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Abstract

Background: The analysis of single-cell RNA sequencing (scRNAseq) data plays an important role in understanding

the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area

is the detection of differentially expressed (DE) genes. scRNAseq data, however, are highly heterogeneous and have

a large number of zero counts, which introduces challenges in detecting DE genes. Addressing these challenges

requires employing new approaches beyond the conventional ones, which are based on a nonzero difference in

average expression. Several methods have been developed for differential gene expression analysis of scRNAseq

data. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to evaluate

and compare the performance of differential gene expression analysis methods for scRNAseq data.

Results: In this study, we conducted a comprehensive evaluation of the performance of eleven differential gene

expression analysis software tools, which are designed for scRNAseq data or can be applied to them. We used

simulated and real data to evaluate the accuracy and precision of detection. Using simulated data, we investigated

the effect of sample size on the detection accuracy of the tools. Using real data, we examined the agreement among

the tools in identifying DE genes, the run time of the tools, and the biological relevance of the detected DE genes.

Conclusions: In general, agreement among the tools in calling DE genes is not high. There is a trade-off

between true-positive rates and the precision of calling DE genes. Methods with higher true positive rates

tend to show low precision due to their introducing false positives, whereas methods with high precision

show low true positive rates due to identifying few DE genes. We observed that current methods designed

for scRNAseq data do not tend to show better performance compared to methods designed for bulk RNAseq

data. Data multimodality and abundance of zero read counts are the main characteristics of scRNAseq data,

which play important roles in the performance of differential gene expression analysis methods and need to

be considered in terms of the development of new methods.
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Background

Next generation sequencing (NGS) [1] technologies

greatly promote research in genome-wide mRNA ex-

pression data. Compared with microarray technologies,

NGS provides higher resolution data and more precise

measurement of levels of transcripts for studying gene

expression. Through downstream analysis of RNA se-

quencing (RNAseq) data, gene expression levels reveal

the variability between different samples. Typically, in

RNAseq data analysis, the expression value of a gene

from one sample represents the mean of all expression

values of the bulk population of cells. Although it is

common to use expression values on such a bulk scale

in certain situations [2–4], it is not sufficient to employ

bulk RNAseq data for other biological research that in-

volves, for example, studying circulating tumor cells [5]

and stem cells. Consequently, analyzing gene expression

values on the single-cell scale provides deep insight into

the interplay between intrinsic cellular processes and

stochastic gene expression in biological and biomedical
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research [6–9]. For example, single-cell data analysis is

important in cancer studies, as differential gene expres-

sion analysis between different cells can help to uncover

driver genes [10].

Tools developed for differential gene expression ana-

lysis on bulk RNAseq data, such as DESeq [11] and

edgeR [12], can be applied to single-cell data [11–20].

Single-cell RNAseq (scRNAseq) data, however, have dif-

ferent characteristics from those of bulk RNAseq data

that require the use of a new differential expression ana-

lysis definition, beyond the conventional definition of a

nonzero difference in average expression. In scRNAseq

data, due to the tiny number and low capture efficiency

of RNA molecules in single cells [6], many transcripts

tend to be missed during the reverse transcription. As a

result, we may observe that some transcripts are highly

expressed in one cell but are missed in another cell. This

phenomenon is defined as a “drop-out” event [21]. Re-

cent studies have shown that gene expression in a single

cell is a stochastic process and that gene expression

values in different cells are heterogeneous [22, 23],

which results in multimodality in expression values in

different cells. For example, cells from the same brain

tissue or the same tumor [24] pose huge heterogeneity

from cell to cell [24–28]. Even though they are from the

same tissue, these cells are different in regard to cell

types, biological functions, and response to drugs.

Therefore, unlike bulk RNAseq data, scRNAseq data

tend to exhibit an abundance of zero counts, a compli-

cated distribution, and huge heterogeneity. Examples of

distributions of scRNAseq expression values between

two conditions are shown in Fig. 1. Consequently, the

heterogeneity within and between cell populations mani-

fests major challenges to the differential gene expression

analysis in scRNAseq data.

To address the challenges of multimodal expression

values and/or drop-out events, new strategies and

models [21, 29–37] have been proposed for scRNAseq

Fig. 1 Distributions of gene expression values of total 92 cells in two groups (ES and MEF) using real data show that scRNAseq data exhibit a

different types of multimodality (DU, DP, DM, and DB) and b large amounts of zero counts. X axis represents log-transformed expression values.

To clearly show the multimodality of scRNAseq data, zero counts are removed from the distribution plots in (a)
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data. Single-cell differential expression (SCDE) [21] and

model-based analysis of single-cell transcriptomics

(MAST) [29] use a two-part joint model to address zero

counts; one part corresponds to the normal observed

genes, and the other corresponds to the drop-out events.

Monocle2 [38] is updated from the previous Monocle

[32] and employs census counts rather than normalized

transcript counts as input to better normalize the counts

and eliminate variability in single-cell experiments. A re-

cent approach, termed scDD [39], considers four different

modality situations for gene expression value distributions

within and across biological conditions. DEsingle employs

a zero-inflated negative binomial (ZINB) regression model

to estimate the proportion of the real and drop-out zeros

and classifies the differentially expressed (DE) genes into

three categories. Recently, nonparametric methods,

SigEMD [37], EMDomics [31], and D3E [33], have been

proposed for differential gene expression analysis of

heterogeneous data. Without modeling the distribu-

tions of gene expression values and estimating their

parameters, these methods identify DE genes by

employing a distance metric between the distributions

of genes in two conditions.

A few studies have compared differential expression

analysis methods for scRNAseq data. Jaakkola et al. [40]

compared five statistical analysis methods for scRNAseq

data, three of which are for bulk RNAseq data analysis.

Miao et al. [41] evaluated 14 differential expression ana-

lysis tools, three of which are newly developed for

scRNAseq data and 11 of which are old methods for

bulk RNAseq data. A recent comparison study [42]

assessed six differential expression analysis tools, four of

which were developed for scRNAseq and two of which

were designed for bulk RNAseq. In this study, we con-

sider all differential gene expression analysis tools that

have been developed for scRNAseq data as of October

2018 (SCDE [21], MAST [29], scDD [39], D3E [33],

Monocle2 [38], SINCERA [34], DEsingle [36], and

SigEMD [37]). We also consider differential gene expres-

sion analysis tools that are designed for heterogeneous

expression data (EMDomics [31]) and are commonly

used for bulk RNAseq data (edgeR [4], DESeq2 [43]).

