = ρ × |E| for Dirty ER and |b|max =

ρ × (|E1| + |E2|) for Clean-Clean ER.
Block Filtering (BlFi) [28] operates on individual entities with

the goal of removing them from their least important blocks. At its
core lies the assumption that the larger a block is, the less important
it is for its entities. Hence, BlFi first sorts all blocks globally, in
ascending order of cardinality. Then, it retains every entity ei in
the Ni smallest blocks in which it appears. This threshold is locally
defined as Ni = ⌊r × |Bi|⌋, where Bi stands for the set of blocks
containing ei and r ∈ [0, 1] specifies a percentage.

4.3 Comparisonrefinement Methods
Comparison Propagation (CoPr) [25] eliminates all redundant

comparisons from any block collection, without missing any de-
tected duplicates. A comparison ei-e j in block bk is redundant and,
thus, omitted if k differs from the least common block id of ei and
e j. Hence, every pair of co-occurring entities is exclusively com-
pared in the first block they share. This is a parameter-free proce-
dure that scales well to billions of comparisons.

Iterative Blocking (ItBl) [29] is a parameter-free method that
discards redundant comparisons between matching entities, while
attempting to detect more duplicates. Blocks are placed in a queue
and processed one at a time. For each block bk, ItBl executes all
comparisons in bk and for every new pair of detected duplicates

Aggregate Reciprocal

Comparisons Scheme (ARCS)
����(�� , �	 ,
) = 1

||��||��∈���

Common Blocks Scheme (CBS) �
�(�� , �	 ,
) = |
�	|
Enhanced Common Blocks

Scheme (ECBS)
��
�(�� , �	 ,
) = �
�(�� , �	 ,
) ∙ log

|
|
|
�| ∙ log

|
|
|
	|

Jaccard Scheme (JS) ��(�� , �	 ,
) =
|
�	|

� +
	 − |
�	|

Enhanced Jaccard Scheme (EJS) ���(�� , �	 ,
) = ��(�� , �	 ,
) ∙ log | !||"�| ∙ log
| !|
|"�|

Figure 4: The formal definitions of MeBl weighting schemes.

ei-e j, it merges their profiles and updates their representation in
all blocks that contain them. The blocks that involve ei or e j, but
have already been processed, are pushed back to the queue. This
approach relies on entity matching and applies only to Dirty ER.

Meta-blocking (MeBl) [27] targets redundant and superfluous
comparisons in redundancy-positive block collections, where the
more blocks two entities share, the more likely they are to match. It
creates an undirected graph, where the nodes correspond to entities
and the edges connect the co-occurring entities. This automatically
eliminates all redundant comparisons. To discard superfluous com-
parisons, edge weights are set in proportion to the similarity of the
blocks shared by the adjacent entities: high weights indicate adja-
cent entities that are more likely to match, while edges with low
weights indicate superfluous comparisons that should be pruned.
Two parameters determine this procedure. The first is the weight
assignment scheme. Figure 4 defines the five available generic
schemes, where Bi, j denotes the set of blocks shared by ei and e j,
|VB| is the total number of nodes in the blocking graph of B, and |vi|

is the node degree corresponding to ei. The second parameter is the
pruning algorithm. Six algorithms have been proposed [27, 28]:
(i) Cardinality Edge Pruning (CEP) retains the top-K weighted
edges of the graph. (ii) Cardinality Node Pruning (CNP) retains
the top-k weighted edges from the neighborhood of each node. (iii)

Reciprocal Cardinality Node Pruning (ReCNP) retains the edges
that are among the top-k weighted ones for both adjacent entities.
(iv) Weight Edge Pruning (WEP) iterates over all edges and dis-
cards those with a weight lower than a global threshold. (v) Weight

Node Pruning (WNP) iterates over all nodes and prunes the ad-
jacent edges that are weighted lower than a local threshold. (vi)

Reciprocal Weight Node Pruning (ReWNP) retains the edges that
exceed the local threshold of both adjacent node neighborhoods.
The pruning threshold of each algorithm is set automatically.

4.4 Proactive Blocking Methods
MFIBlocks (MFIB) [18] uses the blocking keys of QGBl to cre-

ate blocks by iteratively applying an algorithm for mining Maxi-
mal Frequent Itemsets [14]. MFIB receives as input a set of min-
imum support values (S), where every minsupi∈S is equal to the
largest expected equivalence cluster in the input entities in itera-
tion i. MFIB is an iterative algorithm, whose goal is to find a set
of blocks of maximum cardinality, where each block satisfies the
sparse neighborhood constraint (p) [3] and maintains a score above
a threshold t, which is adjusted dynamically. In each iteration, the
MFI mining algorithm is run on the entities that have not been pro-
cessed yet, using a smaller minimum support (until minsupi<2).
Each MFI run creates a set of blocks, calculating a block score
with a variation of the Jaccard coefficient that is extended to oper-
ate on q-grams [18]. Only blocks with support size smaller than
minsupi · p are kept (BlCl). Next, distinct pairs in the retained
blocks are recorded. If the sparse neighborhood criterion is vio-
lated for some entity in the new blocks, t is updated. The final
value of t is used to discard entity pairs with a low score (CoCl).

