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Introduction

In recent times, the industrial revolution makes use of computer vision for their work. 

Automation industries, robotics, medical field, and surveillance sectors make extensive 

use of deep learning [1]. Deep learning has become the most talked-about technology 

owing to its results which are mainly acquired in applications involving language pro-

cessing, object detection and image classification. �e market forecast predicts out-

standing growth around the coming years. �e main reasons cited for this are primarily 

the accessibility of both strong Graphics Processing Units (GPUs) and many datasets [1]. 

In recent times, both these requirements are easily available [1].

Image classification and detection are the most important pillars of object detection. 

�ere is a plethora of datasets available. Microsoft COCO is one such widely used image 

classification domain. It is a benchmark dataset for object detection. It introduces a 

large-scale dataset that is available for image detection and classification [2].

�is review article aims to make a comparative analysis of SSD, Faster-RCNN, and 

YOLO. �e first algorithm for the comparison in the current work is SSD which adds 

layers of several features to the end network and facilitates ease of detection [3]. �e 

Faster R-CNN is a unified, faster, and accurate method of object detection that uses 
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a convolutional neural network. While YOLO was developed by Joseph Redmon that 

offers end-to-end network [3].

In this paper, by using the Microsoft COCO dataset as a common factor of the analysis 

and measuring the same metrics across all the implementations mentioned, the respec-

tive performances of the three above mentioned algorithms, which use different archi-

tectures, have been made comparable to each other. �e results obtained by comparing 

the effectiveness of these algorithms on the same dataset can help gain an insight on the 

unique attributes of each algorithm, understand how they differ from one another and 

determine which method of object recognition is most effective for any given scenario.

Literature survey

Object detection has been an important topic of research in recent times. With power-

ful learning tools available deeper features can be easily detected and studied. �is work 

is an attempt to compile information on various object detection tools and algorithms 

used by different researchers so that a comparative analysis can be done and meaningful 

conclusions can be drawn to apply them in object detection. Literature survey serves the 

purpose of getting an insight regarding our work.

�e work done by Ross Girshick has introduced the Fast R-CNN model as a method 

of object detection [3]. It makes use of the CNN method in the target detection field. 

�e novelty of the method proposed by Girshick has proposed a window extraction 

algorithm instead of a conventional sliding window extraction procedure in the R-CNN 

model, there is separate training for the deep convolution network for feature isolation 

and the support vector machines for categorization [4]. In the fast R- CNN method they 

have combined feature extraction with classification into a classification framework [3]. 

�e training time is nine times faster in Fast R-CNN than in R-CNN. Whereas in the 

faster R-CNN method the proposal isolation region and bit of Fast R-CNN are put into 

a network template referred to as region proposal network (RPN). �e accuracy of Fast 

R-CNN and Faster R-CNN is the same. �e research concludes that the method is a 

combined, deep learning-based object detection system that works at 5–7 fps (Frames 

Per Second) [4]. Basic knowledge about R-CNN, Fast R-CNN and Faster R-CNN was 

acquired from this paper. �e training of the respective model was also inspired from 

this paper.

Another research work done by Kim et al is discussed here. �is research work uses 

CNN with background subtraction to build a framework that detects and recognizes 

moving objects using CCTV (Closed Circuit Television) cameras. It is based on the 

application of the background subtraction algorithm applied to each frame [5]. An archi-

tecture similar to the one in this paper was used in our work.

Another detection network is YOLO. Joseph Redmon et al have proposed You Only 

Look Once (YOLO)—A one-time convolutional neural network for the prediction of 

the frame position and classification of multiple candidates is offered by YOLO. End-

to-end target detection can be achieved this way. It uses a regression problem to solve 

object detection. A single end-to-end system completes the process of putting the out-

put obtained from the original image to the category and position [6]. Bounding box 

prediction and feature extraction of YOLO architecture in our work was inspired by the 

technique discussed in this paper.
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Tanvir Ahmed et al have proposed a modified method that uses an advanced YOLO v1 

network model which optimizes the loss of function in YOLO v1, it has a new inception 

model structure, has a specialized pooling pyramid layer, and has better performance. 

�e advanced application of YOLO is taken from this research paper. It is also an end-to-

end process that carries out an extensive experiment on a PASCAL VOC (Visual Object 

Classes) dataset. �e network is an improved version and also shows high effectiveness 

[7]. �e training of the YOLO model using PASCAL VOC was done using the technique 

proposed in this paper.

Wei Liu et al came up with a new method of detecting objects in images using a sin-

gle deep neural network. �ey named this procedure the Single Shot MultiBox Detector 

SSD. According to the team, SSD is a simple method and requires an object proposal as 

it is based on the complete elimination of the process that generates a proposal. It also 

eliminates the subsequent pixel and resampling stages. So, it combines everything into 

a single step. SSD is also very easy to train and is very straightforward when it comes to 

integrating it into the system. �is makes detection easier. �e primary feature of SSD is 

using multiscale convolutional bounding box outputs that are attached to several feature 

maps [8]. Training and model analysis of the SSD model of our work was inspired by the 

work discussed here.

Another paper is based on an advanced type of SSD. In his paper, the authors have 

proposed their research work to introduce Tiny SSD, a single shot detection deep convo-

lutional neural network. TINY SSD aimed to ease real-time embedded object detection. 

It comprises of greatly enhanced layers comprising of non-uniform Fire subnetwork and 

a stack of non-uniform subnetwork of SSD based auxiliary convolutional feature layers. 

�e best feature of Tiny SSD is its size of 2.3 MB which is even smaller than Tiny YOLO. 