The goal of this study is to reveal the limitations of the

current tools and to provide insight and guidance in re-

gard to choosing a tool or developing a new one. In this

work, we discuss the computational methods used by

these tools and comprehensively evaluate and compare

the performance of the tools in terms of sensitivity, false

discover rate, and precision. We use both simulated and

real data to evaluate the performance of the above-noted

tools. To generate more realistic simulated data, we

model both multimodality and drop-out events in simu-

lated data. Using gold standard DE genes in both

simulated and real data, we evaluate the accuracy of

detecting true DE genes. In addition, we investigate the

agreement among the methods in identifying signifi-

cantly DE genes. We also evaluate the effect of sample

size on the performance of the tools, using simulated

data, and compare the runtimes of the tools, using real

data. Finally, we perform gene-set enrichment and path-

way analysis to evaluate the biological functional rele-

vance of the DE genes identified by each tool.

Methods
As of October 2018, we have identified eight software

tools for differential expression analysis of scRNAseq

data, which are designed specifically for such data [21,

29, 30, 33, 34, 36–38] (SCDE, MAST, scDD, D3E, Mon-

ocle2, SINCERA, DEsingle, and SigEMD). We also con-

sidered tools designed for bulk RNAseq data that are

widely used [4, 43] (edgeR, and DESeq2) or can apply to

multimodal data [31] (EMDomics). The general charac-

teristics of the eleven tools are provided in Table 1.

MAST, scDD, EMDomics, Monocle2, SINCERA, and

SigEMD use normalized TPM/FPKM expression values

as input, while SCDE, D3E, and DEsingle use read

counts obtained from RSEM as input. D3E runs on Py-

thon, while all other methods are developed as an R

package. In the following sections, we provide the details

of the tools.

Differential gene expression analysis methods for

scRNAseq data

Single-cell differential expression (SCDE)

SCDE [21] utilizes a mixture probabilistic model for

gene expression values. The observed read counts of

genes are modeled as a mixture of drop-out events by a

Poisson distribution and amplification components by a

negative binomial (NB) distribution:

rc � NB eð Þ for normal amplified genes
rc � Possion λ0ð Þ for drop−out genes

�

;

where e is the expected expression value in cells when

the gene is amplified, and λ0 is always set to 0.1. The

posterior probability of a gene expressed at level x in cell

c based on observed rc and the fitted model Ωc is calcu-

lated by:

p xjrc;Ωcð Þ ¼ pd xð ÞpPossion xjrcð Þ þ 1−pd xð Þð ÞpNB xjrcð Þ;

where pd is the probability of a drop-out event in cell c

for a gene expressed at an average level x, and ppoisson(x|

rc) and pNB(x|rc) are the probabilities of observing ex-

pression value rc in the cases of drop-out (Poisson) and

successful amplification (NB) of a gene expressed at level

x in cell c, respectively. Then, after the bootstrap step,

the posterior probability of a gene expressed at level x in
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a subpopulation of cells S is determined as an expected

value:

ps xð Þ ¼ E
Y

c∈B
p xjrc;Ωcð Þ

h i

;

where B is the bootstrap samples of S. Based on the pos-

terior probabilities of gene expression values in cells S

and G, pS(x) and pG(x), SCDE uses a fold expression dif-

ference f in gene g for the differential expression analysis

between subgroups S and G, which is determined as:

p fð Þ ¼
X

x∈X
pS xð ÞpG xð Þ;

where X is the expression range of the gene g. An empir-

ical p-value is determined to test the differential

expression.

Model-based analysis of single-cell transcriptomics (MAST)

MAST [29] proposes a two-part generalized linear

model for differential expression analysis of scRNAseq

data. One part models the rate of expression level, using

logistic regression:

logit p Zig ¼ 1
� �� �

¼ X iβ
D
g ;

where Z = [Zig] indicates whether gene g is expressed in

cell i.

The other part models the positive expression mean,

using a Gaussian linear model:

p Y ig ¼ yjZig ¼ 1
� �

¼ N X iβ
C
g ; σ

2
g

� �

;

where Y = [yig] is the expression level of gene g in cell i

observed Zig = 1. The cellular detection rate (CDR) for

each cell, defined as CDRi = (1/N)∑g = 1Zig (N is the total

number of genes), is introduced as a column in the de-

sign matrix Xi of the logistic regression model and the

Gaussian linear model. For the differential expression

analysis, a test with asymptotic chi-square null distribu-

tion is utilized, and a false discovery rate (FDR) adjust-

ment control [44] is used to decide whether a gene is

differentially expressed.

Bayesian modeling framework (scDD)

scDD [39] employs a Bayesian modeling framework to

identify genes with differential distributions and to clas-

sify them into four situations: 1—differential unimodal

(DU), 2—differential modality (DM), 3—differential pro-

portion (DP), and 4—both DM and DU (DB), as shown

in Additional file 1: Figure S1. The DU situation is one

in which each distribution is unimodal but the distribu-

tions across the two conditions have different means.

