
Comparative Analysis of Bayesian Regularization 

and Levenberg-Marquardt Training Algorithm 

for Localization in Wireless Sensor Network 

 

Ashish Payal*, C.S. Rai*, B.V.R. Reddy* 

*University School of Information & Communication Technology, GGS Indraprastha University, New Delhi, India 

ashish.ipu@gmail.com, csrai_ipu@yahoo.com, bvrreddy64@rediffmail.com 

 
 
Abstract— Wireless sensor networks (WSNs) has many 

applications in the field of disaster management, military, 

healthcare and environmental monitoring. Capability of WSNs is 

further enhanced by the efficient localization algorithms. 

Localization is the process by which a sensor node determines its 

own location after deployment. Neural approaches are gaining 

popularity in evolving new localization algorithms that are 

capable of optimizing various parameters of WSNs. In this paper, 

we analyse two backpropagation algorithms based on multi-layer 

Perceptron (MLP) neural network. The network is trained using 

static sensor nodes placed in a grid with their coordinates known. 

The input values are distances from each anchor nodes to a 

particular sensor node. The output is the actual coordinates of 

the sensor nodes. After training, the network will be able to 

predict the coordinates of unknown sensor nodes. This MLP 

model is analyzed for bayesian regularization and levenberg-

marquardt training algorithm. Both algorithms are tested for the 

robustness and cross-validation. The simulation results 

demonstrate the effectiveness of the proposed model on 

localization error.  
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I. INTRODUCTION 

Wireless sensor networks are composed of lightweight 
sensor nodes deployed in highly distributed manner to monitor 
the environment or system by the measurement of many 
physical parameters [1]. WSNs are capable of habitat 
monitoring, medical monitoring, and disaster monitoring [2]. 
MEMS (Micro-Electro-Mechanical Systems) technology has 
enabled the development of small, inexpensive, disposable, 
and smart sensors [3]. Application of WSNs is further 
enhanced by the efficient localization algorithms. It is 
necessary for a sensor node to know its location with 
reference to some base stations. In tracking and event 
detection applications some information must be available 
about where an event has happened. Sensors can be deployed 
in volcanic belt to report volcano eruptions. Sensor nodes can 
be designed to detect rise in temperature to trigger an alarm. 
Localization techniques actively work to minimize the 
hardware cost, power cost, and deployment cost in large scale 

WSNs. Global positioning system (GPS) is a well known 
location and tracking technique with iterative trilateration 
algorithms as base methodology [4]. Many different 
localization techniques have been evolved for wireless sensor 
networks. These approaches have significantly solved the 
problem by considering signal strength, network topology, and 
energy management. Broadly, these localization schemes are 
divided into two categories i.e. range-based and range-free 
localization techniques [5]. The range-based schemes use 
absolute point-to-point distance estimates (range) or angle 
estimates for calculating location. Received Signal Strength 
Indicator (RSSI) [7] and Link Quality Indicator (LQI) [8] are 
two schemes based on the power of signal to calculate the 
node’s position. Time of Arrival (ToA) [9] rely on signal 
propagation time. Angle of Arrival (AoA) [10] estimate and 
map relative angles between neighbouring sensor nodes. In 
Time Difference of Arrival (TDoA) [11], time difference of 
received signals is calculated from two anchor nodes. In 
comparisons to range-based methods, range-free schemes use 
hop count and connectivity information of RF signals to 
identify the nodes and beacons in their radio range, and then 
estimate their position. DV-Hop [12] is based on classical 
distance vector routing. Centroid Method [13] is proximity 
based scheme that uses anchor beacons, containing location 
estimation to estimate the node positions. Approximate Point-
In-Triangulation (APIT) is a novel-area based approach to 
perform localization by isolating the environment into 
triangular regions between anchor nodes [14]. A neural 
approach for localization in wireless sensor network has 
shown a huge impact on developing new research 
methodologies. Supervised or unsupervised are two ways of 
learning in neural network. Samples with inputs and outputs 
are required in the supervised learning but in the unsupervised 
only inputs are needed [15].  
In this paper, we have implemented two back-propagation 
training algorithm based on Multi-Layer Perceptron (MLP) 
neural network. In this comparative analysis, the network is 
trained by using static sensor nodes placed in a grid with their 
coordinates known. The input values are distances from each 
Anchor Nodes (ANs) to a particular sensor node. The 
proposed artificial neural network will be trained to predict the 



actual coordinates of the unknown sensor nodes. The MLP is 
evaluated with Bayesian regularization (BR) and Levenberg-
Marquardt (LM) training algorithm. 

II. RELATED WORK 

Cricket location support system [16] used a combination of 
RF and ultrasound signals to compute a maximum likelihood 
estimate of location. Position-Velocity (PV) and Position-
Velocity-Acceleration models of the Kalman filters [17][18] 
were compared for accuracy, robustness for solving 
localization problems. The RADAR [19] system provided 
good accuracy as it used received signal strength to calculate 
user locations from three fixed base stations thus eliminating 
multipath and shadowing effects. Neural approaches have 
been proposed for localization considering the noisy distance 
measurement in wireless sensor network [20]. SeNeLEx 
analysis explored the self-localization performance for 
arbitrary sensor network based on Cramer-Rao bound [21]. 
Trained neural network can combine many other parameters 
of WSNs such as anchor node density, anchor nodes radio 
power to evolve better model of sensor network [22] 