687

Block Building (BlBu) Block Cleaning (BlCl) Comparison Cleaning (CoCl) Number Number

key key block entity redundant superfluous Step of of

definition use level level comparisons comparisons values settings

StBl inherent parameter-free

ACl representation model - 12 12

ESoNe w ∈ [2, 100] 1 99 99

QGBl q ∈ [2, 6] 1 5 5

EQGBl
q ∈ [2, 6] 1 5

20
t ∈ [0.8, 1.0) 0.05 4

(a) Lazy blocking methods

BlPu ρ ∈ [0.05, 1.0] 0.05 19 19

BlFi r ∈ [0.05, 1.0] 0.05 19 19

(b) Block-refinement methods

CoPr inherent parameter-free

ItBl (inherent) parameter-free

MeBl inherent
weighting scheme - 5

30
pruning algorithm - 6

(c) Comparison-refinement methods

MFIB

q ∈ [2, 6] 1 5

1,500
S ∈ [2, 500] varying 25

t ∈ [0, 1] 0.05 20
p ∈ [2, 1000] varying 15

CaCl

q ∈ [2, 6]
inherent (inherent)

1 5
855w1 ∈ [0.05, 1.0) 0.05 19

w2 ∈ [w1+0.05, 1.0) 0.05 ≤18

ECaCl

q ∈ [2, 6]
(inherent)

1 5
4,775n1 ∈ [1, 10] 1 10

n2 ∈ [n1, 100] 1 ≤100

SuAr
lm ∈ [2, 6] 1 5

495
bM ∈ (1, 100] 1 99

ESuAr
lm ∈ [2, 6] 1 5

495
bM ∈ (1, 100] 1 99

SoNe w ∈ [2, 100] 1 99 99

TYPiM
ǫ ∈ [0.05, 1.0] 0.05 19

361
θ ∈ [0.05, 1.0] 0.05 19

(d) Proactive blocking methods

Table 1: Taxonomy of the blocking methods and their internal parameters; inherent denotes a parameter-free functionality of a

specific category, while (inherent) indicates that this parameter-free functionality is performed with certain limitations. For each

parameter, we present the values that are used in our experiments along with the total number of configurations per method.

The candidate pairs in the final set of blocks are recorded and their
entities are excluded from further processing.

Canopy Clustering (CaCl) [21] inserts all input entities in a
pool P, iteratively removes a random seed entity ei from P, and
creates a block with all entities still in P that have a Jaccard simi-
larity with ei higher than weight threshold w1∈(0, 1). The most sim-
ilar entities, which exceed a threshold w2∈(0, 1)(>w1), are removed
from P. The Jaccard similarity is derived from the keys that QGBl

assigns to every entity [5]. For Clean-Clean ER, CaCl employs two
pools: P1 contains the entities of E1 and P2 those of E2. The seeds
for the blocks are only selected from P1, while their profile similar-
ities are only computed with entities from P2. Thus, the resulting
blocks contain no redundant comparisons (CoCl). Given that CaCl

creates at most one block per entity, it performs BlCl, as well.
Extended Canopy Clustering (ECaCl) [5] extends CaCl so as

to ensure that every entity is placed in at least one block (CaCl will
not place entities in a block if w1 is too large). ECaCl performs BlCl

based on the nearest neighbors of each entity: for each random seed
entity ei, it creates a sorted stack with the n1 most similar entities
still in P. These entities are placed in a new block together with
ei, while the 0<n2(≤n1) most similar entities are removed from P.
In the case of Clean-Clean ER, it employs two pools, performing
CoCl, just like CaCl.

Suffix Arrays (SuAr) [1] improves StBl by enhancing the noise-
tolerance of its blocking keys. Instead of using the entire tokens,
it transforms them into the suffixes that are longer than a mini-
mum length lm. In our example, the key BRENTWOOD is con-
verted into the suffixes BRENTWOOD, RENTWOOD, ENTWOOD

and NTWOOD for lm=6. This transformation applies to all tokens
from all attribute values of the input entities. Blocks are then cre-

ated based on the equality of keys. SuAr also performs BlCl, by
discarding the suffixes that appear in more than bM entities.

Extended Suffix Arrays (ESuAr) [5] uses noise reduction to
make SuAr more robust. Instead of considering only suffixes, it
transforms every key of StBl into all substrings that are longer than
lm characters. Continuing our example, BRENTWOOD is trans-
formed into the keys (for lm = 6): BRENTWOOD, BRENTWOO,
RENTWOOD, BRENTWO, ENTWOOD, RENTWOO, BRENTW,
ENTWOO, NTWOOD, RENTWO. This transformation is applied to
all tokens from all attribute values of the input entities, while bM

sets an upper limit on the size of the resulting blocks (BlCl).
Sorted Neighborhood (SoNe) [16] sorts the blocking keys of

StBl alphabetically and orders the corresponding entities accord-
ingly. Then, it slides a window of size w over the list of ordered
entities, and compares the entities within the same window. As
a result, it only produces blocks with w entities, inherently per-
forming BlCl. In the example of Figure 2, the sorted list of keys
would be {1413, 14135, 22ND, BRENTWOOD}, and that of entities
{e1,e3,e2,e4,e1,e3,e4,e1,e3}; for w=3, the first three iterations yield
the blocks b1={e1, e3, e2}, b2={e3, e2, e4}, b3={e2, e4, e1} (for sim-
plicity, entities with the same key were sorted by their id).

TYPiMatch (TYPiM) [20] classifies entities of heterogeneous
data collections to different, possibly overlapping types: e.g., the
products in Google Base can be distinguished into computers, cam-
eras, etc. TYPiM first extracts all tokens from all attribute values,
creating a co-occurrence graph. Every node corresponds to a token
and every edge connects two tokens if both conditional probabili-
ties of co-occurrence exceed a threshold θ ∈ (0, 1). Next, it extracts
maximal cliques from the co-occurrence graph and merges them if
their overlap exceeds a threshold ǫ ∈ (0, 1). The resulting clusters

688

|E| |D(E)| |N| |P| |p̄| ||E|| RT(E)

Dcens 841 344 5 3,913 4.65 3.53·105 2 sec

Drest 864 112 5 4,319 5.00 3.73·105 4 sec

Dcora 1,295 17,184 12 7,166 5.53 8.38·105 19 sec

Dcddb 9,763 299 106 183,072 18.75 4.77·107 39 min

Dmvs
27,615

22,866
4 155,436 5.63

6.40·108 9 hrs
23,182 7 816,012 35.20

Ddbp
1.2·106

892,586
30,688 1.7·107 14.19

2.58·1012 ∼4 years
2.2·106 52,489 3.5·107 16.18

(a) Real datasets

D10K 10,000 8,705 12 106,108 10.61 5.00·107 12 min

D50K 50,000 43,071 12 530,854 10.62 1.25·109 5 hrs

D100K 100,000 85,497 12 1.1·106 10.61 5.00·109 20 hrs

D200K 200,000 172,403 12 2.1·106 10.62 2.00·1010 ∼3 days

D300K 300,000 257,034 12 3.2·106 10.62 4.50·1010 ∼7 days

D1M 1.0·106 857,538 12 1.1·107 10.62 5.00·1011 ∼81 days

D2M 2.0·106 1.7·106 12 2.1·107 10.62 2.00·1012 ∼1 year
(b) Synthetic datasets

Table 2: The datasets used in our experiments, ordered by size.

of tokens indicate different entity types, which may overlap. Every
entity participates in all types to which its tokens belong. Finally, it
applies StBl independently inside each cluster, excluding keys with
high frequency (e.g., stop-words) to avoid oversized blocks (BlCl).

