
International Scholarly Research Network
ISRN Optics
Volume 2012, Article ID 243672, 5 pages
doi:10.5402/2012/243672

Research Article

Comparative Analysis of Free Optical Vibration of
Lamination Composite Optical Beams Using the Boubaker
Polynomials Expansion Scheme and the Differential
Quadrature Method
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The effects of stacking sequences of composite laminated optical beams on free vibration frequencies are investigated using two
methods: the Boubaker Polynomials Expansion Scheme (pbes) and the Differential Quadrature Method (dqm). In the last decades,
these two techniques have been separately performed for obtaining accurate numerical solutions to several initial boundary value
problems (Vo et al. 2010, Li et al. 2008, Chen 2003, Hu et al. 2008, Karami et al. 2003, Malekzadeh et al. 2004, Khare et al. 2004,
Della and Shu 2005, Ramtekkar et al. 2002, Adam 2003). Conjointly yielded results are compared and discussed.

1. Introduction

Free optical vibration of generally laminated beams has
been of increasing interest in the last decades’ literature
[1–12]. Vo et al. [1] investigated free vibration of axially
loaded thin-walled composite beams with arbitrary lay-ups.
The proposed model was based on equations of motion
for flexural-torsional coupled vibration which were derived
from the Hamilton’s principle. In the same context, Li et
al. [2] studied the free vibration and buckling behaviors
of axially loaded laminated composite beams using the
dynamic stiffness method. The model took into account
influences of axial force, Poisson effect, axial deformation,

shear deformation, and rotary inertia. Hu et al. [4] Karami
et al. [5], and Malekzadeh et al. [6] proposed a differential
quadrature element method (DQEM) by using Hamilton’s
principle for free vibration analysis of arbitrary nonuniform
Timoshenko beams on elastic supports.

Many other analytical methods of analysis have been used
to study the vibration of plates, shells, and beams [7–12].

In this paper, a model on the vibration analysis of
laminated composite beam has been developed and studied
using two resolution protocols. For the beam used, it is
assumed that Bernoulli-Euler hypothesis is valid. The results
obtained by the two methods are compared. It has been
concluded that all of the results are very close to each other.
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Figure 1: Cantilever composite laminated optical beam.

2. Problem Formalization

The normal stress in jth layer of a composite laminated beam
shown in Figure 1 can be written in the following way:

(σx) j = (Ex) j · (εx) j . (1)

According to Bernoulli-Euler hypotheses, the deformation at
a certain distance from neutral plane is

εx =
z

ρ
, (2)

where ρ is the curvature of the beam. The relationship
between normal stress and bending moment is given by

M = 2

∫ h/2

0
σx · z · b · dz, (3)

or

M =
2b

3ρ

N/2∑

j=1

(Ex) j
(
z3
j − z3

j−1

)
, (4)

where h and b are the height and the width of the beam,
N is the number of layer and z j is the distance between the
outer face of jth layer, and the neutral plane. The relationship
between the bending moment and the curvature can be
written as follows:

M =
Eef · Iyy

ρ
= EefIyy

d2w

dx2
,

Eef =
8

h3

N/2∑

j=1

(Ex) j
(
z3
j − z3

j−1

)
,

(5)

where Eef is the effective elasticity modulus and Iyy is
the cross-sectional inertia moment of the beam. Flexural
motion of a linear elastic laminated composite beam without
shear or rotary inertia effects is described by Bernoulli-Euler
equation:

Eef · Iyy ·
∂4w

∂x4
+ ρ · A ·

∂2w

∂t2
= 0. (6)

As a solution of (6), it can be used a separation of variables
solution for harmonic free vibration:

w(x, t) = eiωntW(x), (7)

where ωn is the frequency and W(x) is the mode shape
function of the lateral deflection. Substitution of this solution
into (6) eliminates the time dependency and yields the
following characteristic value problem:

d4W(x)

dx4
− ζ2W(x) = 0, (8)

where λ is the dimensionless frequency of the beam vibra-
tions given by

ζ =

√√√√ω2
nρmA

EefIyy
. (9)

For a cantilever composite laminated beam shown in
Figure 1, the boundary conditions at the two ends are

W =
dW(x)

dx
= 0 at x = 0, (10)

due to the deflection and rotation both being zero at the
clamped end, and

d2W(x)

dx2
= 0 at x = L, (11)

due to the bending moment and shear force both vanishing
at the free end.