�e results of this work have shown that Tiny SSD is well suited for embedded detec-

tions [9]. A similar model of SSD was used for the purpose of comparison.

�e paper by Pathak et al describes the role of deep learning technique by using CNN 

for object detection. �e paper also accesses some deep learning techniques for object 

detection systems. �e current paper states that deep CNNs work on the principle of 

weight sharing. It gives us information about some crucial points in CNN.

�ese features of CNN depicted in this paper are: [1]

a. CNN is integration and involves the multiplication of two overlapping functions.

b. Features maps are abstracted to reduce their complexity in terms of space

c. Repetition of the process is done to produce the feature maps using filters.

d. CNN utilizes different types of pooling layers.

�is paper was used as the basis for understanding Convolutional Neural Networks 

and their role in deed learning.

In a recent research work by Chen et al, they have used anchor boxes for face detec-

tion and more exact regression loss function. �ey have proposed a face detector termed 

as YOLO face which is based on YOLOv3 that aims at resolving detection problems of 

varying face scales. �e authors concluded that their algorithm out performed previous 

YOLO versions and its varieties [10]. �e YOLOv3 was used in our work for comparison 

with other models.
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In the research work by Fan et  al, they have proposed an improved system for the 

detection of pedestrians based on SSD model of object detection. In this work the 

multi-layered system they introduced the Squeeze-and-Excitation model as an addi-

tional layer to the SSD model. �e improved model employed self-learning that further 

enhanced the accuracy of the system for small scale pedestrian detection. Experiments 

on the INRIA dataset showed high accuracy [11]. �is paper was used for the purpose of 

understanding the SSD model.

In a recent survey published by Mittal et  al, they discussed the algorithms namely 

Faster RCNN, Cascade RCNN, R-FCN, YOLO and its variants, SSD, RetinaNet and Cor-

nerNet, Objects as Point under advanced phases in detectors based on deep learning. 

�is paper provides a comprehensive summary of low-altitude datasets and the algo-

rithms used for the respective work [12]. Our comparison work was done using coco 

metrics similar to the comparison that has been done in this paper. �e paper also dis-

cusses several other techniques for comparison which were considered in our work.

Background

Artificial Intelligence (AI): It is a system’s ability to correctly interpret external data, 

to learn from such data, and to use those learnings to achieve specific goals and tasks 

through flexible adaptation [13].

Machine Learning (ML): It is the study of algorithms that improve automatically 

through experience [14]. ML algorithms build a training model based on sample data, 

and using it, make predictions or decisions without being ‘explicitly programmed to do 

so’.

Deep Learning (DL): It is the most used and most preferred approach to machine 

learning. It is inspired by the working of the biological brain—how individual neurons 

firing on receiving input only see a very small part of the total input/processed data. 

It has multiple layers. Upper layers build on the outputs from lower layers. �us, the 

higher the layer, the more complex is the data it processes [15].

Identify more complex patterns—animals, faces, objects, skies, etc. A CNN consists of 

alternating convolutional and pooling layers with at least one fully connected layer at the 

end.

Evolution of CNNs

Convolutional Neural Network (CNN): It is a type of artificial neural network that is 

mainly used to analyse images. It was inspired by the neurological experiments con-

ducted by Hubel and Wiesel on the visual cortex [17]. �e visual cortex is the primary 

region processing visual sensory information in the brain. It extracts features from 

images and detects patterns and structures to detect objects in the images. Its distinct 

feature is the presence of convolutional layers that are hidden. �ese layers apply filters 

to extract patterns from images. �e filter moves over the image to generates the output. 

Different filters recognize different patterns. Initial layers have filters to recognize simple 

patterns. �ey become more complex through the layers over time as follows:

1. Origin (Late 1980s–1990s): �e first popular CNN was LeNet-5 developed in 1998 

by LeCun et al. [18]. It was in development for almost a decade. Its purpose was to 
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detect handwritten digits. It is credited for sparking R&D of efficient CNNs in the 

field of deep learning. Banks started using it in ATMs.

2. Stagnation (Early 2000s): �e internal working of CNNs was not yet understood dur-

ing this period. Also, there was no dataset of a variety of images like Google’s Open 

Images or Microsoft’s COCO. Hence, most CNNs were only focused on optical 

character recognition (OCR). CNNs also required high computational time; increas-

ing operating cost. Support Vector Machine (SVM), a machine learning model was 

showing better results than CNN.

3. Revival (2006–2011): Ranzato et al. in their paper demonstrated that using the max-

pooling algorithm for feature extraction instead of the sub-sampling algorithm used 

earlier results in significant improvement [19]. Researchers had started using GPUs 

to accelerate training of CNNs. Around the same time, NVIDIA introduced the 

CUDA platform that allowed and facilitated parallel processing, thus speeding up 

CNN training and validation [20]. �is re-sparked research. In 2010, Stanford Uni-

versity established a large image dataset called Pattern Analysis, Statistical modelling 

and Computational Learning Visual Object Classes (PASCAL VOC), removing yet 

another hurdle.

4. Rise (2012–2013): AlexNet was a major breakthrough for accuracy of CNNs. It 

achieved an error rate of just 15.3% in the 2012 ILSVR challenge. �e second-place 

network had an error rate of 26.2% [21]. So, AlexNet was better by a large margin of 

10.8% than any other network known at the time. AlexNet achieved this accuracy 

by having a total of 8 layers [21], thus truly realizing ‘deep’ learning. �is required 

greater computational power, but the advances in GPU technology made it possible. 

AlexNet, like LeNet is one of the most influential papers to ever be published on 

CNNs.