5. EXPERIMENTAL SETUP
All methods were implemented in Java 8 and ran on a server with

Intel Xeon E5620 (2.4GHz, 16 cores), 64GB RAM and Ubuntu
12.04. We repeated the experiments 10 times and report the mean
values for OTime and RTime; both measures disregard the time
spent on method configuration.

Datasets. Our empirical study involves 13 data collections of
various sizes that cover both Clean-Clean and Dirty ER. Six of
them contain real-world data, while the rest are synthetic. Their
technical characteristics are presented in Table 2. |E| denotes the
number of input entities, |D(E)| the number of duplicate pairs, |N|
the number of distinct attribute names, |P| the total number of name-
value pairs, | p̄| the average number of name-value pairs per entity,
||E|| the number of comparisons executed by the brute-force ap-
proach, and RT (E) the respective resolution time. Note that for
Ddbp and the four larger synthetic datasets, RT (E) was estimated
using the average time required for executing 108 random pairwise
comparisons in each dataset (0.045 and 0.014 msecs, respectively).

The real-world datasets have been widely used in the literature
[5, 18, 24, 26, 27]. The four smaller ones involve homogeneous,
Dirty ER data: Dcens contains records from US Census Bureau,
Drest from the Fodor and Zagat restaurant guides, Dcora from ma-
chine learning publications, and Dcddb from random audio CDs
of freeDB (http://www.freedb.org). The two larger datasets in-
volve heterogeneous, Clean-Clean ER data: Dmvs involves movies
from IMDB and DBPedia, while Ddbp contains entities from the
Infoboxes in English DBPedia, versions 3.0rc and 3.4.

The synthetic datasets constitute established benchmarks [24]
that were generated with Febrl [4] using standard parameters [5].
First, duplicate-free entities were extracted from frequency tables
for real names (given and surname) and addresses (street number,
name, postcode, suburb, and state names). Then, duplicates were
randomly created based on real error characteristics and modifica-
tions (e.g., inserting, deleting or substituting characters or words).
The resulting structured, Dirty ER datasets contain 40% duplicate
entities with up to 9 duplicates per entity, no more than 3 modifica-
tions per attribute value, and up to 10 modifications per entity.

Parameter Tuning. We applied the blocking methods to all real
datasets using a wide range of meaningful internal parameter con-

figurations, as summarized in Table 1. The maximum value for
the key definition parameters q, lm (BlBu) was set to 6, because
the tokens’ average size in our datasets is 6.8. Therefore, larger
values would incur no change in the keys of StBl. The maximum
value for the block level parameters n2, w, bM (BlCl) was set to
100 so as to restrict the total number of configurations per method
to manageable levels (see the last column of Table 1). Among all
configurations, we only present the performance of the best and the
default ones per method and dataset.

A best configuration achieves the optimal balance between re-
call and precision. More formally, the best configuration for BlBu

over an input entity collection E is the one producing the block
collection B that maximizes the measure α(B, E) = RR(B, E) ×

PC(B, E). For BlCl and CoCl, α is defined by replacing B with the
output block collection B′ and E with the input block collection B.
The rationale behind this definition is that the fewer comparisons
are contained in the output blocks, the higher α gets. To ensure that
only redundant and superfluous comparisons are discarded, there is
a discount for reducing recall: the lower PC gets, the lower α is
for the specific configuration. Thus, the best configuration allows
for examining whether a blocking method achieves a sufficiently
high recall, while reducing the executed comparisons to a signifi-
cant extent. A blocking method that fails to place the vast majority
of matching entities in at least one common block is of limited use,
even if it minimizes the number of pair-wise comparisons.

Finally, the default configuration corresponds to the setting that
achieves the highest average α across all real datasets. Its purpose
is to offer a realistic setup in the absence of ground-truth for fine-
tuning, and to assess the robustness of a blocking method with re-
spect to its internal parameters: the closer the best and the default
configurations are, the more robust the blocking method is.

6. EMPIRICAL EVALUATION
At the core of our empirical analyses lies the comparison be-

tween lazy and proactive blocking methods. To compare them on
an equal basis, we consider the performance of their entire block-
ing workflow, from the input entity collection(s) to CoCl. For the
lazy methods, we analytically present the performance of the three
blocking sub-tasks, while for the proactive ones, we consider two
sub-tasks: the creation of blocks, BlBu+BlCl, and CoCl. Note
that the best and default configuration of each sub-task depends
on the best performance of the previous one, e.g., the configuration
of BlCl is based on the output of the best configuration for BlBu.
For simplicity, we consider a single method per sub-task, even if a
combination is possible (e.g., using both BlPu and BlFi).

Section 6.1 checks the robustness of blocking methods with re-
spect to their internal configuration. Section 6.2 examines their
(relative) effectiveness. Section 6.3 investigates their (relative) time
efficiency, and Section 6.4 assesses their scalability, using the syn-
thetic datasets. All other experiments use the real-world datasets.

6.1 Robustness of Internal Configuration
Table 3 presents the best and the default configurations of the

lazy and proactive methods across all real datasets. Note that CaCl,
ECaCl, MFIB and TYPiM do not scale to Ddbp.