The analytical solution of (8) subjected to (10) and (11)
yields the frequency equation:

cos
(
βL
)

cosh
(
βL
)

+ 1 = 0, β = ζ4, (12)

which may be found in the relevant literature [13].

3. DQM Solution

DQM method is carried out for the approximate solution of
the characteristic value problem in (8) with the boundary
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conditions given by (10) and (11) by first discretizing the
interval [0,L] such that 0 = x1 < x2 < · · · < xN = L, where
N is the number of grid points. Application of the DQM to
discrete the derivative in (8) leads to

N∑

j=1

A
(4)
i j W j − ζ2Wi = 0, i = 3, 4, . . . , (N − 2), (13)

where A
(4)
i j are the weighting coefficients of the fourth-

order derivative which can be calculated using the explicit
relations given by Shu [14]. Note that we have two boundary
conditions specified at both ends. These two conditions at
the same point provoke a great challenge for the DQM,
because we have only one quadrature equation at one
point in the DQM, which prevents implementing the two
boundary conditions. We use δ-point technique to eliminate
the difficulties in implementing two conditions at a single
boundary point (Figure 2). Following the same approach
presented in [15], the boundary conditions at x = 0 can be
discretized as

W1 = 0,
N∑

j=1

A
(1)
2 j W j = 0. (14)

Similarly, the boundary conditions at x = L can be dis-
cretized as

N∑

j=1

A
(2)
(N−1) jW j = 0, (15)

N∑

j=1

A
(3)
N jW j = 0. (16)

The assembly of (13) through (15) yields the following set
[14] of linear equations:

[
[Sbb] [Sbd]
[Sdb] [Sdd]

]{
{Wb}

{Wd}

}
=

{
{0}

ζ{Wd}

}
, (17)

where the subscripts b and d indicate the grid points used for
writing the quadrature analog of boundary conditions and
the governing differential equation, respectively. By matrix
substructuring of (17), one has the following two equations:

[Sbb]{Wb} + [Sbd]{Wd} = {0},

[Sdb]{Wb} + [Sdd]{Wd} = ζ2{Wd}.
(18)

From the first part of (18), one obtains

{Wb} = −[Sbd]−1[Sbd]{Wd}. (19)

Back-substituting (19) into the second part of (18), one gets

[S]{Wd}− λ2[I]{Wd} = {0}, (20)

where [S] is of order (N − 4)× (N − 4) and given by

[S] = −[Sdb] [Sbb]−1[Sbd] + [Sdd]. (21)

Both the eigenvalues being the frequency squared values and
the eigenvectors {Wd} describing the mode shapes of the
freely vibrating beam may be obtained simultaneously from
the [S] matrix.

δδ

xN(N − 1)ı = 1 2 3

Figure 2: A one-dimensional quadrature grid with adjacent δ-
points.

4. BPES Solution

The BPES [16–23] is applied to (8) through setting the ex-
pression

W(x) =
1

2N0

N0∑

k=1

λk × B4k

(
x ×

rk
L

)
, (22)

where B4k are the 4k-order Boubaker polynomials, x ∈ [0,L]
is the normalized time, rk are B4k minimal positive roots, N0

is a prefixed integer, and λk|k=1,...,N0
are unknown pondering

real coefficients.
Consequently, it comes for (8) that

1

2N0

(
rk
L

)4 N0∑

k=1

λk ×
dB4k

dx4

(
x ×

rk
L

)

− ζ2 1

2N0

(
rk
L

)4 N0∑

k=1

λk × B4k

(
x ×

rk
L

)
= 0.