The DP situation involves genes with expression values

that are bimodally distributed. The bimodal distribution

of gene expression values in each condition has two

modes with different proportions, but the two modes

across the two conditions are the same. DM and DB sit-

uations both include genes whose expression values

Table 1 Software tools for identifying DE genes using scRNAseq data

Tool Prog.
Language

Input format Model Year/ version URL

SCDE R Read counts Poisson and negative binomial
model

2014/2.2.0 http://bioconductor.org/packages/release/bioc/html/
scde.html

MAST R TPM/FPKM Generalized linear model 2015/1.0.5 http://bioconductor.org/packages/release/bioc/html/
MAST.html

scDD R TPM/FPKM Conjugate Dirichlet process mixture 2016/0.99.0 http://bioconductor.org/packages/devel/bioc/html/
scDD.html

EMDomics R TPM/FPKM Non-parametric earth mover’s
distance

2016/2.4.0 https://www.bioconductor.org/packages/release/
bioc/html/EMDomics.html

D3E Python Read counts Cramér-von Mises test, Kolmogorov-
Smirnov test, likelihood ratio test

2016/ https://github.com/hemberg-lab/D3E

Monocle2 R TPM/FPKM Generalized additive model 2014/2.2.0 http://bioconductor.org/packages/release/bioc/html/
monocle.html

SINCERA R TPM/FPKM/Read
counts

Welch’s t-test and Wilcoxon rank sum
test

2015/ https://research.cchmc.org/pbge/sincera.html

edgeR R Read counts Negative binomial model, Exact test 2010/3.16.5 http://bioconductor.org/packages/release/bioc/html/
edgeR.html

DESeq2 R Read counts Negative binomial model, Exact test 2014/1.14.1 http://bioconductor.org/packages/release/bioc/html/
DESeq2.html

DEsingle R Read counts Zero inflated negative binomial 2018/1.2.0 https://bioconductor.org/packages/release/bioc/
html/DEsingle.html

SigEMD R TPM/FPKM Non-parametric earth mover’s
distance

2018/0.21.1 https://github.com/NabaviLab/SigEMD
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follow a unimodal distribution in one condition but a bi-

modal distribution in the other condition. The difference

is that, in the DM situation, one of the modes of the bi-

modal distribution is equal to the mode of the unimodal

distribution, whereas in the DB situation, there is no

common mode across the two distributions.

Let Yg be the expression value of gene g in a collection

of cells. The non-zero expression values of gene g are

modeled as a conjugate Dirichlet process mixture

(DPM) model of normals, and the zero expression values

of gene g are modeled using logistic regression as a sep-

arate distributional component:

nonzero Y g � conjugate DPM of normals
zero Y g � logistic regression

�

For detecting the DE genes, a Bayes factor for gene g

is determined as:

BFg ¼
f Y g jMDD

� �

f Y g jMED

� � ;

where f(Yg|MDD) is the predictive distribution of the ob-

served expression value from gene g under a given hy-

pothesis, MDD denotes the differential distribution

hypothesis, and MED denotes the equivalent distribution

hypothesis that ignores conditions. As there is no solu-

tion for the Bayes factor BFg, a closed form is calculated

to present the evidence of whether a gene is differen-

tially expressed:

Scoreg ¼ log
f Y g ;Zg jMDD

� �

f Y g ;Zg jMED

� �

¼ log
f C1 YC1

g ;ZC1
g

� �

f C2Y
C2
g ;ZC2

g

� �

f C1;C2 Y g ;Zg

� � ;

where Zg is the vector of the mean and the variance for

gene g, and C1 and C2 represent the two conditions.

EMDomics

EMDomics [31], a nonparametric method based on Earth

Mover’s Distance (EMD), is proposed to reflect the overall

difference between two normalized distributions by

computing the EMD score for each gene and determining

the estimation of FDRs. Suppose P = {(p1,wp1)

,(p2,wp2)…(pm,wpm)} and Q= {(q1,wq1),(q2,wq2)… (qn,wqn)}

are two signatures, where pi and qj are the centers of each

histogram bin, and wpi and wqj are the weights of each

histogram bin. The COST is defined as the summation of

the multiplication of flow fij and the distance dij:

COST P;Q; Fð Þ ¼
Xm

i¼1

Xn

j¼1
f ijdij;

where dij is the Euclidean distance between pi and qj,

and fij is the amount of weight that need to be moved

between pi and qj. An optimization algorithm is used to

find a flow F = [fij] between pi and qj to minimize the

COST. After that, the EMD score is calculated as the

normalized minimum COST.

EMD P;Qð Þ ¼

Pm
i¼1

Pn
j¼1 f ijdij

Pm
i¼1

Pn
j¼1 f ij

A q-value, based on the permutations of FDRs, is in-

troduced to describe the significance of the score for

each gene.

Monocle2

Monocle2 [38] is an updated version of Monocle [32], a

computational method used for cell type identification,

differential expression analysis, and cell ordering. Mon-

ocle applies a generalized additive model, which is a gen-

eralized linear method with linear predictors that

depend on some smoothing functions. The model relates

a univariate response variable Y, which belongs to the

exponential family, to some predictor variables, as

follows:

h E Yð Þð Þ ¼ β0 þ f 1 x1ð Þ þ f 2 x2ð Þ þ…þ f m xmð Þ;

where h is the link function, such as identity or log func-

tion, Y is the gene expression level, xi is the predictor

variable that expresses the cell categorical label, and fi is

a nonparametric function, such as cubic splines or some

other smoothing functions. Specifically, the gene expres-

sion level Y is modeled using a Tobit model:

Y ¼
Y � if Y �

> λ

λ if Y �
≤λ

�

;

where Y* is a latent variable that corresponds to pre-

dictor x, and λ is the detection threshold. For identifying

DE genes, we use an approximate chi-square (χ2) likeli-

hood ratio test.

In Monocle2, a census algorithm is used to estimate

the relative transcript counts, which leads to an im-

provement of the accuracy compared with using the nor-

malized read counts, such as TPM values.

Discrete distributional differential expression (D3E)

D3E [33] consists of four steps: 1—data filtering and

normalization, 2—comparing distributions of gene ex-

pression values for DE genes analysis, 3—fitting a

Poisson-Beta model, and 4—calculating the changes in

parameters between paired samples for each gene. For

the normalization, D3E uses the same algorithm as used

by DESeq2 [11] and filters genes that are not expressed

in any cell. Then, the non-parametric Cramer-von Mises

test or the Kolmogorov-Smirnov test is used to compare

the expression values’ distributions of each gene for
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identifying the DE genes. Alternatively, a parametric

method, the likelihood ratio test, can be utilized after fit-

ting a Poisson-Beta model:

PB njα; β; γ; λð Þ ¼ Poisson nj
γx

λ

� �

⋀
x
Beta xjα; βð Þ

¼

γne−
γ

λΓ
α

λ
þ
β

λ

� �

λnΓ nþ 1ð ÞΓ
α

λ
þ
β

λ
þ n

� �

Γ
α

λ

� �

Φ
α

λ
;
α

λ
þ
β

λ
þ n;

γ

λ

� �

;

where n is the number of transcripts of a particular

gene, α is the rate of promoter activation, β is the rate of

promoter inactivation, γ is the rate of transcription when

the promoter is in the active state, λ is the transcript

degradation rate, and x is the auxiliary variable. The pa-

rameters α, β, and γ can be estimated by moments

matching or Bayesian inference method, but λ should be

known and assumed to be constant.