Starting with the lazy methods, we observe that most of them
have a stable configuration for BlBu across all datasets. The only
exception is ACl, which exhibits a different configuration for al-
most every dataset. Still, the actual difference in the performance
of its representation models is insignificant, unless there is a large
diversity of attribute names, as in Ddbp (see Figures 5 and 6).

Both BlCl and CoCl are sensitive to parameter settings. For
BlCl, BlPu appears in just 4 out of the 35 cases, with none of

689

Default Dcens Drest Dcora Dcddb Dmvs Ddbp

StBl

BlBu parameter-free parameter-free parameter-free parameter-free parameter-free parameter-free parameter-free

BlCl BlFi(r=0.55) BlFi(r=0.55) BlFi(r=0.15) BlFi(r=0.45) BlFi(r=0.25) BlFi(r=0.50) BlFi(r=0.55)

CoCl WEP(CBS) WEP(ARCS) ReCNP(CBS) WEP(ECBS) WEP(CBS) ReCNP(ECBS) ReCNP(ARCS)

ACl

BlBu T1GG C3G T2G C2G T3GG T2GG T2GG

BlCl BlFi(r=0.50) BlFi(r=0.55) BlFi(r=0.15) BlPu(ρ=0.10) BlFi(r=0.25) BlFi(r=0.45) BlFi(r=0.40)

CoCl WEP(CBS) CEP(ARCS) ReCNP(CBS) WEP(EJS) WEP(CBS) ReCNP(ECBS) CNP(ARCS)

ESoNe

BlBu w=2 w=2 w=2 w=2 w=2 w=2 w=2

BlCl BlFi(r=0.45) BlFi(r=0.45) BlFi(r=0.25) BlFi(r=0.40) BlFi(r=0.25) BlFi(r=0.45) BlFi(r=0.45)

CoCl WEP(JS) ReWNP(CBS) WEP(CBS) WEP(JS) ReCNP(CBS) ReCNP(ECBS) ReCNP(ECBS)

QGBl

BlBu q=6 q=6 q=6 q=6 q=6 q=6 q=6

BlCl BlFi(r=0.50) BlFi(r=0.60) BlFi(r=0.15) BlPu(ρ=0.10) BlFi(r=0.35) BlFi(r=0.45) BlFi(r=0.55)

CoCl WEP(ECBS) WEP(EJS) WEP(CBS) WNP(ARCS) ReWNP(ARCS) ReCNP(ECBS) ReCNP(ECBS)

EQGBl

BlBu
q=6 q=6 q=6 q=6 q=6 q=6 q=6

t=0.95 t=0.95 t=0.95 t=0.95 t=0.95 t=0.95 t=0.95

BlCl BlFi(r=0.50) BlPu(ρ=0.05) BlFi(r=0.10) BlPu(ρ=0.10) BlFi(r=0.35) BlFi(r=0.50) BlFi(r=0.50)

CoCl WEP(EJS) CEP(ARCS) ReCNP(CBS) ReWNP(ECBS) ReWNP(ARCS) WNP(ARCS) ReCNP(ARCS)

(a) Lazy blocking methods

MFIB
BlBu+BlCl

q=3 q=2 q=5 q=3 q=4 q=4 -

S = {30, 2} S = {4, 2} S = {2} S = {25, 5, 2} S = {6, 2} S = {10, 8, 6, 4, 2} -

S = {50, [10 : 2 : 2]} S = {2} S = {3, 2} S = {500(...)2} S = {8, 6, 5, 4, 2} S = {20 : 2 : 2} -

CoCl p=10 p=4 p=4 p=4 p=4 p=1000 -

t=0.0 t=0.5 t=0.625 t=0.1 t=0.5 t=0.0 -

CaCl
BlBu+BlCl

q=2 q=2 q=2 q=3 q=3 q=6 -

w1=0.45 w1=0.40 w1=0.45 w1=0.40 w1=0.15 w1=0.05 -

w2=0.60 w2=0.70 w2=0.75 w2=0.60 w2=0.35 w2=0.85 -

CoCl CoPr CoPr CoPr CoPr CoPr parameter-free -

ECaCl
BlBu+BlCl

q=4 q=2 q=6 q=4 q=4 q=6 -

n1=1 n1=1 n1=1 n1=10 n1=1 n1=1 -

n2=13 n2=6 n2=7 n2=42 n2=18 n2=100 -

CoCl CoPr CoPr CoPr CoPr CoPr parameter-free -

SuAr
BlBu+BlCl

lm=6 lm=6 lm=6 lm=6 lm=6 lm=6 lm=5

bM=53 bM=28 bM=7 bM=54 bM=15 bM=100 bM=100

CoCl WEP(EJS) CNP(EJS) ReWNP(ARCS) WNP(ECBS) ReCNP(CBS) CNP(ECBS) ReCNP(ECBS)

ESuAr
BlBu+BlCl

lm=6 lm=6 lm=6 lm=6 lm=6 lm=6 lm=6

bM=39 bM=19 bM=7 bM=39 bM=16 bM=100 bM=100

CoCl ReCNP(JS) CEP(ARCS) WEP(CBS) CoPr ReWNP(EJS) CNP(ECBS) ReCNP(ECBS)

SoNe
BlBu+BlCl w=4 w=4 w=2 w=4 w=3 w=12 w=57

CoCl CoPr CoPr CoPr CoPr CoPr CoPr CoPr

TYPiM
BlBu+BlCl

ǫ=0.60 ǫ=0.05 ǫ=0.70 ǫ=0.50 ǫ=0.40 ǫ=0.05 -

θ=0.20 θ=0.80 θ=0.30 θ=0.55 θ=0.45 θ=0.10 -

CoCl WEP(CBS) WEP(CBS) WEP(ARCS) WEP(CBS) WEP(ARCS) WEP(ARCS) -

(b) Proactive blocking methods
Table 3: Best and default configurations for every blocking method across all real datasets.

them corresponding to the default configuration. As a result, BlFi is
clearly the prevalent approach. Yet, its internal parameter, r, varies
significantly in the interval [0.10, 0.55] for the best configurations
of all lazy methods; the less blocks a method associates with every
entity on average and the less duplicates are contained in the input
data, the lower gets the optimal value for r. However, r becomes
more stable for the default configurations of lazy methods, ranging
from 0.45 to 0.55. This means that on average, BlFi should retain
every entity in the first half of its blocks for all lazy methods.