5. Architectural Innovations (2014–2020): �e well-known and widely used VGG 

architecture was developed in 2014 [22]. RCNN, based on VGG like many others, 

introduced the idea that objects are located in certain regions of the image; hence 

the name: region-based CNN [23]. Improved versions of RCNN—Fast RCNN [24] 

and Faster RCNN [3] came out in the subsequent years. Both of these reduced 

computation time, while maintaining the accuracy that RCNN is known for. Single 

Shot Multibox Detector (SSD), also based on VGG was developed around 2016 [8]. 

Another algorithm, You Only Look Once (YOLO), based on an architecture called 

DarkNet was first published in 2016 [6]. It is in active development; its third version 

was released in 2018 [25].

Existing methodologies

SSD

Other object detection models such as YOLO or Faster R-CNN perform their opera-

tions at a much lesser speed as compared to SSD, making a much more favourable object 

detection method.

Before the development of SSD, several attempts had been made to design a faster 

detector by modifying each stage of the detection pipeline. However, any significant 

increase in speed by such modifications only resulted in a decrease in the detection’s 
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accuracy and hence researchers concluded that rather than altering an existing model, 

they would have to come up with a fundamentally different object detection model, and 

hence, the creation of the SSD model [8].

SSD does not resample pixels or features for bounding box hypotheses and is as accu-

rate as models that do. In addition to this, it is quite straightforward compared to meth-

ods that require object proposals because it completely eradicates feature resampling 

stages or pixel and proposal generation, by encompassing all computation in a single 

network. �erefore, SSD is very simple to train and can be easily integrated into systems 

that perform detection as one of their functions [8].

It’s architecture heavily depends on the generation of bounding boxes and the extrac-

tion of feature maps, which are also known as default bounding boxes. Loss is calculated 

by the network, using comparisons of the offsets of the predicted classes and the default 

bounding boxes with the training samples’ ground truth values, using different filters for 

every iteration. Using the back-propagation algorithm and the calculated loss value, all 

the parameters are updated. �is way, SSD is able to learn the most optimal filter struc-

tures that can accurately identify the object features and generalize the given training 

samples in order to minimize the loss value, resulting in high accuracy during the evalu-

ation phase [26].

Analysis of the functions

SSD is built on a feed-forward complex network that builds a collection of standard-

size bounding boxes and for each occurrence of an object in those boxes, a respective 

score. After score generation, non-maximum suppression is used to generate the final 

detection results. �e preliminary network layers are built on a standard architecture 

utilized for high quality image classification (and truncated before any classification lay-

ers), which is a VGG-16 network. An auxiliary structure is added to the truncated base 

network such as convo6 to produce detections.

1. Extracting feature maps: SSD uses the VGG-16 architecture to extract feature maps 

because it shows very good performance for the classification of images with high 

quality. �e reason for using auxiliary layers is because they allow us to extract the 

required features at multiple scales as well as reduce the size of our input with each 

layer that is traversed through [8]. For each cell in the image, the layer makes a cer-

tain number of predications. Each prediction consists of a boundary box and the 

box generates scores for all the classes it detects in this box including a score for no 

object at all. It is an algorithm making a ‘guess’ as to what is in the boundary box by 

choosing the class with the highest score. �ese scores a called ‘confidence scores’ 

and making such predictions is called ‘MultiBox’. Figure  1 depicts the SSD model 

with the extra feature layers.

2. Convolutional predictors for object detection: Every feature layer produces a fixed 

number of predictions by utilising convolutional filters. For every feature layer of size 

x × y having n channels, the rudimentary component for generating prediction varia-

bles of a potential detection result is a 3 × 3 × x small kernel that creates a confidence 

score for every class, or a shape offset calculated with respect to the default ground-
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ing box coordinates which are provided by the COCO Dataset at every single one of 

the ‘x x y’ locations [8].

3. Default boxes and aspect ratios: By now, you may be able to infer that every single 

feature map cell is associated with a corresponding default bounding box for multiple 

feature maps in the network. �e default boxes are responsible for determining the 

feature map in a complex manner so that the placement of each box concerning its 

corresponding cell is fixed. At each feature map cell, we speculate the offsets con-

cerning the default box shapes in the cell and the scores for each class which tells us 

about the class of object present inside the bounding box. Going into further detail, 

for every box out of b at a particular given location, s class scores are calculated and 

its 4 offsets relative to the primal default box shape. �is computation results in a 

total of (s + 4) b filters that are applicable to every location in the feature map, result-

ing in (s + 4) × b × x × y outputs for a x × y feature map. [8]

SSD Training Process

1. Matching Process: All SSD predictions are divided into two types; negative matches 

or positive matches. Positive matches are only used by SSD to calculate the localiza-

tion cost which is the misalignment of the boundary box with the default box. �e 

match is positive only if the corresponding default boundary box’s IoU is greater than 

0.5 with the ground truth. In any other case, it is negative. IoU stands for the ‘inter-

Fig. 1 Deep Learning Layers illustration [15]
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section over the union’. It is the ratio between the intersected area over the joined 

area for two regions. IoU is also referred to as the Jaccard index and using this condi-

tion makes the learning process much easier [8].

2. Hard negative mining: After the matching step, almost all of the default boxes are 

negatives, largely when the total count of possible default boxes is high. �is causes 

a large imbalance between the positive and negative training examples. Rather than 

using up all the negative examples, SSD sorts them by their greatest confidence loss 

for each default box, the highest ones such that at any point of time, the ratio of the 

positives and negatives is a maximum of 3:1. �is leads to faster optimization and 

better training [8].