SINCERA

SINCERA [34] is a computational pipeline for single cell

downstream analysis that enables pre-processing,

normalization, cell type identification, differential ex-

pression analysis, gene signature prediction, and key

transcription factors identification. SINCERA calculates

the p-value for each gene from two groups based on a

statistical test to identify the DE genes. It provides two

methods: one-tailed Welch’s t-test for genes, assuming

they are from two independent normal distributions,

and the Wilcoxon rank sum test for small sample sizes.

Last, the FDRs are adjusted, using the Benjamini and

Hochberg method [44].

edgeR

edgeR [4] is a negative binomial model-based method to

determine DE genes. It uses a weighted trimmed mean

of the log expression ratios to normalize the sequencing

depth and gene length between the samples. Then, the

expression data are used to fit a negative binomial

model, whereby the mean μ and variance ν have a rela-

tionship of ν = μ + αμ2, and α is the dispersion factor.

To estimate the dispersion factor, edgeR combines a

common dispersion across all the genes, estimated by a

likelihood function, and a gene-specific dispersion, esti-

mated by the empirical Bayes method. Last, an exact test

with FDR control is used to determine DE genes.

DESeq2

DESeq2 [43] is an advanced version of DESeq [11],

which is also based on the negative binomial distribu-

tion. Compared with the DESeq, which uses a fixed

normalization factor, the new version of DESeq2 allows

the use of a gene-specific shrinkage estimation for

dispersions. When estimating the dispersion, DESeq2

uses all of the genes with a similar average expression.

The fold-change estimation is also employed to avoid

identifying genes with small average expression values.

DEsingle

DEsingle [36] utilizes a ZINB regression model to esti-

mate the proportion of the real and drop-out zeros in

the observed expression data. The expression values of

each gene in each population of cells are estimated by a

ZINB model. The probability mass function (PMF) of

the ZINB model for read counts of gene g in a group of

cells is:

P N g ¼ njθ; r; p
� �

¼ θ∙I n ¼ 0ð Þ þ 1−θð Þ∙ f NB r; pð Þ

¼ θ∙I n ¼ 0ð Þ þ 1−θð Þ∙
nþ r−1

n

� �

pn 1−pð Þr
;

where θ is the proportion of constant zeros of gene g in

the group of cells, I(n = 0) is an indicator function, fNB is

the PMF of the NB distribution, r is the size parameter

and p is the probability parameter of the NB distribu-

tion. By testing the parameters (θ, r, and p) of two ZINB

models for the two different groups of cells, the method

can classify the DE genes into three categories: 1—differ-

ent expression status (DEs), 2—differential expression

abundance (DEa), and 3—general differential expression

(DEg). DEs represents genes that they show significant

different proportion of cells with real zeros in different

groups (i.e. θs are significantly different) but the expres-

sion of these genes in the remaining cells show no

significance (i.e. r, and p show no significance). DEa rep-

resents genes that they show no significance in the pro-

portion of real zeros, but show significant differential

expression in remaining cells. DEg represents genes that

they not only have significant difference in the propor-

tion of real zeros, but also significantly expressed differ-

entially in the remaining cells.

SigEMD

SigEMD [37] employs logistic regression to identify the

genes that their zero counts significantly affect the distri-

bution of expression values; and employs Lasso regres-

sion to impute the zero counts of the identified genes.

Then, for these identified genes, SigEMD employs EMD,

similar to EMDomics, for differential analysis of expres-

sion values’ distributions including the zero values; while

for the remaining genes, it employs EMD for differential

analysis of expression values’ distributions ignoring the

zero values. The regression model and data imputation

declines the impact of large amounts of zero counts, and

EMD enhances the sensitivity of detecting DE genes

from multimodal scRNAseq data.
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Datasets

In this work, we used both simulated and real data to

evaluate the performance of the differential expression

analysis tools.

Simulated data

As we do not know exactly the true DE genes in real

single-cell data, we used simulated data to compute the

sensitivities and specificities of the eleven methods. Data

heterogeneity (multimodality) and sparsity (large num-

ber of zero counts), which are the main characteristics

of scRNAseq data, are modeled in simulated data. First,

we generated 10 datasets, including simulated read

counts in the form of log-transformed counts, across a

two-condition problem by employing a simulation func-

tion from the scDD package [30] in R programing lan-

guage [45]. For each condition, there were 75 single cells

with 20,000 genes in each cell. Among the total 20,000

genes, 2000 genes were simulated with differential distri-

butions, and 18,000 genes were simulated as non-DE

genes. The 2000 DE genes were equally divided into four

groups, corresponding to the DU, DP, DM, and DB sce-

narios (Additional file 1: Figure S1). Examples of these

four situations from the real data are shown in Fig. 1a.

From the 18,000 non-DE genes, 9000 genes were gener-

ated, using a unimodal NB distribution (EE scenario),

and the other 9000 genes were simulated using a bi-

modal distribution (EP scenario). All of the non-DE

genes had the same mode across the two conditions.

Then, we simulated drop-out events by introducing large

numbers of zero counts. To introduce zero counts, first,

we built the cumulative distribution function (CDF) of

the percentage of zeros of each gene, using the real data,

FX(x). Then, in the simulated data for each gene, we ran-

domly selected c (c~ FX(x)) cells from the total cells for

half of the genes in each scenario and forced their ex-

pression values to zero (10,000 genes in total). Thus, the

CDF of the percentage of zeros of each gene is similar

between the simulated and real data (Additional file 1:

Figure S2). This way, the distribution of the total counts

in the simulated data is more similar to real data, which

enables us to assess the true positives (TPs) and false

positives (FPs) more accurately.

Real data

We used the real scRNAseq dataset provided by Islam et

al. [46] as the positive control dataset to compute TP

rates. The datasets consist of 22,928 genes from 48 mouse

embryonic stem cells and 44 mouse embryonic fibroblasts.