For CoCl, the best configurations of all lazy methods differ sub-
stantially across all datasets. CoPr and ItBl are completely absent,
because they execute much more comparisons than MeBl in their
effort to retain high recall. CEP is one of the least frequent config-
urations, appearing just twice, because it performs a deep pruning
that shrinks recall. ReCNP prunes the comparisons to a similar
extent, but is the most frequent best configuration with 12 appear-
ances. The reason is that it maintains high recall, retaining the
most promising comparisons per entity instead of the overall most
promising ones. WEP performs a less aggressive pruning that of-
fers an even more stable performance. It corresponds to the default
configuration for all lazy methods, while appearing 9 times as best
configuration, as well.

For the proactive methods, there is no clear pattern of robustness.
Starting with BlBu+BlCl, we observe a significant variation in the
internal configuration of most methods, as their parameters take al-
most all possible values across the six datasets. For MFIB, we have
2≤q≤5 and S⊆{2, 4, 5, 6, 8, 25}, for CaCL and ECaCL, we have

2≤q≤6, 0.05≤w1≤0.45, 0.35≤w2≤0.75, 1≤n1≤10 and 6≤n2≤100,
and for TYPiM, we have 0.05≤ǫ≤0.70 and 0.10≤θ ≤0.80. Lim-
ited robustness appears in SuAr and ESuAr, which retain the same
value for lm in almost all cases. Their block level parameter is more
volatile (7≤bM≤100), but its optimal value is analogous to the num-
ber of existing duplicates: the higher |D(E)| is for the input entity
collection E, the larger bM gets so as to retain more duplicates in
the resulting blocks. The same applies to SoNe’s parameter, w.

For CoCl2, some of the proactive methods become robust, due
to their limited configuration options: CaCl, ECaCl, SoNe are in-
compatible with MeBl and are exclusively combined with CoPr,
which executes less comparisons than ItBl at the cost of slightly
lower PC. TYPiM also becomes robust, as it consistently achieves
the best performance in combination with WEP. On the other hand,
SuAr and ESuAr become unstable, as their best configurations are
different for every dataset; even their default configurations do not
excel in any dataset. Finally, MFIB remains quite sensitive and its
internal parameters vary significantly across the datasets.

On the whole, we can conclude that the lazy methods are quite
robust with respect to their internal parameters for BlBu. With the
exception of ACl, their default configurations coincide with their
best ones across all datasets. For BlCl, their default configuration is
BlFl with r ∈ [0.45, 0.55], which is very close to their best configu-
ration in most cases. For CoCl, their default configuration is WEP,

2{500(...)2} = {500,100,70,60,50,40,38,36,...8,6,5,4,3,2} for MFIB

over Dcora.

690

which matches their best one in just 1/3 of the cases; depending on
the dataset, another pruning scheme, typically ReCNP, may yield
better performance for this sub-task. The proactive methods can be
distinguished into two main categories: those being robust only for
CoCl and those being partly robust for BlBu+BlCl. To the former
category belong CaCl, ECaCl, SoNe and TYPiM, while the latter
one includes SuAr and ESuAr. In all other cases, the configuration
of proactive methods covers a wide range of values and depends
heavily on the dataset at hand.

6.2 Effectiveness
Figures 5 and 6 present the performance of lazy and proactive

methods with respect to the number of executed comparisons (||B||)
and PC (E1 in Section 2), respectively.3 The lazy methods appear
in the left column and the proactive ones in the right column. To
facilitate their comparison, we use the same scale for their diagrams
in all datasets. For each method and dataset, we consider the best
and the default configuration for every sub-task.

For the lazy methods, we see that ||B|| is drastically reduced with
every sub-task. The larger the input dataset is, the more unneces-
sary comparisons it involves and the larger is the impact of BlCl

and CoCl; on average, across all methods and configurations, the
two sub-tasks reduce the comparisons of BlBu by 2 orders of mag-
nitude over Dcens, while for Ddbp, the average reduction rises to 3
and 6 orders for the default and best configurations, respectively.
As a result, even though the lazy methods typically execute more
comparisons than the brute-force approach after BlBu, they end up
saving at least 2 orders of magnitude after BlCl and CoCl.

Inevitably, lower ||B|| values come at the cost of lower PC values.
The recall of lazy methods is actually inversely proportional to the
average number of name-value pairs per entity, |p̄| in Table 2. The
larger |p̄| is, the more blocking keys are extracted from each entity
and the more blocks are associated with it, reducing the likelihood
of missed matches. For this reason, BlCl and CoCl reduce the recall
of BlBu by 54%, on average, over the dataset with the lowest |p̄|,
Dcens. In all other datasets, all lazy methods maintain PC well over
0.80, with BlCl and CoCl each reducing it by 2.5%, on average.

Note that the two sub-tasks differ substantially in their perfor-
mance. In fact, BlCl is more effective in detecting unnecessary
comparisons: it reduces ||B|| to a much greater extent than CoCl,
but its impact on PC tends to be smaller. As an example, consider
the best configurations over Dcddb; both sub-tasks reduce PC by
2%, on average, across all methods. However, ||B|| is reduced from
∼108 comparisons to ∼105 by BlCl and to ∼104 by CoCl, on av-
erage. Similar patterns appear in all datasets, indicating that BlCl

saves much more comparisons for every pair of duplicates that is
missed. Nevertheless, CoCl is indispensable for lazy methods, as
without it, their computational cost (||B||) remains prohibitive.