3. Data augmentation: �is is crucial for increasing accuracy. �ere are several data 

augmentation techniques that we may employ such as color distortion, flipping, and 

cropping. To deal with a variety of different object sizes and shapes, each training 

image is randomly picked using one of the methods listed below: [8].

We use the original,

Sample a patch with IoU of 0.1, 0.3, 0.5, 0.7 or 0.9,

Sample a patch randomly.

4. Final detection: �e results are generated by performing NMS on multi-scale refined 

bounding boxes. Using the above-mentioned methods such as hard negative min-

ing, data augmentation, and a larger number of other methods, SSD’s performance 

is much greater than that of Faster R-CNN when it comes to accuracy on PAS-

CAL VOC dataset and the COCO dataset, while being three times faster [26]. �e 

SSD300, where the size of the input image is 300_300, runs at 59 FPS, which is much 

more efficient and accurate than YOLO. However, SSD is not as efficient at detection 

for smaller objects, which can be solved by having a more efficient feature extrac-

tor backbone (e.g., ResNet101), with the addition of deconvolution layers along with 

skip connections to create additional large-scale context, and design a better network 

structure [27].

Complexity analysis

For most algorithms,time-complexity is dependent on the size of input and can be 

defined in terms of the big-Oh notation. However,for deep-learning models, time com-

plexity is evaluated in terms of the total time taken by SSD to be trained and the infer-

ence time when the model is run on specific hardware (Fig. 2).

Deep learning models are required to carry out millions of calculations which can 

prove to be quite expensive computationally, however most of these calculations end up 

being performed parallelly by the thousands of identical neurons in each layer of the 

artificial neural network. Due to this parallel nature , it has been observed that training 

an SSD model in a Nvidia GeForce GTX 1070i GPU reduces the training time by a factor 

of ten [28].

When it comes to time-complexity, matrix multiplication in the forward pass of the 

base CNN takes up the most amount of time. �e total number of multiplications is 
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dependent on the number of layers in the CNN along with more specific details such as 

the number of neurons per layer, the amount of filters along with their respective sizes, 

the size of the feature extraction map and the image’s resolution. �e activation function 

used at each layer is a ReLu function that has been found to run in quadratic time for 

each neuron in each layer. Hence, taking all these factors into account, we can determine 

the time-complexity of the forward pass at the base CNN :

Here, b denotes the index of the CNN layer, B is the total amount of CNN layers,xb is the 

number of filters in the  bth layer,h is the filter width and height,  xc is the number of neu-

rons,  xb-1 is the total number of input channels of the  bth layer,  sb is the size of the output 

feature map.

It should be noted that five to ten percent of the training time is taken up by things like 

dropout,regression,batch normalisation,classification as well.

As for SSD’s accuracy, it is determined by Mean Average Precision or mAP which is 

simply the average of APs over all classes from the area under the precision-recall curve. 

A higher mAP is an indication of a more accurate model [28].

timeforward = timeconvolution+timeactivation = O

(

B
∑

b=1

xl−1.(h.h).xb.(sb.sb)

)

+O(B.xc) = O
(

weights
)

Fig. 2 Evolution of CNNs from 1979 through 2018 [16]
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Faster R‑CNN

R-CNN stands for Region-based Convolutional Neural Networks. �is method com-

bines region proposals for object segmentation and high capacity CNNs for object 

detection [28].

�e algorithm of the original R-CNN technique is as follows: [29]

1. Using a Selective Search Algorithm, several candidate region proposals are extracted 

from the input image. In this algorithm, numerous candidate regions are generated 

in initial sub-segmentation. �en, regions which are similar are combined to form 

bigger regions using a greedy algorithm. �ese regions make up the final region pro-

posals.

2. �e CNN component warps the proposals and extracts distinct features as a vector 

output.

3. �e features which are extracted are fed into an SVM (Support Vector Machine) for 

recognizing objects of interest in the proposal.

Figure 4 given below explains the features and working of R-CNN.

�is technique was plagued by a lot of drawbacks. �e requirement to classify ~2000 

region proposals make the training of the CNN a very time-consuming process. �is 

makes real-time implementation impossible as each test image would take close to 47 

seconds for execution.

Furthermore, machine learning could not take place as the Selective Search Algorithm 

is a fixed algorithm. �is could result in non-ideal candidate region proposals being gen-

erated [29].

Fast R-CNN is an algorithm for object detection that solves some of the drawbacks of 

R-CNN. It uses an approach similar to that of its predecessor, but as opposed to using 

region proposals, the CNN utilizes the image itself for creating a convolutional feature 

map, following which region proposals are determined and warped from it. An RoI 

(Region of Interest) pooling layer is employed for reshaping the warped squares accord-

ing to a predefined size for a fully connected layer to accept them. �e region class is 

then predicted from the RoI vector with the help of a SoftMax layer [24].

Fast R-CNN is faster than its predecessor because feeding ~2000 proposals as input to 

the CNN per execution is not required. �e convolution operation is done to generate a 

feature map only once per image. [24] �e Fig. 3 given below describes the features and 

working of Fast RCNN.

�is algorithm shows a significant reduction in time required for both training and 

testing when compared to R-CNN. But it was noticed that including region proposals 

significantly bottlenecks the algorithm, reducing its performance [3].

Both Fast R-CNN and its predecessor used Selective Search as the algorithm for deter-

mining the region proposals. �is being a very time-sapping algorithm, Faster R-CNN 

eliminated the need for its implementation and instead let the proposals be learned by 

the network. Just as in the case of Fast R-CNN, a convolutional map is obtained from the 

image. But a separate network replaces the Selective Search algorithm to predict propos-

als. �ese proposals are then reshaped and classified using RoI (Region of Interest) pool-

ing. Refer to the Fig. 4 for the working of Faster R-CNN.
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Faster R-CNN offers an improvement over its predecessors so significant that it is now 

capable of being implemented for real-time object detection.