The count matrix is available in the Gene Expression

Omnibus (GEO) database with Accession No. GSE29087.

To assess TPs, we used the already-published top 1000

DE genes that are validated through qRT-PCR experi-

ments [47] as a gold standard gene set [21, 40, 42].

We also used the dataset from Grün et al. [48] as the

negative control dataset to assess FPs. We retrieved 80

pool-and-split samples that were obtained under the

same condition from the GEO database with Accession

No. GSE54695. By employing random sampling from

the 80 samples, we generated 10 datasets to obtain the

statistical characteristics of the results. For each gener-

ated dataset, we randomly selected 40 out of the 80 cells

as one group and considered the remaining 40 cells as

the other group [42]. Because all of the samples are

under the same condition, there should be no DE genes

in these 10 datasets.

In the preprocessing of the real datasets, we filtered

out genes that are not expressed in all cells (zero read

counts across all cells), and we used log-transformed

transcript per millions (TPM) values as the input.

Results

Accuracy of identification of DE genes

Results from simulated data

We used simulated data to compute true sensitivities

and precision of the tools for detecting DE genes. The

receiver operating characteristic (ROC) curves, using the

simulated data, are shown in Fig. 2. As can be seen in

the figure, the tools show comparable areas-under-the--

curve (AUC) values.

The average true positive rates (TPRs, sensitivities),

false positive rates (FPRs), precision, accuracy, and F1

score of the tools under the adjusted p-value of 0.05 are

given in Table 2. We defined TPs as the truly called DE

genes, and FPs as the genes that were called significant

but were not true DE genes. Similarly, true negatives

(TNs) were defined as genes that were not true DE and

were not called significant, and false negatives (FNs)

Fig. 2 ROC curves for the eleven differential gene expression analysis

tools using simulated data
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were defined as genes that were true DE but were not

called significant. We computed TPRs as the number of

TPs over the 2000 ground-truth DE genes, FPRs as the

number of FPs genes over the 18,000 genes that are not

differentially expressed, precision as the number of TPs

over all of the detected DE genes, and accuracy as the

sum of TPs and TNs over all of the 20,000 genes.

As seen in Table 2, Monocle2 identified the greatest

number of true DE genes but also introduced the great-

est number of false DE genes, which results in a low

identification accuracy, at 0.824. The nonparametric

methods, EMDomics and D3E, identified more true DE

genes compared to parametric methods (2465.8 and

1683.4 true DE genes, respectively). They also, however,

introduced many FPs, resulting in lower accuracies (0.91

and 0.929, respectively) than did parametric methods. In

contrast, tools with higher precisions, larger than 0.9

(MAST, SCDE, edgeR, and SINCERA), introduce lower

numbers of FPs but identify lower numbers of TPs.

Interestingly, F1 scores show that DESeq2 and edgeR,

which are designed for traditional bulk RNAseq data, do

not show poor performance compared to the tools that

are designed for scRNAseq data. DEsingle and SigEMD

performed the best in terms of accuracy and F1 score

since they identified high TPs and did not introduce

many FPs.

A bar plot of true detection rates of the eleven tools

under the four scenarios for DE genes (i.e., DU, DM, DP,

and DB) and the two scenarios for non-DE genes (i.e.,

EP and EE), are shown in Fig. 3. As shown in the figure,

all of the methods could achieve a TPR near to or larger

than 0.5 for the DU and DM scenarios, where there is

no multimodality (DU scenario) or the level of multi-

modality is low (DM scenario). For scenarios with a high

level of multimodality (DP and DB), however, some of

the tools, except EMDomics, Monocle2, DESeq2, D3E,

DEsingle, and SigEMD, perform poorly. In the DP sce-

nario, only EMDomics and Monocle2 exhibited TPRs

larger than 0.5, and SCDE fails for this multimodal sce-

nario. Similarly, for the DB scenario, Monocle2, DESeq2,

and DEsingle have a TPR larger than 0.5; however,

MAST and SINCERA completely fail. SigEMD exhibited

a TPR around 0.5 for both DP and DB scenarios. DEsin-

gle performed the best for the DB scenario but exhibited

a low TPR for the DP scenario. We showed the TPRs

and true negative rates, using the simulated data with

and without large numbers of zeros separately in

Additional file 1: Figures S3 and S4. All of the tools have

a better performance for the four scenarios when there

are not large numbers of zero counts. We also showed

the ROC curve for the data with and without large num-

bers of zeros in Additional file 1: Figures S5 and S6.

It is important to notice that, even though simulated

data contain multimodality and zero counts, they cannot

capture the real multimodality and zero count behaviors

of real data. Therefore, as seen in the following, we eval-

uated the detection accuracy of detecting DE genes,

using real data.

Results from positive control real data

We used the positive control real dataset to evaluate the

accuracy of the identification of DE genes. We employed

the validated 1000 genes as a gold standard gene set. We

defined true detected DE genes as DE genes that are

called by the tools and are among the 1000 gold stand-

ard DE genes. The number of detected DE genes and

the number of true detected DE genes over the 1000

gold standard genes (defined as sensitivity) for each tool,

using an FDR or adjusted p-value of 0.05, are given in

Table 3.

The tools can be ranked in three levels based on their

sensitivities: Monocle2, EMDomics, SINCERA, D3E, and

Table 2 Numbers of the detected DE genes, sensitivities, false positive rates, precisions, and accuracies of the nine tools using

simulated data for an adjusted p-value or FDR of 0.05

Number of detected DE genes Sensitivity
( TP
TPþFN

)
False positive rate
( FP
FPþTN

)
Precision
( TP
TPþFP

)
Accuracy
(TPþTN
PþN

)
F1 score
( 2TP
2TPþFPþFN

)