It is also interesting to examine the relative performance of best
and default configurations. In general, this depends on the blocking
sub-task to which they pertain. For BlBu, the two configurations
coincide for all lazy methods except ACl. Even for this method,
though, their difference is minor across all datasets with respect to
both ||B|| and PC. For BlCl and CoCl, the best configurations ex-
ecute less comparisons than the default ones at the cost of slightly
lower PC. This difference is more intense for CoCl and increases
with larger datasets; for Ddbp, the best CoCl configuration saves 2
orders of magnitude more comparisons than the default one for just

3Note that we consider ||B|| instead of RR (E3 in Section 2), be-
cause RR takes high values of low discriminativeness; for example,
the difference between 0.90 and 0.95 might be a whole order of
magnitude in terms of comparisons.

5% lower PC, on average. The few exceptions to this rule corre-
spond to identical parameters for both configurations (see Table 3)
and to cases where the default parameters are more aggressive than
the best ones (e.g., lower r for BlFi over Dcens). In the latter cases,
though, the cost in PC does not justify the benefit in ||B||.

Regarding the proactive methods, we can divide them into two
groups based on the impact of CoCl on their performance. The
first group involves methods that have their comparisons cut down
by CoCl at no cost in recall; they are exclusively combined with
CoPr, which reduces ||B|| by 41%, 40% and 53% for CaCl, ECaCl

and SoNe, respectively. The second group involves methods that
have their comparisons cut down to a larger extent at the cost of
lower recall. On average, CoCl reduces ||B|| by a whole order of
magnitude, while PC drops by 4%, 10% and 5% for SuAr, ESuAr

and TYPiM, respectively. This applies to all datasets except for
Dcens, where the very low | p̄| accounts for much lower recall. This
pattern is consistent for both configurations. Only for MFIB, the
impact of CoCl depends on its configuration: for the best one, ||B||
drops by 2 to 3 orders of magnitude, while reducing PC by 10%,
on average, across all datasets; for the default configuration, ||B||
drops by 38% and PC by 14%, on average.

With respect to recall, we observe that the proactive methods
maintain a sufficiently high PC, which exceeds 0.80 in most cases.
Yet, it is not very robust, as there are quite a few exceptions. For
example, the recall of TYPiM is usually much lower, because it
falsely divides pairs of matching entities into different entity types,
even though there is a single type in all datasets but Ddbp. Most
other exceptions correspond to methods with block level parame-
ters, which are configured without considering the input collection
size |E| (see Table 1). Their restrictive effect, which aggravates with
the default configuration, shows itself in large datasets like Ddbp or
in datasets with a large number of duplicates like Dcora.

Comparing lazy with proactive methods, we observe that the for-
mer typically entail a much higher and robust recall, at the cost of a
significantly higher number of comparisons. To quantify their rela-
tive effectiveness, we rely on precision (E2 in Section 2): we define
the best method per dataset and configuration as the one maximiz-
ing PQ for PC>0.80 after CoCl. In this context, the four smaller,
structured datasets are dominated by proactive methods: MFIB of-
fers the most effective best configuration, with 0.55 ≤ PQ ≤ 0.91,
and CaCl the most effective default configuration, with 0.08 ≤
PQ ≤ 0.18. The two larger, heterogeneous datasets are dominated
by ACl for both configurations, with 0.0003 ≤ PQ ≤ 0.11. There
are just two exceptions: the default configuration of EQGBl is the
most effective for Dcora (PQ=0.48), and the best configuration of
SuAr is the most effective for Ddbp (PQ=0.12).

6.3 Time Efficiency
Figures 7 and 8 present the performance of lazy and proactive

methods with respect to overhead and resolution time, respectively
(T1 and T2 in Section 2). The lazy methods appear on the left and
the proactive ones on the right. All diagrams use the same scale
for both types of methods and consider the best and the default
configuration for every blocking sub-task across all datasets. In all
cases, lower bars indicate higher time efficiency.

Starting with the lazy methods, we observe minor differences in
the OTime of BlBu not only among the various methods, but be-
tween their configurations as well. StBl is consistently the fastest
method, as it involves the simplest functionality that lies at the core
of the other methods. ACl is the most time-consuming method
when using character or token n-gram graphs as a representation
model (see Table 3); in all other cases, EGQBl is the slowest tech-
nique, due to the high number of blocking keys it produces. These

691

(a) Dcens

(b) Drest

(c) Dcora

(d) Dcddb

(e) Dmvs

(f) Ddbp

Figure 5: Number of executed comparisons for the best and default configuration of all lazy (left) and proactive (right) methods

across all real datasets. The vertical axis is logarithmic. Lower bars indicate better effectiveness.

(a) Dcens

(b) Drest

(c) Dcora

(d) Dcddb

(e) Dmvs

(f) Ddbp

Figure 6: Recall for the best and default configuration of all lazy (left) and proactive (right) methods across all real datasets. Higher

bars indicate better effectiveness.

692

patterns apply to BlCl, as well, since the corresponding methods
involve a crude, rapid operation that increases OTime just slightly.
CoCl increases OTime to a greater extent that depends linearly on
the number of comparisons it receives as input, due to MeBl: the
larger ||B|| is after BlCl, the more OTime rises during CoCl.

The RTime of lazy methods is dominated by the number of exe-
cuted comparisons, ||B||: the larger it is for a method with respect to
a specific sub-task, the larger the corresponding RTime gets. This
means that OTime merely accounts for a small portion of RTime,
a situation that is reflected in the difference of their scales for the
diagrams of Dcora, Dcddb and Ddbp. It also means that RTime is con-
sistently reduced by BlCl and CoCl to a significant extent. In fact,
the resolution time of BlBu is typically worse than that of the brute-
force approach, RTime(E) in Table 2, for all lazy methods. How-
ever, BlCl and CoCl reduce RTime by at least 1 order of magnitude
across all datasets, outperforming RTime(E) in all cases. For in-
stance, their best configuration requires less than 5 hours to resolve
Ddbp for most lazy methods.

Among the lazy methods, ACl exhibits the lowest RTime for
BlBu, despite its higher overhead, because it consistently executes
much fewer comparisons. The same applies to BlCl for the three
largest datasets, where ACl maintains a clear advantage in terms
of ||B||. After CoCl, though, StBl takes the lead as the fastest lazy
method in most cases. Even though it executes much more com-
parisons than ACl, it achieves a lower RTime thanks to its signif-
icantly lower OTime. In case we used a more complex and time-
consuming method for entity matching, ACl would be the fastest
lazy method for CoCl, as well.