Architecture of faster R‑CNN

�e original implementation of Faster Region-based Convolutional Neural Network 

(Faster R-CNN) algorithm was experimented on two architectures of convolutional net-

works: �e ZF (Zeiler and Fergus) model, with 5 convolutional layers that a Fast R-CNN 

network shares with it; and the VGG-16(Simonyan and Zisserman) model, with 13 con-

volutional layers shared [3] .

�e ZF model is based on an earlier model of a Convolutional Network (made by Kriz-

hevsky, Sutskever and Hinton) [30] . �is model consisted of eight layers, of which five 

were convolutional and the remaining three were fully connected [21] .

�is architecture exhibited quite a few problems. �e first layer filters had negligible 

coverage medium frequency information compared to that of the very extremes, and the 

large stride 4 used in the first layer caused aliasing artifacts in the second layer. �e ZF 

model fixed these issues by reducing the size of the first and second layer and making the 

convolution stride 2, allowing it to hold more information in the first and second layers, 

and improve classification performance [30] .

Complexity analysis

Region based Convolutional Neural Network (RCNN) and Fast-RCNN both use Selec-

tive Search. Selective Search is a greedy algorithm. Greedy algorithms don’t always 

return the best result [31]. Also, it needs to run multiple times. However, RCNN runs 

selective search about 2000 times on the image. Fast-RCNN extracts all the regions first 

and runs selective search just once. �is way it reduces time complexity by a large factor 

Fig. 3 SSD model [8]

Fig. 4 R-CNN model [15]
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[3]. Faster RCNN (FRCNN) removes the final bottleneck—Selective Search. It does so by 

instead using the Region Proposal Network (RPN). RPN fixes the regions as a grid of n × 

n. It needs to run fewer number of times as compared to selective search [3] .

As shown in the diagram above, FRCNN consists of Deep Fully Convolutional Net-

work (DFCN), Region Proposal Network, ROI pooling, Fully Connected (FC) networks, 

Bounding Box Regressor and Classifier.

We will consider DFCN to be ZF-5 for consistent calculation [30]. First feature map, M 

of dimensions 256 × n × n is extracted from input image, P [33]. �en it is fed to RPN 

and ROI.

RPN: �ere are ‘k’ anchors for each point on M. Hence, Total anchors = n × n × k. 

Anchors are ranked according to score; 2000 anchors are obtained through Non-Maxi-

mum Suppression [3]. �e Complexity comes out to be O(N2/2).

ROI: Anchors get divided into H × W grid of sub-windows based on M. Output grid 

is obtained by max-pooling values in corresponding sub-windows. ROI is special case of 

spatial pyramid pooling layer used in SPP-net, with just one pyramid layer [24]. Hence, 

complexity becomes O(1).

YOLOv3

In modern times YOLO (You Only Look Once) is one of the most precise and accurate 

object detection algorithms available. It has been made on the basis of a newly altered 

and customized architecture named Darknet [25]. �e first version was inspired by 

Google Net, which used tensor to sample down the image and predicted it with the 

maximum accuracy. �e tensor is generated on the basis of a similar procedure and 

structure which is also seen in the Region of Interest that is pooled and compiled to 

decrease the number of individual computations and make the analysis swifter) that is 

used in the Faster R-CNN network. �e following generation utilized an architecture 

with just 30 convolutional layers, that in turn consisted of 19 layers from DarkNet-19 

and an extra 11 for detection of natural objects or objects in natural context as the 

COCO dataset and metrics have been used. It provided more precise detection and 

with good speed, although it struggled with pictures of small objects and small pixels. 

But version 3 has been the greatest and most accurate version of YOLO which has 

been used widely because of its high precision. Also, the architecture with multiple 

layers has made the detection more precise [26].

YOLOv3 makes use of the latest darknet features like 53 layers and it has undergone 

training with one of the most reliable datasets called ImageNet. �e layers used are 

from an architecture Darnnet-53 which is convolutional in nature. For detection, the 

aforementioned 53 layers were supplemented instead of the pre-existing 19 and this 

enhanced architecture was trained and instructed with PASCAL VOC. After so many 

additional layers the architecture maintains one of the best response times with the 

accuracy offered. It also is very helpful in analysing live video feed because of its swift 

data unsampling and object detection techniques. One can notice that this version is 

the best enhancements in ML (Machine Learning) using neural networks. �e previ-

ous version did not work well with the images of small pixels but the recent updates 

in v3 have made it very useful in analysing satellite imaging even for defence depart-

ments of some countries. �e architecture performs in 3 different layers which makes 



Page 13 of 27Srivastava et al. J Big Data            (2021) 8:66  

it more efficient but the process is a little slower yet state-of-the-art. For understand-

ing, the framework refers to the Fig. 5 given below.

Feature extraction and analysis [34]

1. Forecasting: �is model utilizes packages of different lengths and breadths to produce 

the weights and frames that establish a strong foundation. �is technique is an individ-

ual where the network determines the objectivity and allocation independently. �e logi-

cal regression is used by YOLOv3 where it foresees the objectivity score. It is projected 

over the selection frame initially on the object that has been established to be the funda-

mental truth in the picture by pre-training models [35]. �is gives a singular bounding 

box and any kind of fallacy in this part would cause mistakes in both allocation of these 

boxes and their accuracy and also in the detection arrear. �e bounding box forecasting 

is depicted in the equation given below and Fig. 6.