(23)

The related boundary conditions expressed through (10) and
(12). The BPES protocol ensures their validity regardless
main equation features. In fact, thanks to Boubaker polyno-
mials first derivatives properties are

N∑
q=1

B4q(x)

∣∣∣∣∣∣
x=0

= −2N /= 0,

N∑
q=1

B4q(x)

∣∣∣∣∣∣
x=rq

= 0,

N∑
q=1

dB4q(x)

dx

∣∣∣∣∣∣
x=0

= 0,

N∑
q=1

dB4q(x)

dx

∣∣∣∣∣∣
x=rq

=

N∑
q=1

Hq

withHn = B′4n(rn) =

(
4rn
[
2− r2

n

]
×
∑n

q=1 B
2
4q(rn)

B4(n+1)(rn)
+ 4r3

n

)
.

(24)

Boundary conditions are inherently verified:

dW(x)

dx

∣∣∣∣
x=0

=
1

2N0

N0∑

k=1

λk ×
dB4k(x)

dx

∣∣∣∣
x=0

= 0,

dW(x)

dx

∣∣∣∣
x=L

=
1

2N0

N0∑

k=1

λk ×
dB4k(x)

dx

∣∣∣∣
x=rk

= 0,

N0∑

k=1

λk ×Hn = 0.

(25)
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Table 1: Geometry and material properties of the composite
materials.

Descriptions Present Unit

L (mm) 320 mm

b (mm) 36 mm

h (mm) 8 mm

E1 (MPa) 26950 MPa

E2 (MPa) 21800 MPa

G12 (MPa) 7540 MPa

v12 0.15

ρ (kg/m3) 2030 kg/m3

The BPES solution is obtained through five steps:

(i) Integrating, for a given value of N0, the whole ex-
pression given by (23) along the interval [0,L].

(ii) Determining the set of coefficients where λ̃k|k=1,...,N0

that minimizes the absolute difference DN0 :

DN0 =

∣∣∣∣∣∣

⎛
⎝ 1

2N0

N0∑

k=1

λ̃k ×Λk

⎞
⎠
− ζ

⎛
⎝ 1

2N0

N0∑

k=1

λ̃k ×Λ
′
k

⎞
⎠
∣∣∣∣∣∣

with

Λk =

(
rk
L

)4 ∫ L

0

dB4k

dx4

(
x ×

rk
L

)
dx,

Λ
′
k =

∫ L

0
B4k

(
x ×

rk
L

)
dx.

(26)

(iii) Deducing the corresponding frequency using (9).

(iv) Incrementing N0.

(v) Ranging the obtained frequencies.

5. Results and Discussion

Natural frequencies of the symmetric laminated composite
cantilever beam have been estimated using the Boubaker
Polynomials Expansion Scheme (PBES) and the Differential
Quadrature Method (DQM), and for parameters values
indicated in Table 1. Figure 3 presents the obtained values.
The results have been evaluated as quite close to each other.

The natural frequency alteration as a direct result of
the change in the stacking sequence causes resonance if the
changed frequency becomes closer to the working frequency.
Hence, selection of the stacking sequences in the laminated
composite beams has to be outlined.

6. Conclusion

This work deals with two protocols for the calculation
of natural frequency of the symmetric laminated compos-
ite cantilever beam. Calculations performed by means of
Boubaker Polynomials Expansion Scheme PBES and Dif-
ferential Quadrature Method DQM yielded coherent and
similar results.
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Figure 3: Comparison of BPES and DQM frequencies for cross-ply
laminated beam.

All considered results have been seen to be in accordance
with each other. Changes in the stacking sequence, which
likely allow tailoring of the material to achieve desired
natural frequencies and respective mode shapes without
changing its geometry, are the subject of following studies.
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