Monocle2 4664.6 0.785 0.172 0.337 0.824 0.472

EMDomics 2465.8 0.666 0.063 0.540 0.910 0.596

DESeq2 2182.6 0.739 0.039 0.677 0.939 0.707

D3E 1683.4 0.565 0.031 0.671 0.929 0.613

scDD 1155.8 0.505 0.008 0.875 0.943 0.640

MAST 954.4 0.470 0.001 0.986 0.946 0.637

edgeR 1161.2 0.557 0.003 0.959 0.953 0.705

SCDE 842 0.419 0.0003 0.994 0.942 0.590

SINCERA 633.6 0.312 0.001 0.984 0.931 0.474

DEsingle 1448.8 0.697 0.003 0.962 0.967 0.808

SigEMD 1456 0.682 0.005 0.937 0.964 0.790
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DEsingle rank in the first level, with sensitivities more

than 0.7; edgeR, DESeq2, and SigEMD rank in the sec-

ond level, with sensitivities between 0.4 and 0.7; and

SCDE, scDD, and MAST rank in the third level with

sensitivities below 0.4. The methods that show better

sensitivities, however, also called more than 7000 genes

as significantly DE genes. In Fig. 4, the blue bars show

the intersection between the gold standard genes and

the DE genes called by the methods (true detected DE

genes), whereas the yellow bars show the number of sig-

nificantly DE genes that are not among the gold stand-

ard genes.

We need to note that we do not have all of the true

positive DE genes for the positive control dataset. The

1000 gold standard genes are a subset of DE genes from

the dataset that are validated through qRT-PCR experi-

ments [47]. In addition, the datasets that we used in this

study have been generated under similar conditions as

those of the positive control datasets; however, they are

not from the same assay and experiment. Therefore, the

results we present here provide information about sensi-

tivities to some degree.

Results in negative control real data

Because all of the real true DE genes in the positive con-

trol real dataset are unknown, we can test only the TPs,

using the 1000 gold standard genes but not the FPs. To

validate the FPs, we applied the methods to 10 datasets

with two groups, randomly sampled from the negative

control real dataset. Because cells in the two groups are

from the same condition, we expect the methods to not

identify any DE gene. Using an FDR or adjusted p-value

of 0.05, MAST, SCDE, edgeR, and SINCERA did not call

any gene as a DE gene, as we expected, whereas DEsin-

gle, scDD, DESeq2, SigEMD, D3E, EMDomics, and

Monocle2 identified 4, 5, 19, 50, 160, 733, and 917 sig-

nificantly DE genes, respectively, out of 7277 genes in

Fig. 3 True detection rates for different scenarios of DE genes and non-DE genes using simulated data. a true positive rates for DE genes under

DU, DP, DM, DB scenarios b true negative genes for non-DE genes under EP and EE scenarios

Table 3 Number of detected DE genes, and sensitivities of the

eleven tools using positive control real data for an adjusted

p-value or FDR of 0.05

Number of detected
DE genes

Sensitivity (TP/1000
gold standard)

Monocle2 8674 0.765

EMDomics 8437 0.762

DESeq2 7612 0.695

D3E 8401 0.722

scDD 2638 0.351

MAST 734 0.198

edgeR 4447 0.58

SCDE 2414 0.392

SINCERA 8366 0.73

DEsingle 9031 0.797

SigEMD 3702 0.488

Fig. 4 Tools’ total numbers of detected significantly DE genes with

the p-value or FDR threshold of 0.05 and their overlaps with the

1000 gold standard genes
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average over the 10 datasets. The number of detected

DE genes and FPRs are shown in Table 4. EMDomics

and Monocle2, which show the best sensitivities, using

the positive control datasets, introduce the most FPs.

Agreement among the methods in identifying DE genes

In general, agreement among all of the tools is very low.

Considering the top 1000 DE genes detected by the

eleven tools in the positive control real data, there are

only 92 common DE genes across all of the tools. Of

these 92 DE genes, only 41 intersect with the gold stand-

ard 1000 DE genes.

We investigated how much the tools agreed with each

other on identifying DE genes by examining the number

of identified DE genes that were common across a pair

of tools, which we called common DE genes. First, we

ranked genes by their adjusted p-values or FDRs, and

then we selected the top 1000 DE genes. We defined

pairwise agreement as the number of common DE genes

identified by a pair of tools. The numbers of common

DE genes between pairs of tools are between 770 and

1753 for simulated data (Additional file 1: Figure S7),

and 142 and 856 for real data (Fig. 5). We observed that

the methods do not have high pairwise agreement in ei-

ther the simulated data or the real data.

In addition, we used significantly DE genes under a

p-value or FDR threshold of 0.05 to investigate the pair-

wise agreement among the tools. The pairwise agree-

ment varies from 432 to 7934 for the real data (Fig. 6)

and from 444.8 to 1878 for the simulated data (Add-

itional file 1: Figure S8). In the real data, MAST identi-

fied fewer significantly DE genes under the 0.05 cut-off

adjusted p-value, but the majority of its significantly DE

genes overlapped with the significantly DE genes from

other tools.

Effect of sample size

We investigated the effect of sample size on detecting

DE genes in terms of TPR, FPR, precision, and accuracy,

using the simulated data. Precision was defined as TP/

(TP + FP) and accuracy as (TP + TN)/(TP + TN + FP +

FN). We generated eight cases: 10 cells, 30 cells, 50 cells,

75 cells, 100 cells, 200 cells, 300 cells, and 400 cells for

each condition. We noticed that the number of identi-

fied DE genes and the TPRs of detection under a default

FDR or adjusted p-value (< 0.05) tend to increase when

the sample size increases from 10 to 400 (Fig. 7) for all

tools.

The results show that sample size is very important, as

the tools’ precision increases significantly by increasing

the sample size from 10 to 75. The FPRs tend to be steady

when the sample size is > 75, except for DEsingle. DEsin-

gle works well for a large number of zero counts in a lar-

ger dataset. These results also show that Monocle2,

EMDomics, DESeq2, DEsingle, and SigEMD can achieve

TPRs near 100% by increasing the sample size, while the

other methods cannot. Monocle2, EMDomics, DESeq2,

and D3E, however, introduce FPs (FPR > 0.05%), whereas

FPRs for other methods are very low (close to zero). All of

the tools similarly perform poorly for a sample size of <

30. When the sample size exceeded 75 in each condition,

the tools achieved better accuracy in detection.