Equations for bounding box forecasting [34]

Fig. 5 Fast R-CNN [16]

Fig. 6 Faster R-CNN [3]
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2. Class Prediction: YOLOv3 executes a soft-max function to alter the scores to an 

understandable format for the code. �e format is 1. YOLOv3 uses multiple classifica-

tions by tag. �ese tags are custom and non-exclusive. For eg. ‘man’ and ‘woman’ are not 

exclusive. �e architecture modifies the function with individualistic logistic classifiers. 

YOLOv3 uses binary loss function initially. It uses the soft-max function after that. �is 

leads to a reduction in complexity by avoiding it for the first implementation [36].

3. Predictions: �ree distinct orders and dimensions are used for pre-determining 

the bounding boxes. �ese are in combination with the function extractor, DarkNet-53. 

�e last levels include detection and categorization into object classes. 3 takes are what 

is taken on each scale of the COCO dataset. �at leads to more than 70 class predic-

tions as an o/p tensor. �ese features are a classic coder-decoder design introduced in 

Single-Shot-Detector. �e grouping of k-means is also used for finding the best bound-

ing boxes. Finally, in the COCO dataset dimensions like 10 × 13, 62 × 45 and others are 

used. In total there are 9 distinct dimensions including the aforementioned.

4. DarkNet-53 - �e feature Extractor: YOLOv2 had the implementation of Dark-

Net-19 but in the recently modified model of YOLO Darknet-53 is being used where the 

53 is 53 convolutional levels. Speed and accuracy both are an enhanced in Darknet 53 

making it 1.5 times quicker. When this architecture is put to compete with ResNet-152, 

it almost the same performance in terms of accuracy and precision but it is twice as fast 

[37]. �e following Fig. 7 shows the YOLO model.

Complexity analysis

�e YOLO network is based on a systematic division of the given image into grid. �e 

grids are of 3 types which will be mentioned later. �ese grids serve as a separate image 

for the algorithm and they undergo further divisions. YOLO utilizes boundaries that 

are called bounding boxes. �ese are the anchors for the analysis of an image. �ese 

boxes are essentially acknowledged as resulted even though thousands and thousands 

are ignored because of the low probability scores and are treated as false positives. �ese 

bx = σ(tx) + cx

by = σ
(

ty
)

+ cy

bw = pwe
tw

bh = phe
th

σ(x) =1/
(

1 + e−x
)

Fig. 7 CNN of the Krizhevsky model [21]



Page 15 of 27Srivastava et al. J Big Data            (2021) 8:66  

boxes are the manifestation of the rigorous breaking down of an image into grids of cells 

[38–40].

For determining suitable anchor box sizes, YOLO uses K-means clustering to clutch 

the boxes among the training data. �ese prior boxes are the guidelines for the algo-

rithm. After receiving the aforementioned data, the algorithm looks for objects with 

symmetrical shape and size. YOLO uses 3 boxes as anchor so each grid cell puts out 3 

boxes. �e further predictions and analysis are based on these 3 anchor boxes. Some 

cases and studies involve the use of 2 anchor box leading to 2 boxes per grid cell [39].

In the above Fig. 8, we can see the anchor box as the dashed box and the forecast of 

the ground truth or the bounding box is the box with the highlighted borders. �ere are 

multiple examples of sizes of image floating around. Each have a distinctive grid cell size 

and shape. For our model we have taken the standard 448 × 448 image size. �e other 

sizes used for analysis are 416 × 416, 608 × 608 etc. and the grid sizes for them are 19 × 

19, 38 × 38 & 76 ×76 and 13 × 13, 52 × 52 & 26 × 26 respectively [40, 41].

For the first step, the image is modified and altered to a size of 448 x 448 and then the 

image is put through a slice and dice system where they are divided into 7 x 7 size. �is 

implies that the size of each grid is of size 64 x 64. Every single one of these grid cells 

produce a certain number of bounding boxes. It may vary from version to version (mul-

tiple versions in YOLOv3). For our model we are using 2 boxes per grid. �is gives us 4 

coordinates per bounding box. �ey are  xcenter,  ycenter, width, height. Also, there’s a cor-

responding confidence value [32].

Use of K-means clustering algorithm gives exponential time complexity O(nkd) where 

k is the number of images and d is the dimension of the images. After a thorough and 

stable optimisation technique, the creators have made YOLOv3 the fastest image detec-

tion algorithm among the ones mentioned in the paper.

Dataset

MICROSOFT COCO

In recent times for the search of a perfect combination of algorithm and data set, con-

tenders have used the top and highly rated deep learning architectures and data sets. 

Fig. 8 Bounding box forecasting [34]
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�ey are used for arriving at the best possible precision and accuracy. �e most com-

monly used data sets are PASCAL VOC and Microsoft COCO. For the review analysis, 

COCO is used as a dataset and an evaluation metric. �ey applied different ways of anal-

ysis, tweaking and calibrating the base networks and adjusting the software; that leads to 

better precision but also for improving accuracy, speed, and local split performance [26].

For Object detection, the use of computationally costly architectures and algorithms 

such as RCNN, SPP-NET (Spatial Pyramid Pooling Network) the use of smart data 

sets having varied objects and images which also have various objects and are of differ-

ent dimensions have become a necessity. Not to forget the extreme scope in live video 

feed monitoring the cost of detection becomes too high. Recently the advancement in 

deep learning architectures has lead algorithms like YOLO and SSD networks to detect 

objects by the access to a singular NN (neural network). �e introduction of latest archi-

tectures has increased the competition between various techniques [26]. But recently 

COCO has emerged as the most used data set for training and classification. Also, more 

developments have made it alterable for adding classes [2].