III. MULTI-LAYER PERCEPTRON  

Multi-Layer Perceptron (MLP) is a type of feed forward 
neural network that is an extension of the Perceptron model 
with atleast one hidden layer of neurons as shown in Figure 1. 
MLP can solve difficult and diverse problems in supervised 
manner with error back-propagation algorithm. In back 
propagation algorithm error is to be back propagated to adjust 
the weights to reduce the error between the actual output and 
the estimated output. Backpropagation is the generalization of 
the Widrow-Hoff learning rule to multiple-layer networks and 
nonlinear differentiable transfer functions. Standard back-
propagation is a gradient descent algorithm, in which the 
network weights are moved along the negative of the gradient 
of the performance function. After network weights and biases 
are initialized it is ready for training. The weights and biases 
of the network are iteratively adjusted to minimize the 
network performance function. The default performance 
function for feed-forward networks is mean square error 
(MSE). It is average squared error between the network 
outputs and the target outputs. 
 

 
Figure 1. MLP Architecture 

IV. MLP LOCALIZATION SCENARIO 

To train the network, a WSN containing 3 Anchor Nodes 
(ANs) and 121grid sensors deployed on the intersection grid 
of 300cm*300cm grid as depicted in Figure 2. The training 
data is generated by measuring Euclidean distance between 3 
ANs (AN1, AN2, and AN3) and 121 grid sensors. This distance 
will be used as inputs and the MLP will output estimated X 
and Y coordinate location of 121 grid sensors. 
 

AN2AN3

AN1 
 

Figure 2. Localization grid of sensor and anchor nodes 

The coordinates for three anchor nodes (ANs) is given in 
Table 1. 

TABLE 1. Coordinates for Anchor nodes 

Anchor Node Coordinates(X,Y) 

AN1 (300,0) 

AN2 (300,300) 

AN3 (0,300) 

V. SIMULATION RESULTS  

Our feed-forward neural network is implemented using 
MATLAB 7.9.0. We have used an ANN with 3-dimensional 
inputs and one hidden layer with 15 neurons and two outputs. 
Both log-sigmoid and tan-sigmoid is employed as transfer 
function for hidden layer and linear transfer function for 
output layer. For training the network 121 data sample have 
been created. Table 2 shows the example data sample. 

Table 2. Training data sample 

Training 

sample AN1 AN2 AN3 aX  aY  

1 300 424.264 300 0 0 
2 270 403.608 301.496 30 0 

….. 240 384.1874 305.941 60 0 
121 300 0 300 300 300 

 
The learning rate (lr) in NN toolbox was set to 0.6. It 
determines the changes in weights and biases. Training goal is 
set to 0.0001 indicating the performance function measure. 
Localization error (LE) is the distance between the estimated 

coordinates ( estX , estY ) and the actual coordinates of sensor 

node ( aX , aY ). 

 =LE ( ) ( )22
aestaest YYXX −−−          (1)         



Table 3 summarizes the statistical results for different transfer 
function and training algorithm. 

TABLE 3. Performance of BR and LM Training Algorithm 

S.No Transfer 
Function 

Training 
Algorithm 

Localization 
Error (LE in meter) 

Hidden 
layer 

Output 
layer 

Max Min 
 

Std. 
Dev. 

1. Tansig Linear Levenberg-
Marquardt 
(LM) 

9.82 0.27 1.28 

2. Logsig Linear Levenberg-
Marquardt 
(LM) 

6.81 0.17 1.36 

3. Tansig Linear Bayesian 
regularization 
(BR) 

0.49 0.004 0.08 

4. Logsig Linear Bayesian 
regularization 
(BR) 

1.43 0.005 0.14 

 
It can be seen from figure 3 the maximum localization error is 
9.82 meters after the network is trained by Levenberg-
marquardt and tansig as transfer function. 
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Figure 3. Simulation result of localization error (LM with tansig) 

It can be seen from figure 4 the maximum localization error is 
6.81 meters after the network is trained by Levenberg-
marquardt and logsig as transfer function. 
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Figure 4. Simulation result of localization error (LM with logsig) 

It can be seen from figure 5 the maximum localization error is 
0.49 meters after the network is trained by Bayesian 
regularization and tansig as transfer function. 
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Figure 5. Simulation result of localization error (BR with tansig) 

It can be seen from figure 6 the maximum localization error is 
1.43 meters after the network is trained by Bayesian 
regularization and logsig as transfer function. 
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 Figure 6. Simulation result of localization error (BR with logsig) 

In figure 7 the statistical result of localization error is depicted. 
It clearly shows that Bayesian regularization training 
algorithm is best as compared to Levenberg-marquardt.  

 

Figure 7. Statistical result of localization error 



VI. CONCLUSIONS 

In this paper, analysis of two training algorithms Bayesian 
regularization and Levenberg-marquardt based on MLP neural 
network is presented. In our analysis we have simulated the 
MLP network and computed the localization error. The 
positions of unknown sensor nodes are calculated with an 
accuracy of 0.49 meters in 300x300 m2 area. The Bayesian 
regularization algorithm is more accurate as compared to 
Levenberg-marquardt algorithm. Bayesian regularization 
algorithm reduces the need for lengthy cross-validation. It 
provides an efficient criterion for stopping training process 
and prevents overtraining of the network. This ability of 
Bayesian regularization training algorithm makes it a more 
adaptive and robust backpropagation network for evolving 
localization algorithms for wireless sensor network.  
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