Enrichment analysis of real data

To examine whether the identified DE genes are mean-

ingful to biological processes, we conducted gene set en-

richment analysis through the “Investigate Gene Sets”

function of the web-based GSEA software tool (http://

www.broadinstitute.org/gsea/msigdb/annotate.js). We in-

vestigated the KEGG GENES database (KEGG; contains

186 gene sets) from the Molecular Signatures Database

(MSigDB) for the gene set enrichment analysis (FDR

threshold of 0.05). We used the same number of identi-

fied DE genes (top n = 300 genes) of each tool as the in-

put for KEGG pathway enrichment analysis. The results

are shown in Table 5. We observed that the 300

top-ranked DE genes identified by nonparametric

methods (EMDomics and D3E) were enriched for more

KEGG pathways compared to other methods. We also

used a box plot to compare the FDRs of the top 10 most

significant gene sets enriched by the top-ranked DE

genes from the tools (Additional file 1: Figure S9). It

can be observed that pathways enriched by the

top-ranked DE genes from edgeR and Monocle2 have

the highest strength. The 10 top-ranked KEGG path-

ways for the eleven tools are listed in Additional file

1: Tables S1 to S11.

We also used DAVID (https://david.ncifcrf.gov/sum-

mary.jsp) for the Gene Ontology Process enrichment

analysis of the 300 top-ranked DE genes identified by

Table 4 Number of the detected DE genes and false positive

rates of the eleven tools using negative control real data for an

adjusted p-value or FDR of 0.05

Number of detected
DE genes

False positive rate
(FP/FP + TN)

Monocle2 917 0.126

EMDomics 733 0.101

DESeq2 19 0.003

D3E 160 0.022

scDD 5 0.0007

MAST 0 0

edgeR 0 0

SCDE 0 0

SINCERA 0 0

DEsingle 4 0.0005

SigEMD 50 0.007
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Fig. 5 Numbers of pairwise common DE genes tested by top 1000 genes in real data

Fig. 6 Numbers of pairwise common DE genes tested by adjusted p-value< 0.05 in real data
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each tool. The numbers of gene ontology (GO) terms

under a cutoff FDR of 0.05 are shown in Table 5. Top

DE genes identified by EMDomics, D3E, Monocle, and

DESeq2 are enriched in more KEGG pathways and/or

GO terms compared to those of other tools.

Finally, although the quantitative values of terms re-

covered from gene set enrichment analysis is inform-

ative with regard to the relative statistical power of

calling biologically meaningful genes of these tools, very

different gene lists can result in very similar quantita-

tive performance values. To perform a qualitative as-

sessment of the biological relevance of the differentially

expressed gene lists recovered by each tool, we ranked

the performance of each tool in recovering stem

cell-relevant GO terms from the 300 top-ranked DE

genes. Each gene list was subjected to gene set enrich-

ment against the Biological Process portion of the Gene

Ontology Process, and all significant enriched terms

were recovered. The results of the Gene Ontology

Process enrichment analysis of the 300 top-ranked DE

genes and the list of the 300 top-ranked genes for each

tool are given in Additional file 2. Significant GO terms

with their negative log transform of their q-values for

each tool are given in Additional file 3. To consolidate

closely related processes recovered in this step, we sub-

jected each list of GO terms to word and phrase signifi-

cance analysis, using world cloud analysis, whereby

negative log transform q-values are considered as

frequencies in this analysis. The phrase significance of

Fig. 7 Effect of sample size (number of cells) on detecting DE genes. The sample size is in horizontal axis, from 10 to 400 cells in each condition.

Effect of sample size on a TPR, b FPR, c accuracy (=(TP + TN)/(TP + FP + TN + FN)), and precision (=TP/(TP + FP)). A threshold of 0.05 is used for

FDR or adjusted p-value

Table 5 Number of KEGG gene sets and GO terms enriched

by the top 300 DE genes identified by each tool under an FDR

threshold of 0.05

Methods KEGG GO Term

EMDomics 53 19

MAST 10 5

D3E 49 10

SCDE 21 9

Monocle2 42 24

SINCERA 39 16

scDD 26 1

DESeq2 39 19

edgeR 39 17

SigEMD 23 15

DEsingle 41 21
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each tool, in the form of word clouds, is shown in

Additional file 1: Figures S10–S20, and the word signifi-

cance, in the form of word clouds, is shown in

Additional file 1: Figures S21–S31. In these plots, the

font size represents the significance of the word/phrase.

This provides a readily interpretable visualization of the

biologically relevant GO terms.

Several stem cell biologists were then asked to rank the

performance of each algorithm in terms of its ability to re-

cover the GO terms most relevant to the experiment that

provides the real dataset used in this study. Each algorithm

was scored on a 1–3 scale, with 3 as the best recovery of

biologically relevant terms and phrases; then, the scores for

terms and phrases were added to give an overall perform-

ance score from 2 to 6 (Table 6). As expected, many of these

tools recovered, at high significance, several terms strongly

related to stem cell biology, including development, differen-

tiation, morphogenesis, multicellular, and adhesion as well

as many others. Interestingly, scDD and SCDE failed to re-

cover stem cell-relevant terms at high significance. Instead,

these approaches appeared to yield terms and phrases re-

lated to cellular housekeeping processes. Monocle2 and

MAST performed the best at recovering stem cell-relevant

terms. Following them, EMDomics, DESeq2, D3E, DEsingle,

SigEMD, edgeR, SINCERA all performed well. This result

strongly suggests not only that the methods used for identi-

fying DE genes may yield non-overlapping and quantitatively

different gene sets but that some methods are much better

at extracting biologically relevant gene sets from the data.

Runtimes

We compared the runtimes of the eleven tools (Table 7). Ex-

cept for D3E, which was implemented in Python, all of the

tools were implemented in R (Table 1). The runtime was

computed using a personal computer, iMac with 3.1GHz

CPU and up to 8 gigabytes of memory. The average runtime

(of 10 times) of each tool, using the positive control dataset,

is shown in Table 7. SINCERA has the lowest time cost be-

cause it employs a simple t-test. edgeR has the lowest time

cost among the model-based and nonparametric methods.