Furthermore, COCO is better than other popular widely used data sets as per some 

research papers [2]. �ey are namely Pattern Analysis, Statistical Modelling and Compu-

tational Learning Visual Object Classes, ImageNet & SUN (Scene Understanding). �e 

above-mentioned data sets vary hugely based on size, categories, and types. ImageNet 

was made to target a wider category where the number of different categories but they 

were fine-grained. SUN focused on more of a modular approach where the regions of 

interest were based on the frequency of them occurring in the data set. Finally, PASCAL 

VOC’s was similar yet different in approach to COCO. It used a wide range of images 

taken from the environment and nature. Microsoft Common Objects in Context is made 

for the detection and classification of the objects in their classic natural context [2].

Annotation pipeline [2] As seen in the following Fig. 9 an annotation pipeline explains 

the identification and categorization of a particular image.

�is type of annotation pipeline gives a better perspective to object detection algo-

rithms. Training algorithms using these diverse images and advanced concepts like 

crowd scheduling and visual segmentation. Following Fig. 10 gives the detailed catego-

ries that are available in MS COCO. �e 11 super-categories are Person and Accessories, 

Animal, Vehicle, Outdoor Objects, Sports, Kitchenware, Food, Furniture, Appliance, 

Electronics, and Indoor Objects [42].

Fig. 9 The ZF model [30]
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Pascal VOC (Visual Object Classes)

�e Challenge �e Pascal VOC (Visual Object Classes) Challenges were a series of chal-

lenges that took place from 2005 to 2012 which consisted of two components: A public 

dataset which contained images from the Flickr website, their annotations and software 

for evaluation; and a yearly event consisting of a competition and a workshop. �e main 

objectives of the challenge were classification, detection, and segmentation of the images. 

�ere were also two additional challenges of action classification and person layout [43].

�e Datasets �e datasets used in the Pascal VOC Challenges consist of two subsets: a 

trainval dataset, which was further classified into separate sets for training and validation; 

and a test dataset. All the contained images are fully annotated with the help of bounding 

boxes for all instances of the following objects for the classification and detection chal-

lenges: [43]

Along with these annotations, attributes such as viewpoint, truncation, difficult, con-

sistent, accurate and exhaustive were specified, some of which were added in later edi-

tions of the challenge [44].

Experimental set up

Hardware

�e hardware comprised of 8  GB DDR5 Random Access Memory, 1  TB Hard Disk 

Drive, 256 GB Solid State Drive and Intel Core processor i5 8th Generation which clocks 

at a speed 1.8Ghz (Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20).         

Software

�e software configuration put to use is the Google Colab using inbuilt engine called 

Python 3 Google Compute Engine Backend. It provides a RAM of 12.72 GB of which 

3.54 was used at an average. Also, it provides a disk space of 107.77  GB of which 

74.41 GB was used which included the training and validation datasets. �e hardware 

accelerator used was the synthetic GPU offered by Google Colab (Tables 1 and 2). 

Results and discussions

Two performance metrics are applied to object detecting models for testing. These 

are ‘Average Precision’ and an F1 score. The predicted bounding boxes are compared 

with the ground truth bounding boxes by the detector according to IOU (Intersec-

tion Over Union). The ‘True Positive’, ‘False Negative’, and ‘False Positive’ are defined 

Fig. 10 FRCNN Architecture [32]



Page 18 of 27Srivastava et al. J Big Data            (2021) 8:66 

and then used for the calculation of precision and recall which in turn are used for 

calculating the F1 score. The Formulae for these are as follows. [42]

Precision = TP/ (TP +FP’)

Recall = TP/ (TP + FN’)

And using these, F1 score = 2*Precision*Recall/(Precision + Recall)

Fig. 11 YOLO architecture [26]

Fig. 12 YOLO model ConvNet [37]

Fig. 13 Annotation pipeline [2]
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Apart from these two, the performance of the models is also measured using the 

following metrics given by the COCO metrics API. [42]

Using all these, the outcomes for all three algorithms were compared in order to 

compare their performance. The outcomes were as follows:

Results comparison

Discussion

Following were some limitations that were observed in the three models

SSD

When it comes to smaller objects, SSD’s performance is much worse as compared to 

Faster R-CNN. �e main reason for this drawback, is that in SSD, higher resolution 

layers are responsible for detecting small objects. However, these layers are less useful 

Fig. 14 Categories of images [42]

Fig. 15 The classes of objects considered in the challenge [43]

Fig. 16 Statistics of the VOC2012 datasets [43]



Page 20 of 27Srivastava et al. J Big Data            (2021) 8:66 

F
ig

. 1
7

 
G

ra
p

h
 fo

r 
SS

D
 [

2
6

]



Page 21 of 27Srivastava et al. J Big Data            (2021) 8:66  

F
ig

. 1
8

 
G

ra
p

h
 fo

r 
fa

st
e

r 
R

C
N

N
 [

2
6

]



Page 22 of 27Srivastava et al. J Big Data            (2021) 8:66 

F
ig

. 1
9

 
G

ra
p

h
 fo

r Y
O

LO
 [

2
6

]



Page 23 of 27Srivastava et al. J Big Data            (2021) 8:66  

for classification as they contain lower-level features such as colour patches or edges, 

thereby reducing the overall performance of SSD [8].

Another limitation of this method which can be inferred from the complexity of SSD’s 

data augmentation, is that SSD requires a large amount of data for training purposes. 

�is can be quite expensive and time-consuming depending on the application [8]

Faster R-CNN

Accuracy of this algorithm comes at the cost of time complexity. It is significantly 

slower than the likes of YOLO.