As for the proactive methods, we can divide them into 2 groups:
the methods that scale to all datasets (SuAr, ESuAr and SoNe)
and those that failed to complete on Ddblp. The former group ex-
hibits a behavior similar to the lazy methods. They involve low
overhead times that increase with CoCl, especially when involv-
ing MeBl. Their OTime accounts for a small part of RTime, which
is dominated by the number of executed comparisons. Unlike the
lazy methods, though, these techniques outperform RTime(E) to a
great extent already by BlBu+BlCl, with SuAr and ESuAr achiev-
ing the fastest best and default configurations, respectively, across
most datasets. For example, SuAr and ESuAr are able to resolve
Ddbp in less than 1 hour, under all settings.

The second group of proactive methods includes MFIB, CaCl,
ECaCl and TYPiM. In most cases, their overhead time is at least an
order of magnitude higher than all other methods. It accounts for
a large portion of RTime, particularly for their best configurations,
which execute a very low number of comparisons. However, their
resolution time exceeds RTime(E) in many cases, especially for
the three smaller datasets. It is no surprise, therefore, that they do
not scale to the largest dataset, Ddbp. The reason is that they build
blocks based on the similarity of blocking keys, unlike most other
methods, which rely on the equality of keys.

6.4 Scalability
To assess the scalability of lazy and proactive methods, we ap-

plied their default configuration for all sub-tasks to the synthetic
datasets in Table 2(b). Figure 9 presents the outcomes with respect
to PC (E1 in Section 2), the number of executed comparisons ||B||,
OTime (T1 in Section 2) and RTime (T2 in Section 2). All dia-
grams use the same scale for both method types. Recall that the
higher PC is, the better the performance and the other way around
for the rest of the measures.

Starting with the lazy methods, we see in Figure 9(a) that their
recall remains well over 0.80 across all datasets. The PC of ESoNe

and EQGBl remains practically stable, fluctuating around 0.87. In

contrast, the PC of StBl, QGBl and ACl decreases slightly with the
increase of the input collection size |E|: it drops by 5%, 6% and
7%, respectively, when moving from D10K to D2M .

With respect to ||B||, all lazy methods scale super-linearly (>200×
increase), yet sub-quadratically (<40,000× increase), when mov-
ing from D10K to D2M . Figure 9(b) demonstrates that the lowest
||B|| corresponds to ACl and StBl (6,000× and 8,000× increase, re-
spectively) and the highest to ESoNe (31,000× increase) across
all datasets. In absolute terms, though, ESoNe consistently exe-
cutes 3 orders of magnitude less comparisons than the brute-force
approach – ||E|| in Table 2(b). Note also that there is a clear trade-
off between recall and the number of comparisons executed by the
lazy methods with decreasing recall: QGBl>StBl>ACl for ||B|| and
an opposite trend for PC.

Regarding OTime, Figure 9(c) indicates that all lazy methods
scale better than with ||B||: from D10K to D2M , their overhead time
rises from 1,300 times (EQGBl) to 4,000 times (StBl). In abso-
lute terms, ACl is consistently the most time-consuming method,
requiring at least double the time of all other lazy methods, which
exhibit comparable overhead times. Nevertheless, ACl can process
D2M within just 2.5 hours (8×106 milliseconds).

Similar patterns correspond to RTime, which rises by less than
5,000 times for most lazy methods, when moving from D10K to
D2M . The only exception is ESoNe, whose resolution time rises by
almost 10,000 times and is the worst across all datasets, because
it executes the highest number of comparisons. In absolute terms,
though, all lazy methods outperform the brute-force approach by
several orders of magnitude: RTime(E) for D2M drops from 1 year
– see Table 2(b) – to just 4 hours for ESoNe and to a mere 1.5 hours
for StBl, which consistently constitutes the fastest lazy method.

Regarding the proactive methods, we can group them as in Sec-
tion 6.3. On the one hand, MFIB, CaCl, ECaCl and TYPiM only
scale to D300K . They achieve excellent effectiveness, scaling lin-
early with respect to ||B||, while their recall remains close to 0.80 in
the worst case; the only exception is TYPiM, which scales quadrati-
cally in terms of ||B|| and detects around half the existing duplicates.
Their RTime is entirely dominated by OTime, due to their time-
consuming, similarity-based functionality. Their overhead scales
quadratically from D10K to D300K and, thus, they require at least 2
hours for processing D300K . Inevitably, they fail to process the two
largest datasets within 1 day.

On the other hand, SuAr, ESuAr and SoNe scale to process all
datasets. Their ||B|| scales linearly, while their PC drops steadily
when moving from D10K to D2M; it starts from higher than 0.97
and ends lower than 0.80, reduced by 26%, on average. Their time
efficiency is excellent, with OTime and RTime scaling linearly to
the larger datasets. This should be attributed to the equality-based
functionality of SuAr and ESuAr and to the O(n log n) complexity
of SoNe. Compared to lazy methods, they execute less compar-
isons by one order of magnitude, on average, and are 3 times faster
than the fastest lazy method, StBl.

On the whole, we conclude that the lazy methods scale slightly
super-linearly to large datasets, emphasizing recall at the cost of a
high number of comparisons. In contrast, most proactive methods
cannot process large entity collections within a reasonable time,
despite their excellent effectiveness. Only SoNe, SuAr and ESuAr

scale linearly to large datasets, outperforming the lazy methods, at
the cost of lower recall.

7. CONCLUDING REMARKS
We conclude with the following four observations. First, all

blocking methods depend heavily on the fine-tuning of at least one
of the three blocking sub-tasks. To this attests the large performance

693

(a) Dcens

(b) Drest

(c) Dcora

(d) Dcddb

(e) Dmvs

(f) Ddbp

Figure 7: Overhead Time in milliseconds for the best and default configuration of all lazy (left) and proactive (right) methods across

all real datasets. The vertical axis is logarithmic. Lower bars indicate better time efficiency.