MAST, Monocle2, and DESeq2 run fast (less than 5min), as

MAST and Monocle2 use linear regression methods, and

DESeq2 uses a binomial model for identifying DE genes.

scDD takes longer, as it needs time to classify DE genes into

different modalities. The nonparametric method, SigEMD,

EMDomics and D3E, take more time compared to the

model-based methods because they need to compute the

distance between two distributions for each gene. We note

that D3E had two running modes: It takes about 40min

when running under the simple mode and about 30 h when

running under the more accurate mode.

Discussion

As shown in Fig. 1, scRNAseq expression data are multi-

modal, with a high number of zero counts that make dif-

ferential expression analysis challenging. In this study, we

conducted a comprehensive evaluation of the performance

of eleven software tools for single cell differential gene ex-

pression analysis: SCDE, MAST, scDD, EMDomics, D3E,

Monocle2, SINCERA, edgeR, DESeq2, DEsingle, and

SigEMD. Using simulated data and real scRNAseq data,

we compared the accuracy of the tools in identifying DE

genes, agreement among the tools in detecting DE genes,

and time consumption of the tools. We also examined the

enrichment of the identified DE genes by running pathway

analysis and GO analysis for the real data.

Detection accuracy

In general, the eleven methods behave differently in

terms of calling true significantly DE genes. The tools

that show higher sensitivity also show lower precision.

Among all of the tools, DEsingle and SigEMD, which are

designed for the scRNAseq, tend to show a better

trade-off between TPRs and precision.

Table 6 Scores from word and phrase significance analysis of

each tool to recover biologically relevant terms and phrases

Methods Score (phrase) Score (word) Overall score (word+phrase)

Monocle2 3 3 6

MAST 3 3 6

DESeq2 2 3 5

D3E 2 3 5

DEsingle 2 3 5

SigEMD 3 2 5

EMDomics 2 2 4

edgeR 2 2 4

SINCERA 2 2 4

SCDE 1 1 2

scDD 1 1 2

Table 7 Average runtime of identifying DE genes in real data

by each tool

Methods Platform Time consumption in minutes

DESeq2 R 4.2

edgeR R 0.41

scDD R 85.13

EMDomics R 14.64

MAST R 1.47

D3E Python 38.43

Monocle2 R 2.6

SCDE R 10.39

SINCERA R 0.3

DEsingle R 14.97

SigEMD R 14.86

Wang et al. BMC Bioinformatics           (2019) 20:40 Page 13 of 16



All of the tools perform well when there is no multi-

modality or low levels of multimodality. They all also per-

form better when the sparsity (zero counts) is less. For

data with a high level of multimodality, methods that con-

sider the behavior of each individual gene, such as

DESeq2, EMDomics, Monocle2, DEsingle, and SigEMD,

show better TPRs. This is because EMDomics and

SigEMD use a nonparametric method to compute the dis-

tance between two distributions and can capture the mul-

timodality; DEsingle models dropout events well by using

a zero inflated negative model to estimate the proportion

of real and drop-out zeros in the expression value; Mon-

ocle2 uses a census algorithm to estimate the relative tran-

script counts for each gene instead of using normalized

read counts, such as TPM values; and DESeq2 uses a

gene-specific shrinkage estimation for the dispersions par-

ameter to fit a negative binomial model to the read counts.

If the level of multimodality is low, however, SCDE,

MAST, and edgeR can provide higher precision.

Agreement among the methods

The overall agreement in terms of finding DE genes

among all of the tools is low. We used the top 1000 DE

genes identified by the eleven tools (ranked by p-values)

and significantly DE genes with a significant threshold of

0.05 to identify the common DE genes across the tools

and between pairs of tools. The DE genes identified by

DESeq2, EMDomics, D3E, Monocle2, SINCERA, DEsin-

gle, and SigEMD show higher pairwise agreement,

whereas the model-based methods, SCDE and scDD,

show less pairwise agreement within other tools. No sin-

gle tool is clearly superior for identifying DE genes,

using single cell sequencing datasets. The tools use dif-

ferent methods with different strengths and limitations

for calling DE genes. The sequencing data also are very

noisy. The methods treat zero counts, multimodality,

and noise differently, resulting in low agreement among

them. Some tools work well when the drop-out event is

not significant and some, when data multimodality is

not significant. For instance, scDD aims at characterizing

different patterns of differential distributions; however,

handling a large number of zero counts in the expres-

sion values is a challenging task for this tool.

Sample size effect

All of the tools perform better when there are more

samples in each condition. TPRs improve significantly

by increasing sample size from 10 to 75, but they slow

down for sample sizes greater than 100; and for sample

sizes of 300 and larger, there are almost no changes in

TPRs and FPRs. Monocle2, EMDomics, DESeq2, DEsin-

gle, and SigEMD can achieve a TPR close to 100% by in-

creasing the sample size. DEsingle works well for a

larger number of zero counts or small number of

samples. When the number of zero counts is low and

the number of samples is large, its model cannot capture

the dropout event well.

Enrichment analysis

As expected, top-ranked DE genes of many of these

tools are enriched for GO terms strongly related to stem

cell biology. scDD and SCDE, however, failed to recover

stem cell-relevant terms at high significance. Instead,

they appeared to yield GO terms related to cellular

housekeeping processes. This result suggests that

model-based single cell DE analysis methods that do not

consider multimodality do not perform well in extract-

ing biologically relevant gene sets from the data.

Conclusion

In conclusion, the identification of DE genes, using

scRNAseq data, remains challenging. Tools developed for

scRNAseq data focus on handling zero counts or multi-

modality but not both. In general, the methods that can

capture multimodality (non-parametric methods), per-

form better than do the model-based methods designed

for handling zero counts. However, a model-based method

that can model the drop-out events well, can perform bet-

ter in terms of true positive and false positive. We ob-

served that methods developed specifically for scRNAseq

data do not show significantly better performance com-

pared to the methods designed for bulk RNAseq data; and

methods that consider behavior of each individual gene

(not all genes) in calling DE genes outperform the other

tools. The lack of agreement in finding DE genes by these

tools and their limitations in detecting true DE genes and

biologically relevant gene sets indicate the need for devel-

oping more precise methods for differential expression

analysis of scRNAseq data. Multimodality, heterogeneity,

and sparsity (many zero counts) are the main characteris-

tics of scRNAseq data that all need to be addressed when

developing new methods.
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