Fig. 20 Compared with YOLOv3, the new version of AP (accuracy) and FPS (frame rate per second) are 

improved by 10% and 12%, respectively [46]

Table 1 COCO metrics [42]

Average precision (AP):

AP % AP at IoU .50:.05:.95 (primary challenge metric)

AP(IoU = .50) % AP at IoU .50 (PASCAL VOC metric)

AP(IoU = .75) % AP at IoU .75 (strict metric)

AP across scales

AP (small) % AP for small objects Area <  322

AP (medium) % AP for medium objects 322 < area <  962

AP (large) % AP for large objects Area >  962

Average Recall (AR)

AR (max=1) % AR given 1 detection per image

AR (max=10) % AR given 10 detections per image 

AR (max=100) % AR given 100 detections per image

AR across scales

AR (small) % AR for small objects Area <  322

AR (medium) % AR for medium objects 322 < area <  962

AR (large) % A for large objects Area >  962
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Despite improvements over RCNN and Fast RCNN, it still requires multiple passes 

over a single image unlike YOLO [3]3

FRCNN has many components—the convolutional network, Regions of Interest 

(ROI) pooling layer and Region Proposal Network (RPN). Any of these can serve as a 

bottleneck for the others [3].

YOLO

YOLOv3 was one of the best modifications that had been done to an object detection 

system since the introduction of Darknet 53. �is modified update was received very 

well among the critics and other industrial professionals. But it had its own short-

comings. �ough YOLOv3 is still considered to be a veteran, the complexity analysis 

showed flaws and lacked optimal solutions to the loss function. It was later rectified 

in an optimized model of the same and was later used and tested for functionality 

enhancements [45].

A better version of a given software is the best to analyse the faults in the former. 

After analysing the paper on YOLOv4 we can see that version 3 used to fail when 

the image had multiple features to be analysed but they weren’t the highlight of the 

pic. �e lack of accuracy was always an issue when it came to smaller images. It was 

basically useless to use version 3 to analyse small images because the accuracy was 

around 16% (proven by our data). Another matter to be looked at is that the use of 

Darknet 53. YOLOv4 has brought in CSPDarknet-53 which is better than Darknet-53 

as it uses only 66% of the number of parameters that version 3 used to use but gives a 

better result which enhanced speed and accuracy [46].

�e precision-recall curves plotted using the COCO metric, API, allowed us to 

form proper deductions about the efficiency with which these three models perform 

object detection. Graphs were plotted for each model based on different object sizes.

�e area shaded in orange indicates the precision-recall curve without any errors, 

the area shaded in violet indicates the objects that were falsely detected, the area 

shaded in blue indicates the localisation errors (Loc). Lastly, the areas under the pre-

cision-recall curve that are white indicates an IoU value greater than 0.75 and area 

shaded in grey indicates an IoU value greater than 0.5.

From the graphs of the three models, it is evident that both region-based detectors 

like F R-CNN and SSD both have low accuracy due to their relatively larger violet areas. 

Table 2 Results

* on Nº 4, maxDets value is 100 for avg. precision and 1 for avg. recall

Nº IoU Area maxDets Average precision Average recall

SSD YOLO FRCNN SSD YOLO FRCNN

1 0.50:0.95 All 100 0.247 0.337 0.716 0.232 0.279 0.782

2 0.50 All 100 0.424 0.568 0.873 0.341 0.432 0.754

3 0.75 All 100 0.253 0.350 0.851 0.362 0.460 0.792

4 0.50:0.95 Small 100/1* 0.059 0.152 0.331 0.102 0.257 0.567

5 0.50:0.95 Med 100 0.264 0.359 0.586 0.401 0.494 0.653

6 0.50:0.95 Large 100 0.414 0.496 0.846 0.577 0.623 0.893
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However, amongst themselves, F R-CNN is more accurate than SSD while SSD is more 

efficient for real-time processing applications due to its higher mAP values. YOLO is 

clearly the most efficient of the all evident from its almost non-existent violet regions.

Conclusion

�is review article compared the latest and most advanced CNN-based object detection 

algorithms. Without object detection, it would be impossible to analyse the hundreds 

of thousands of images that are uploaded to the internet every day [42]. Technologies 

like self-driving vehicles that depend on real-time analysis are also impossible to realize 

without object detection. All the networks were trained with the open-source COCO 

dataset by Microsoft, to ensure a homogeneous baseline. It was found that Yolo-v3 is the 

fastest with SSD following closely and Faster RCNN coming in the last place. However, 

it can be said that the use case influences which algorithm is picked; if you are deal-

ing with a relatively small dataset and don’t need real-time results, it is best to go with 

Faster RCNN. Yolo-v3 is the one to pick if you need to analyse a live video feed. Mean-

while, SSD provides a good balance between speed and accuracy. Additionally, Yolo-v3 

is the most recently released of the three and is actively being contributed to by the vast 

open-source community. Hence, in conclusion, out of the three Object Detection Con-

volutional Neural Networks analysed, Yolo-v3 shows the best overall performance. �is 

result is similar to what some of the previous reports have obtained.

A great deal of work can still be done in the future in this field. Every year, either new 

algorithms or updates to existing ones are published. Also, each field—aviation, autono-

mous vehicles (aerial and terrestrial), industrial machinery, etc. are suited to different 

algorithms.

�ese subjects can be explored in detail in the future.

Abbreviations

FRCNN: Faster Region based Convolutional Neural Network; SSD: Single Shot Detector; YOLOv3: You Look Only Once 

version 3; COCO: Common Objects in Context; VGG16: Visual Geometry Group 16.
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