(a) Dcens

(b) Drest

(c) Dcora

(d) Dcddb

(e) Dmvs

(f) Ddbp

Figure 8: Resolution Time in milliseconds for the best and default configuration of all lazy (left) and proactive (right) methods across

all real datasets. The vertical axis is logarithmic. Lower bars indicate better time efficiency.

694

(a) PC

(b) ||B||

(c) OTime

(d) RTime

Figure 9: Scalability of the default configuration of lazy and proactive methods across the synthetic datasets with respect to (a) recall,

(b) executed comparisons, (c) overhead time, and (d) resolution time. All axes are logarithmic except for the vertical ones in (a).

difference between their best and default configurations. Most lazy
methods are stable for BlBu, sufficiently robust for BlCl and rather
unstable for CoCl. The proactive methods are robust only for some
of the BlBu+BlCl parameters, or for CoCl.

Second, all blocking sub-tasks are indispensable for achieving a
good balance between precision and recall for both proactive and
lazy methods. The former typically excel in homogeneous datasets
and the latter in heterogeneous ones. MFIB and ACl show the best
potential, respectively, i.e., the most effective best configurations.

Third, most proactive methods exhibit very high overhead time,
due to their similarity-based functionality. As a result, they do not
scale to large datasets. Even for the small ones, their computational
cost pays off only when the entity matching method is complex and
time-consuming. In contrast, the overhead time of all lazy methods
scales well to large datasets and accounts for a small portion of
their resolution time, which outperforms the brute-force approach
at least by an order of magnitude.

Fourth, the default configuration of lazy methods is suitable for
applications emphasizing recall, as it exhibits excellent time effi-
ciency and scalability for PC > 0.80 across all datasets, but the
smallest one. StBl should be preferred when using a cheap en-
tity matching method, and ACl otherwise. For applications em-
phasizing efficiency, the default configuration of SuAr should be
preferred, as it consistently exhibits the lowest resolution time in
the scalability analysis.

In the future, we plan to investigate the automatic fine-tuning of
blocking methods, trying to narrow the gap in the performance of
best and default configurations.

Acknowledgements. This work was partially supported by EU
H2020 BigDataEurope (#644564) and The MAGNET Program In-
foMedia (Office of the Chief Scientist of the Israeli Ministry of
Industry, Trade & Labor).

References
[1] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source

information integration. In WIRI, pages 30–39, 2005.
[2] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning to scale

up record linkage. In ICDM, pages 87–96, 2006.
[3] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy dupli-

cates. In ICDE, pages 865–876, 2005.
[4] P. Christen. Febrl an open source data cleaning, deduplication and record linkage

system with a graphical user interface. In KDD, pages 1065–1068, 2008.

[5] P. Christen. A survey of indexing techniques for scalable record linkage and
deduplication. IEEE Trans. Knowl. Data Eng., 24(9):1537–1555, 2012.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detec-
tion: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[7] I. P. Fellegi and A. B. Sunter. A Theory for Record Linkage. Journal of the

American Statistical Association, 64(328):1183–1210, 1969.
[8] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A clustering-based framework to

control block sizes for entity resolution. In KDD, pages 279–288, 2015.
[9] A. Gal. Uncertain entity resolution. PVLDB, 7(13):1711–1712, 2014.

[10] A. Gal and B. Kimelfeld. Entity resolution in the big data era: Probabilistic db
support to entity resolution. In EDBT (tutorial), 2015.

[11] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. Declarative Data
Cleaning: Language, Model and Algorithms. In VLDB, pages 371–380, 2001.

[12] L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice & open
challenges. PVLDB, 5(12):2018–2019, 2012.

[13] G. Giannakopoulos, V. Karkaletsis, G. A. Vouros, and P. Stamatopoulos. Sum-
marization system evaluation revisited: N-gram graphs. TSLP, 5(3):1–39, 2008.

[14] G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-trees.
IEEE Trans. Knowl. Data Eng., 17(10):1347–1362, 2005.

[15] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and D. Sri-
vastava. Approximate string joins in a database (almost) for free. In VLDB,
pages 491–500, 2001.

[16] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases.
SIGMOD Rec., 24(2):127–138, 1995.

[17] R. Isele, A. Jentzsch, and C. Bizer. Efficient multidimensional blocking for link
discovery without losing recall. In WebDB, 2011.

[18] B. Kenig and A. Gal. Mfiblocks: An effective blocking algorithm for entity
resolution. Inf. Syst., 38(6):908–926, 2013.

[19] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data

Knowl. Eng., 69(2):197–210, 2010.
[20] Y. Ma and T. Tran. Typimatch: type-specific unsupervised learning of keys and

key values for heterogeneous data integration. In WSDM, pages 325–334, 2013.
[21] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional

data sets with application to reference matching. In KDD, pages 169–178, 2000.
[22] M. Michelson and C. A. Knoblock. Learning blocking schemes for record link-

age. In AAAI, pages 440–445, 2006.
[23] A. N. Ngomo and S. Auer. LIMES - A time-efficient approach for large-scale

link discovery on the web of data. In IJCAI, pages 2312–2317, 2011.
[24] G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. Schema-agnostic

vs schema-based configurations for blocking methods on homogeneous data.
PVLDB, pages 312–323, 2015.

[25] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Eliminating
redundancy in blocking-based entity resolution. In JCDL, pages 85–94, 2011.

[26] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl. A block-
ing framework for entity resolution in highly heterogeneous information spaces.
IEEE Trans. Knowl. Data Eng., 25(12):2665–2682, 2013.

[27] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking: Taking
entity resolutionto the next level. IEEE Trans. Knowl. Data Eng., 26(8), 2014.

[28] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. Scaling entity
resolution to large, heterogeneous data with enhanced meta-blocking. In EDBT,
pages 221–232, 2016.

[29] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.
Entity resolution with iterative blocking. In SIGMOD, pages 219–232, 2009.

695

